

Advances in Group Theory and Applications

© 2023 AGTA - www.advgrouptheory.com/journal 16 (2023), pp. 81–89 ISSN: 2499-1287

DOI: 10.32037/agta-2023-009

On Generalized σ-Subnormal Subgroups of Finite Groups

Muhammad Tanveer Hussain

(Received April 26, 2022; Accepted July 21, 2022 — Comm. by A. Ballester-Bolinches)

Abstract

Let $\sigma=\{\sigma_i\,|\,i\in I\}$ be some partition of the set of all primes $\mathbb{P},\,G$ a finite group and $\sigma(G)=\{\sigma_i\,|\,\sigma_i\cap\pi(G)\neq\emptyset\}$. A subgroup A of G is said to be *generalized \sigma-subnormal* in G if $A=\langle L,T\rangle$, where L is a modular subgroup and T is a σ -subnormal subgroup of G. We study the structure of G being based on the assumptions that if all members of $\mathcal H$ and every maximal subgroup of any non-cyclic $H_i\in\mathcal H$ are generalized σ -subnormal in G, where $\mathcal H$ is a *complete Hall \sigma-set* of G.

Mathematics Subject Classification (2020): 20D10, 20D15

Keywords: σ-subnormal subgroup; modular subgroup; σ-nilpotent group; finite group; generalized σ-subnormal subgroup

1 Introduction

Throughout this article, all groups are assumed to be finite and G always denotes a finite group. Moreover $\mathbb P$ is the set of all primes, $\pi \subseteq \mathbb P$ and $\pi' = \mathbb P \setminus \pi$. A subgroup M of G is called *modular* (in the sense of Kurosh [12, p. 43]) if M is a *modular* element of the lattice $\mathcal L(G)$, that is,

- (1) $\langle X, M \cap Z \rangle = \langle X, M \rangle \cap Z$ for all $X \leq G, Z \leq G$ with $X \leq Z$, and
- (2) $\langle M, Y \cap Z \rangle = \langle M, Y \rangle \cap Z$ for all $Y \leqslant G, Z \leqslant G$ such that $M \leqslant Z$.

If n is an integer, the symbol $\pi(n)$ denotes the set of all prime dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

In what follows, $\sigma = \{\sigma_i \mid i \in I\}$ is some partition of all primes \mathbb{P} , that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. We write

$$\sigma(n) = \big\{ \sigma_i \, | \, \sigma_i \cap \pi(n) \neq \emptyset \big\}$$

and $\sigma(G) = \sigma(|G|)$.

Following [4],[5],[9],[10],[14],[13], a set $\mathcal H$ of subgroups of G is said to be a *complete Hall* σ -set of G if every non-identity member of $\mathcal H$ is a Hall σ_i -subgroup of G for some $\sigma_i \in \sigma(G)$ and $\mathcal H$ contains exactly one Hall σ_i -subgroup for every $\sigma_i \in \sigma(G)$. The group G is said to be: σ -full if it possesses a complete Hall σ -set; σ -primary if $|\sigma(G)| \leqslant 1$; σ -nilpotent if it has a complete Hall σ -set $\mathcal H = \{H_1, \ldots, H_t\}$ such that $G = H_1 \times \ldots \times H_t$. A subgroup H of G is said to be σ -subnormal in G if there exists a subgroup chain $H = H_0 \leqslant H_1 \leqslant \ldots \leqslant H_n = G$ such that either H_{i-1} is normal in H_i or $H_i/(H_{i-1})_{H_i}$ is σ -primary for all $i = 1, \ldots, n$.

Definition 1.1 (see [6]) A subgroup A of G is said to be *generalized σ-subnormal* in G if $A = \langle L, T \rangle$, where L is a modular subgroup and T is a σ-subnormal subgroup of G.

Some properties of generalized σ -subnormal were analyzed in the paper [6]. In this paper, we also study some other new properties of generalized σ -subnormal subgroups. In fact, our main result are as follows.

Theorem 1.2 Let $\mathcal{H} = \{H_1, \dots, H_t\}$ be a complete Hall σ -set of G. Suppose that every subgroup $H_i \in \mathcal{H}$ is generalized σ -subnormal in G, then the derived subgroup G' of G is σ -nilpotent.

Remark 1.3 It is clear from Example 1.2 of [6] that every modular, σ -permutable and every σ -subnormal subgroups of G are generalized σ -subnormal subgroup but the converse is not necessarily true. Moreover in the case when $\sigma = \{\{2\}, \{3\}, \dots\}$ every subnormal subgroup is σ -subnormal subgroup of G.

Corollary 1.4 (see [6],Theorem 1.3) *If all Schmidt subgroups of* G *are generalized* σ -subnormal in G, then $G/F_{\sigma}(G)$ is abelian.

Corollary 1.5 (see [17], Theorem A(ii)) If G possesses a complete Hall σ -set $\mathcal H$ all of whose members are m- σ -permutable in G, then the derived subgroup G' of G is σ -nilpotent.

In the case, when $\sigma = \{\{2\}, \{3\}, \dots\}$, by using Theorem 1.2 we have the following corollary.

Corollary 1.6 If every Sylow subgroup of G is either modular or subnormal in G, then G' is nilpotent.

Remark 1.7 Also note from [6, Example 1.2] that the modular subgroup L of G is not σ -subnormal in G and the σ -subnormal subgroup T of G is not modular in G. By this observation we have the following corollaries.

Corollary 1.8 If every Sylow subgroup of G is modular in G, then G' is nilpotent.

Corollary 1.9 (see [11]) If every Schmidt subgroup of G is subnormal in G, then G/F(G) is abelian.

Theorem 1.10 Let G be a σ -full group of Sylow type and $\mathcal{H} = \{H_1, \ldots, H_t\}$ be a complete Hall σ -set of G such that every subgroup $H_i \in \mathcal{H}$ is generalized σ -subnormal in G, then G is σ -soluble.

Theorem 1.11 Let G be a σ -full group of Sylow type and $\mathcal{H} = \{H_1, \ldots, H_t\}$ be a complete Hall σ -set of G such that every subgroup $H_i \in \mathcal{H}$ is a nilpotent σ_i -subgroup. If every maximal subgroup of any non-cyclic H_i is generalized σ -subnormal in G, then G is supersoluble.

In the case when $\sigma = \{\{2\}, \{3\}, \dots\}$ every normal subgroup, every *permutable subgroup* (recall that a subgroup H of G is said to be permutable in G if HS = SH for any subgroup S of G) and every *s-permutable subgroup* (recall that a subgroup H of G is said to be s-permutable in G if HP = PH for any Sylow subgroup P of G) of G are generalized σ -subnormal in G. The following corollaries are true for Theorem 1.11.

Corollary 1.12 (see [16], Theorem 1) *If all maximal subgroups of every Sylow subgroup of* G *are normal in* G, *then* G *is supersoluble.*

Corollary 1.13 (see [16], Theorem 2) *If all maximal subgroups of every Sylow subgroup of G are s-permutable in G, then G is supersoluble.*

Corollary 1.14 (see [7], VI, Theorem 10.3) *If every Sylow subgroup of* G *is cyclic, then* G *is supersoluble.*

All unexplained terminologies and notations are standard. The reader is referred to [1],[2],[3],[7] if necessary.

2 Preliminaries

We use \mathfrak{N}_{σ} to denote the class of all σ -nilpotent groups and \mathfrak{S}_{σ} to denote the class of all σ -soluble groups. Also we use \mathfrak{U} to denote the class of all supersoluble groups.

Lemma 2.1 (see [15], Theorems A and B) *If* G *is* σ -soluble, then G *is a* σ -full group.

Lemma 2.2 (see [13], Corollary 2.4 and Lemma 2.5) *The following statements hold.*

- (1) The class \mathfrak{N}_{σ} is closed under taking products of normal subgroup, homomorphic images and subgroups.
- (2) If G/N and G/M are σ -nilpotent, then $G/M \cap N$ is σ -nilpotent.
- (3) If R is a normal subgroup of G and $R/R \cap \Phi(G)$ is σ -nilpotent, then R is σ -nilpotent.

Lemma 2.3 (see [13], Lemma 2.1, or [8], Lemma 2.3) The class \mathfrak{S}_{σ} is closed under taking direct products, homomorphic images and subgroups. Moreover, any extension of the σ -soluble group by a σ -soluble group is a σ -soluble group as well.

Lemma 2.4 (see [6], Lemma 2.5) Let A, B and N be subgroups of G, where A is generalized σ -subnormal in G and N is normal in G, then AN/N is generalized σ -subnormal in G/N.

Lemma 2.5 (see [12], Lemma 2.5) If H is modular in the finite group G, then every chief factor of G between H^G and H_G is cyclic.

Lemma 2.6 (see [13], Lemma 2.6) Let A, K and N be subgroups of G. Suppose that A is σ -subnormal in G and N is normal in G. If A is a σ -Hall subgroup of G, then A is normal in G.

A normal subgroup H of G is said to be *hypercyclically embedded* in G (see [12], p.217) if either H=1 or $H\neq 1$ and every chief factor of G below H is cyclic. We use $Z_{\mathfrak{U}}(G)$ to denote the product of all normal hypercyclically embedded subgroup of G. It is clear that a normal subgroup H of G is hypercyclically embedded in G if and only if $H\leqslant Z_{\mathfrak{U}}(G)$.

Lemma 2.7 (see [12], Theorem 5.2.5) If M is modular in the finite group G, then $M^G/M_G \leq Z_{51}(G/M_G)$.

Recall that $G^{\mathfrak{N}_{\sigma}}$ denotes the σ -nilpotent residual of G, that is, the intersection of all normal subgroups N of G with σ -nilpotent quotient G/N.

3 Proofs of the results

Proof of Theorem 1.2 — Let $1 \neq D = G^{\mathfrak{N}_{\sigma}}$ be the σ -nilpotent residual of G. Assume that the theorem is false and let G be a counter example with |G| minimal, then G is not σ -nilpotent. So $|\sigma(G)| > 1$. Furthermore, G/D is σ -nilpotent by Lemma 2.2(2), and therefore by Lemma 2.3 G is σ -soluble. By Lemma 2.1, $\mathcal{H} = \{H_1, \ldots, H_t\}$ be a complete Hall σ -set of G.

Let N be a minimal normal subgroup of G. Then N is a σ_i -group for some i, therefore the hypothesis holds for G/N by Lemma 2.4. Hence $(G/N)' = G'N/N = G'/G' \cap N$ is σ -nilpotent by the choice of G. Thus by Lemma 2.2(3) $N \leqslant G'$ and $N \nleq \Phi(G)$. Furthermore, if G has a minimal normal subgroup $R \neq N$ of G, then $R \leqslant G'$ and $G'/N \cap R = G'/1 \simeq G'$ is σ -nilpotent, a contradiction. This implies that N is the unique minimal normal subgroup of G and $C_G(N) \leqslant N$ by [2], Chapter A, 15.2. We can assume without loss of generality that i = 1 and $N \leqslant H_1$.

Let M be a maximal subgroup of G such that $N \nleq M$. So $M_G = 1$ and |G:M| is a σ_i -number. This shows that for some $x \in G$ we have $A = H_2^x \leqslant M$. Then $A = \langle L, T \rangle$ for some modular subgroup L and σ -subnormal subgroup T of G. Moreover, $L_G \leqslant M_G = 1$, so L^G is hypercyclically embedded in G by Lemma 2.5. If $L \not= 1$, then $N \leqslant L^G$ and thus |N| = p for some prime p. But then $C_G(N) = N$ and $G/N = G/C_G(N)$ is cyclic. Hence G' is σ -nilpotent. This contradiction shows that L = 1, thus A = T is σ -subnormal in G. This implies that A is normal in G by Lemma 2.6 since A is a Hall σ_i -subgroup of G for some i. So $1 < A \leqslant M_G$, a contradiction. Thus theorem holds.

Proof of Theorem 1.10 — Suppose that this is false, and let G be a counterexample of minimal order, then $|\sigma(G)| > 1$.

(1) G/R is σ -soluble for every non-identity normal subgroup R of G. Assume that R is a non-trivial normal subgroup of G and H/R is any Hall σ_i -subgroup of G/R, where $\sigma_i \cap \pi(G/R) \neq \emptyset$. Then we have that H/R = H_iR/R for some Hall σ_i -subgroup H_i of G. By the

hypothesis, $H_i = \langle L, T \rangle$ for some modular subgroup L and σ -subnormal subgroup T of G. By Lemma 2.4 $H_iR/R = \langle LR/R, TR/R \rangle$ is genralized σ -subnormal in G/R. This shows that G/R satisfies the hypothesis. The minimal choice of G implies that G/R is σ -soluble.

(2) G is not a simple group.

Assume that G is non-abelian simple group. Then 1 is the only proper σ -subnormal of G. Let H_i be any non-identity Hall σ_i -subgroup of G, where $\sigma_i \in \sigma(G)$. By the hypothesis and $|\sigma(G)| > 1$, we have $H_i = \langle L, T \rangle$, where L is modular subgroup and T is σ -subnormal subgroup of G. If T = G, then $H_i = \langle L, G \rangle = G$, a contradiction of $|\sigma(G)| > 1$. If T = 1, then $H_i = L$ is a modular subgroup of G. By Lemma 2.7, $H_i^G \leq Z_{\mathfrak{U}}(G)$. But since G is simple group either $H_i^G = 1$ or $H_i^G = Z_{\mathfrak{U}}(G) = G$, a contradiction of $H_i \leq H_i^G = 1$ and G is σ -soluble. Hence we have (2).

(3) If N is minimal normal subgroup of G, then N is σ -soluble.

Since $|\sigma(G)| > 1$, therefore let H_i be any Hall σ_i -subgroup of G. By the hypothesis $H_i = \langle L, T \rangle$, where L is modular subgroup and T is σ -subnormal subgroup of G. If $L_G \neq 1$, then $N \leqslant L_G$. Since L is σ -nilpotent, so N is σ -soluble. On the other hand if $L_G = 1$, then L^G is supersoluble by Lemma 2.7 and therefore minimal normal subgroup N of G contained in L^G is σ -soluble. Now suppose that if L = 1, then $H_i = T$ is σ -subnormal subgroup of G. This implies that H_i is normal in G by Lemma 2.6. Thus $N \leqslant H_i$. Since H_i is σ -nilpotent, therefore N is σ -soluble. If T = 1, then $H_i = L$ is modular subgroup of G. Then every chief factor of G between H_i^G and $H_{i,G}$ is cyclic by Lemma 2.5. This follows that N is cyclic and therefore σ -soluble. Hence (3) holds.

(4) Final Contradiction.

In view of Claims (1), (2) and (3), we have G is σ -soluble by Lemma 2.3. The final contradiction completes the proof of the theorem. \Box

Proof of Theorem 1.11 — Assume that the assertion is false, and let G be a counterexample of minimal order, then $|\sigma(G)| > 1$.

Let q be the smallest prime dividing |G|. Without loss of generality, we can assume that $q \in \sigma_1$. We now continue the proof via the following steps.

(1) The hypothesis holds on G/N for every σ -primary minimal normal subgroup $1 \neq N$ of G. Consequently, G/N is supersoluble and G is soluble. Hence N is non-cyclic.

It is clear that $\overline{\mathcal{H}}=\{H_1N/N,\ldots,H_tN/N\}$ is a complete Hall σ -set of G/N and $H_iN/N\simeq H_i/H_i\cap N$ is nilpotent. Now assume that W/N is a maximal subgroup of H_iN/N , thus $|(H_iN/N):(W/N)|=q$ is a prime. Then $W=N(W\cap H_i)$. Hence

$$\begin{split} q &= |(H_{i}N/N): (W/N)| = |(H_{i}N/N): (N(W \cap H_{i})/N)| \\ &= |H_{i}N: N(W \cap H_{i})| = |H_{i}||N||N \cap (W \cap H_{i})|/|W \cap H_{i}||N||H_{i} \cap N| \\ &= |H_{i}|/|W \cap H_{i}| = |H_{i}: (W \cap H_{i})|, \end{split}$$

therefore $W \cap H_i$ is a maximal subgroup of H_i . If H_iN/N is noncyclic, then H_i is non-cyclic, thus by the hypothesis $W \cap H_i$ is generalized σ -subnormal in G. Then $(W \cap H_i)N/N$ is generalized σ -subnormal in G/N by Lemma 2.4. Thus hypothesis holds for G/N, so the choice of G implies that G/N is supersoluble. Hence G is σ -soluble. Finally, since $N \leq H_i$ for some i, N is soluble and so G is soluble. Hence we have (1).

(2) G is σ -soluble. Hence G is soluble.

Assume that this is false, then $(H_1)_G = 1$ and $O_j(G) = 1$ for all σ_j in $\sigma(G)$ by Claim (1). Furthermore, H_1 is non-cyclic. In fact, if H_1 is cyclic, then G is q-nilpotent by [7], IV, 2.8. Thus by the Feit-Thompson theorem G is soluble since q is the smallest prime dividing the order of G.

Since H_1 is nilpotent non-cyclic by the hypothesis and $q \in \pi(H_1)$. We have $H_1 = W_1W_2$ for some maximal subgroups W_1 , W_2 of H_1 and W_1 , W_2 are generalized σ -subnormal in G. Then $W_k = \langle L_k, T_k \rangle$ for some modular subgroup L_k and σ -subnormal subgroup T_k of G with $\langle L_k, T_k \rangle_G = (L_k)_G = (T_i)_G = 1$, where k = 1, 2. Since G has no cyclic minimal normal subgroup by Claim (1). Therefore it follows by Lemma 2.5 that $L_k = 1$, and so $V_k = T_k$. If $T_k > 1$, then

$$1>T_k=O_{\sigma_1}(T_k)\leqslant O_{\sigma_1}(G)$$

by [10, Lemma 2.3(1)], a contradiction. Therefore $V_k = T_k = 1$, and it follows that $H_1 = 1$, again a contradiction. Hence (2) holds.

(3) N is the unique minimal normal subgroup of G, $\Phi(G) = 1$, $N = C_G(N) = F(G) = O_q(G)$ and |N| > q for some prime q. It follow from Claim (2), [7, VI, 8.6] and [2, A, 15.2].

(4) The final contradiction.

Let $p \in \sigma_i$, then $N \leq H_i$. Thus for some maximal subgroup M of G

we have $G = N \rtimes M$ by Claim (3). Then we have $H_i = N \rtimes (H_i \cap M)$. By the hypothesis H_i is nilpotent, so some maximal subgroup E of N is normal in H_i . Then $W = E(H_i \cap M)$ is a maximal subgroup of H_i , and by the hypothesis $W = \langle L, T \rangle$ for some modular subgroup L and σ -subnormal subgroup T of G. Claim (3) and Lemma 2.5 implies that $L_G = 1$ and $L^G \leqslant Z_{\mathfrak{U}}(G)$. Therefore $N \leqslant Z_{\mathfrak{U}}(G)$. It follows from Claim (1) that $G \in \mathfrak{U}$. This contradiction completes the proof of the theorem.

REFERENCES

- [1] A. Ballester-Bolinches R. Esteban-Romero M. Asaad: "Products of Finite Groups", *de Gruyter*, Berlin (2010).
- [2] K. Doerk T. Hawkes: "Finite Soluble Groups", de Gruyter, Berlin (1992).
- [3] W. Guo: "Structure Theory for Canonical Classes of Finite Groups", Springer, New York (2015).
- [4] W. Guo C. Cao A.N. Skiba D.A. Sinitsa: "Finite groups with H-permutable subgroups", Comm. Math. Stat. 5 (2017), 83–92.
- [5] W. Guo A.N. Skiba: "On Π-quasinormal subgroups of finite groups", *Monatsh. Math.* 185 (2018), 443–453.
- [6] B. Hu J. Huang: "On finite groups with generalized σ-subnormal Schmidt subgroups", Comm. Algebra 46 (2018), 3127–3134.
- [7] B. Huppert: "Endliche Gruppen I", Springer, Berlin (1967).
- [8] M.T. Hussain: "Finite groups with given σ-conditionally permutable subgroups", *Iran. J. Math. Sci. Inform.*, to appear.
- [9] M.T. Husssain C. Cao C. Zhang: "The influence of weakly σ-permutably embedded subgroups on the structure of finite groups", *Bull. Iran. Math. Soc.* 46 (2020), 1341–1356.

- [10] M.T. Hussain C. Cao L. Zhang: "Finite groups with given weakly τ_{σ} -quasinormal subgroups", *Hacet. J. Math. Stat.* 49 (2020), 1706–1717.
- [11] V.N. KNYAGINA V.S. MONAKHOV: "On finite groups with some subnormal Schmidt subgroups", *Siberian Math. J.* 45 (2004), 1075–1079.
- [12] R. Schmidt: "Subgroup Lattices of Groups", de Gruyter, Berlin (1994).
- [13] A.N. Skiba: "On σ-subnormal and σ-permutable subgroups of finite groups", *J. Algebra* 436 (2015), 1–16.
- [14] A.N. SKIBA: "On some results in the theory of finite partially soluble groups", *Comm. Math. Stat.* 4 (2016), 281–309.
- [15] A.N. SKIBA: "A generalization of a Hall theorem", *J. Algebra Appl.* 15 (2016), 1650085, 13pp.
- [16] S. Srinivasan: "Two sufficient conditions for supersolvability of finite groups", *Israel J. Math.* 35 (1980), 210–214.
- [17] X. Wei: "On weakly m-σ-permutable subgroups of finite groups", Comm. Algebra 47 (2019), 945–956.

Muhammad Tanveer Hussain Department of Mathematics University of Management and Technology 54770, Lahore (Pakistan) e-mail: tanveerhussain@umt.edu.pk