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Abstract

This work is a continuation of the investigation of a locally nilpotent p-group sat-
isfying the normalizer condition by imposing certain conditions on locally maxi-
mal subgroups, where p # 2. A sufficient condition is obtained for making every
abelian-by-elementary abelian normal subgroup of such a group to be abelian. If
in addition the group in question is hyperabelian, then it is abelian, where p > 5.
In the general case if a locally nilpotent p-group satisfies the mentioned condition
above (p # 2), then it contains a unique maximal normal abelian subgroup.
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1 Introduction

This is a continuation of the study of a locally nilpotent p-group G
which satisfies the normalizer condition and/or is a Fitting group in
order to search for imperfectness conditions and to obtain some in-
formation about its inner structure when G is perfect (see [1, 2, 3, 5]).
In [2, 3], it was shown that if G is a Fitting p-group satisfying the
normalizer condition and if in every homomorphic image of G cer-
tain (w, V)-maximal subgroups satisfy the (xx)-condition (see below
for definitions), then, under certain conditions, G cannot be per-
fect (see [2, Theorem 1.1] and [3, Theorem 1.1]). Now it follows
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from Theorem 1.5 (see below) that a group G satisfying the hypothe-
ses of these theorems is actually abelian. In this work it is shown
that in a locally nilpotent p-group satisfying the normalizer con-
dition only and whose locally maximal subgroups have large nor-
malizers (see definitions below), every normal abelian-by-elementary
abelian subgroup is abelian, where p > 5 (see Theorem 1.1 (b)). If
in addition G is hyperabelian, then it is abelian (see Theorem 1.3
and Corollary 1.4). In the general case (p # 2), G contains a unique
maximal normal abelian subgroup (see Theorem 1.1 (a)).

But before stating the main results it will be suitable to recall some
of the definitions and notations given in [2] and [3] since they form
the basis of this work. Let G be a group, w € G\ 1 and V be a finitely
generated subgroup of G with w ¢ V. Then the ordered pair (w, V)
is called a (*)-pair in G (note that in [2, 3]; that is in the definition
of A(w,V),w € G\ Z(G) but in the present definition there is no such
a restriction on w, the only restriction is that w # 1). A subgroup E
of G which is maximal with respect to the condition that

wé¢E but VLE

is called (w, V)-maximal or maximal at (w,V) and if (w, V) is not men-
tioned, then it is called locally maximal. In addition let the following
be defined.

E*(w,V) ={E:Eisa (w,V)— maximal subgroup of G}

and
W*(w,V) ={Coreg(E): E € E*(w, V)}.

An element E of E*(w, V) is said to satisfy the (xx)-property, if
Ng(E) =Ng(E)

and (w, V) is said to satisfy (*x) if every element of E*(w, V) satisfies
it. On the other hand if

Ng(ECG(E)) < Ng(E),

then E is said to have a large normalizer.

Obviously ECG(E) < Ng(E) < Ng(ECG(E)). So if Ng(E) is large,
then Ng(E) = Ng(ECG(E)). Put N = Ng(E). Now if G satisfies the
normalizer condition, N is large and N # G, then ECg(E) # N. In-
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deed if ECG(E) = N, then Ng(N) = NG(ECG(E)) = Ng(E) = N,
which cannot happen by the normalizer condition. This fact will be
used without further notice.

Furthermore if E satisfies (xx), then N is large (see Lemma 4.1),
which shows that the first property is stronger than the second one.

In a locally nilpotent group G a locally maximal subgroup E be-
haves similar to a maximal subgroup M of G (if M exists), since M<G
and so G/M is cyclic of order p. Also Ng(E)/E is (locally) cyclic
by Lemma 2.1, provided p # 2. Moreover,

Ng(M) =G =Ng(MCg(M))

and so Ng (M) is large. Every subgroup of a Dedekind group satis-
fies (xx) since in this group every subgroup is normal and if it has
odd exponent, then it is abelian by [12, 5.3.7].

Again let (w,V) be a (x)-pair in G. If there exists a proper sub-
group L of G such that

we (V,y) foreveryy € G\ L,

then (w,V,L) is called a (x)-triple in G. This situation occurs
when (E*(w,V)) # G. In this case L can be any proper subgroup
of G containing (E*(w,V)). This case was studied in [5]. By means
of it a new characterization of a barely transitive p-group was given
(see [5, Theorem 1.2 (a)]). Furthermore G cannot be generated by nor-
mal abelian subgroups (see [1, Lemma 2.2]); as was shown in [5], if G
is minimal non-hypercentral or barely transitive, then (x)-triples ex-
ist. Thus it follows that if either E*(w, V) contains locally maximal
subgroups whose normalizers are large or (E*(w,V)) # G, then G
cannot be generated by normal abelian subgroups (this author knows
of no perfect locally nilpotent p-group other than McLain’s character-
istically simple group M(Q, F) [12, 12.1.9] which can be generated by
normal abelian subgroups).

As usual if a group G is solvable ( nilpotent), then its derived
length (nilpotent class) is denoted by d(G) (c(G)). If d(G) = 2, then G
is called metabelian. Also exp(G) = max{lg| : g € G} is called the
exponent of G. It may be expressed as exp(G) < oo or exp(G) = oo
according as it is finite or infinite, respectively. A group is called hy-
perabelian if it has an ascending normal series with abelian factors
(see [12, p.365]).

Definitions and notations are standard and may be found in [7, 8,
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9, 10, 11, 12].

Theorem 1.1 Let G be a locally finite p-group satisfying the normalizer
condition, where p # 2. Suppose that in every homomorphic image H of G
every (x)-pair (wy, Vy) satisfying W*(w,V) = 1 has a (wy, Vi )-ma-
ximal subgroup whose normalizer is large. Then the following hold.

(a) Every abelian-by-elementary abelian normal nilpotent subgroup of G
is abelian. In particular G contains a unique maximal normal abelian
subgroup.

(b) If p = 5, then every abelian-by-elementary abelian normal subgroup
of G is abelian.

Theorem 1.2 Let G be a solvable p-group satisfying the normalizer con-
dition, where p > 5. Suppose that in every homomorphic image H of G ev-
ery (x)-pair (wy, Vu) satisfying W*(w, V) =1 has a (wy, Vi )-maximal
subgroup whose normalizer is large. Then G is abelian.

Theorem 1.3 Let G be an hyperabelian p-group satisfying the normalizer
condition, where p > 5. Suppose that in every homomorphic image H of G
every (x)-pair (wy, V) satisfying W*(w, V) = 1 has a (wy, Vi )-ma-
ximal subgroup whose normalizer is large. Then G is abelian.

Corollary 1.4 Let G be a locally finite p-group satisfying the normalizer
condition, where p > 5. Suppose that every proper normal subgroup of G is
solvable and in every homomorphic image H of G every (x)-pair (W, Vi)
satisfying W*(w, V) = 1 has a (wy, Vi )-maximal subgroup whose nor-
malizer is large. Then G is abelian.

ProOF — Assume that G is not abelian. Then also G is not solvable
by Theorem 1.2 and so G is perfect. Then G has an ascending normal
series

T=Mpop<Mi;d... Mg <My i1<d... M) =G

with G = . M« since a minimal normal subgroup of G is abelian.
But since M4 1/M is solvable for every « < A, the above series can
be refined into an ascending normal series whose factors are abelian
and so it follows that G is hyperabelian. But now since G must be
abelian by Theorem 1.3, we get a contradiction and so G must be
abelian. 0

The following is a complete characterization of the group given
in [3, Theorem 1.1].
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Theorem 1.5 Let G be a Fitting p-group satisfying the normalizer con-
dition, where p # 2. Suppose that in every homomorphic image H of G ev-
ery (x)-pair (Wy, Vi) has a (wy, Vi )-maximal subgroup satisfying (sx).
Then G is abelian.

In the following simple example for p = 3, the hypothesis of Theo-
rem 1.2 is not satisfied.

Example Let A = C3 and C = C3~ be a cyclic group of order 3
and a locally cyclic 3-group respectively and let G = C wr A be the
standard wreath product. Then G = [C]A, where [C] is the base group.
Let

A=(a) and C:<ci:c0:1andcf+1:ciforeveryi20>.

Thus [C] = Cop x C; x C2, where C; = C,i = C fori = 0,1,2.
Each f € [C] is a function f : A — C with f(at) € C;, which is the ith
component of f. [C] is an abelian group under point-wise multiplica-
tion; that is, for f,g € [Cl and y € A, fg(y) = f(y)g(y). We define an
action of A on [C] as follows.

fY(a) = f(ay*]) for every a,y € A.
For example if f = (cp,c1,c2), then
(1) = f(a?) = ca, f(a) = f(1) =co, f*(a?) =f(a) =c1.

Thus f = (c2,cp,c1) an so every entry of f is moved one step to the
right.

The correspondence f — fY defines an automorphism of [C]; that
is (fg)¥ = fYgY and so a monomorphism of A into Aut ([C]), which
we identify with A. The semidirect product of [C] with A is called the
wreath product of C with A and denoted by C wr A = [C]A.

Let f,g € [C] and a,b € A. Then

1

(f/ a)(glb) = (fgai ,Clb).

In particular
(f,a)~" = ((F ) a™ ).

If we identify (f,1) and (1,a) with f and a respectively, then
(f,a) = (f,1)(1, a) becomes fa.
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Let w = (c1,c1,c1) and consider the (x)-pair (w, 1), where |c1| = p.
LetE € E¥(w,1) and let N = Ng(E),L = Cg(E). First suppose E < [C].
Then L = [C] since w € E and a cannot centralize any subgroup # 1
of [C] not containing w. In this case N = L and Coreg(E) = 1.

Next suppose that ga € E for some g € [C]. Then since G = [Cl(ga),
it follows that E = ([C]NE)(ga) = (ga) since a cannot normalize any
subgroup of [C]. Thus (ga)(w) < L. Since N = (NN [C])(fa) < L, it
follows again that N = L. Also obviously Coreg(E) = 1. Thus we see
that W*(w, 1) = 1 but (w, 1) cannot satisfy the hypothesis of Theo-
rem 1.2.

2 First properties of G given in Theorem 1.1

Lemma 2.1 Let G be a locally finite p-group and let (w, V) be a (x)-pair
in G, where w € G\ 1. Let E € E*(w, V). Then N (E)/E is either (locally)
cyclic or p = 2 and isomorphic to a (locally) quaternion group.

ProoF — Put N = Ng(E) and define N = N/E. Let A be a fi-
nite abelian subgroup of N. Assume if possible that A is not cyclic.
Then A contains an elementary abelian subgroup (@) x (b). But
since E is (w,V)-maximal, we must have w € (a)E and w € (b)E.
Hence w € (a)EN (b)E = E, but this is impossible since w ¢ E. There-
fore every finite abelian subgroup of N is cyclic. In this case every
finite subgroup of N is cyclic or isomorphic to a generalized quater-
nion group by [7, Theorem 5.4.10 (ii)]. Therefore either N is (locally)
cyclic or isomorphic to a 2-group which is isomorphic to a (locally)
quaternion group. 0

Lemma 2.2 Let G be an infinitely generated locally nilpotent group and
let (w, V) be a (x)-pair in G, where w € G\ 1. If W*(w, V) =1, then the
following hold.

@) Z(G) # 1.

(b) Let E € E*(w, V) and put N = Ng(E). Suppose that N/E is (locally)
cyclic. If N < G, then it is abelian. If in addition G satisfies the nor-
malizer condition and N is large, then G is (locally) cyclic and E = 1.
In particular if w ¢ Z(G), then N 4 G.

ProoF — (a) Assume if possible that Z(G) = 1. Now G contains
a proper normal subgroup N # 1 since a minimal normal subgroup
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of G is contained in Z(G) by [12, 12.1.6]. Let Q ={1 <L < N:L 1 G}L
Let Q be partially ordered by saying that if for Ly,L; € Q, L1 > L,
then L; < L,. Then it is easy to check that (Q, <) is a partially or-
dered set. Assume if possible that Q has a maximal element L. Then
since Ly < L for every L € Q which is comparable with Lo , it follows
that L is a minimal normal subgroup of G and so Ly < Z(G). But
since Ly # 1 and Z(G) =1 this is a contradiction. Therefore Q cannot
have a maximal element. Therefore there exists a chain

LR X L X

of elements of Q whose upper bound does not belong to Q by Zorn’s
Lemma. Since this upper bound is (], L«, it must be equal to the
trivial group 1. Now if w € VL4 for all « > 1, then there exists
avieVandafp > 1so thatvf]w € Ly for all o« > B since V is
finite. Then since vf] w = 1, it follows that w = v, which is a contra-
diction since w ¢ V. Therefore there exists an o > 1 so that w ¢ VL.
Clearly, then there exists an E € E*(w, V) such that VL, < E. But
since 1 # L4 <1 G and W*(w, V) = 1, this is a contradiction. Therefore
the assumption is false and so Z(G) # 1.

(b) Suppose that N < G. Since N/EY is (locally) cyclic for every g
in G, there is natural homomorphism

N =] [(N/E9)geq

given by y — (yE9)geg with kernel E* = () E9. Hence it follows
that N/E* is abelian. Since W*(w, V) = 1 by hypothesis, E* = 1 and
therefore N is abelian.

Now suppose that N is large and satisfies the normalizer condi-
tion. Then N = Ng(ECg(E)). Also N = ECg(E) since N is abelian.
But since G satisfies the normalizer condition, this is possible only
if N = G and so G is abelian. Then E = T since E* = Tand so N/E = N
is (locally) cyclic. The last assertion is a trivial consequence of the first
one. a

Lemma 2.3 Let G be a locally finite p-group and let (w, V) be a (x)-pair
in G such that W*(w,V) = 1, where w € G\ 1. Assume that there ex-
ists an B € E*(w, V) having a large normalizer. If ECg(E)/E is infinite,
then Ng(E) is self-normalizing. In particular if G satisfies the normalizer
condition, then G is locally cyclic and E = 1.

ProoF — Put N = Ng(E). Assume that ECg(E)/E is infinite,
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then N = ECg(E) since N/E is (locally) cyclic by Lemma 2.1. Hence
NG(N) =Ng(ECg(E)) =Ng(E) =N

since N is large and so N = Ng(N), which means that N is self-
normalizing. Now if G satisfies the normalizer condition, then this is
possible only if E =1 and G is (locally) cyclic by Lemma 2.2 (b). O

Lemma 2.4 Let G be a locally finite p-group and (w, V) be a (x)-pair in G,
wherew € G\ 1. Let E € E*(w, V) and put N = Ng (E). Suppose that N/E
is (locally) cyclic. Let A be a normal abelian subgroup of G with Z(G) < A.
Let R=NnNA and D = RNE. Then the following hold.

(@) Let t € Gand U < Z(G). If t normalizes UE, then t normalizes
ECg(E).

(b) Suppose that W*(w,V) = 1. Let L = Ng(ECg(E). Let a € A\ N
with N¢ = N. If aP € R, then a normalizes ECg(E) and so a € L.
In particular if N is large then ANNg(N) < N.

Proor — If G is abelian, then there is nothing to prove. Therefore
in both cases we may suppose that G is not abelian.

(a) Assume that t normalizes UE. Let C = Cg(E). Then C = Cg(UE)
since U < Z(G). Since t normalizes UE, it must also normalize its
centralizer C. Clearly then t normalizes CE since U < C and so (a) is
verified.

(b) Suppose that W*(w, V) =1. Then Z(G) NE=1 since Coreg (E) =1
but also Z(G) # 1 by Lemma 2.2 (a). Therefore Q;(R) < (z)D for
some z € Z(G) with |z|] = p since N/E is (locally) cyclic. Assume
that a € A\ N with N® = N and aP € R. Put H = (a)D and H = H/D.
Since N/E is (locally) cyclic, [R,E] < D and so [R,E] < D = 1. Hence

1=[aP,E] = [a,E]P

by [7, Lemma 2.2.2 (i)] since @® € R, [R,E]l =1, a € A, [G,E] < A

and A is abelian. Thus [a, E] has order < p and so is contained in (z)D
since [a@, E] < N. Clearly then [a,E] < (z)E since D < E and so a
normalizes (z)E. Then since a normalizes ECg(E) by (a), it follows
that a € L. The last assertion follows from the first one since N is

large means N = L. 0

Lemma 2.5 Let G be a locally finite p-group, (w, V) be a (x)-pair in G,
where w € G\ 1. Suppose that W*(w,V) = 1 and let E € E*(w, V).
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Let B be a normal abelian-by-elementary abelian subgroup of G and A be
a normal abelian subgroup of G contained in B such that B/A is elemen-
tary abelian and Z(G) < A. Put N = Ng(E), R=NNB, D = RNE
and suppose that N/E is (locally) cyclic. Furthermore suppose that there
exists a t € B\ N with N* = Nand tP € N. Put T = (t)R, H = TN
and D* = Coreyy (D). Then the following hold.

(a) R/D is (locally) cyclic and
R/D* < Z(N/D*).

Also Z(G) # 1 and Z(G) N E = 1. Therefore 07(R/D*) < (z)D/D*,
where (z) is the unique subgroup of order p in Z(G).

(b) Suppose that N is large. Then
CT/D*(R/D*) = R/Ey’< and so CH/D*(R/D*) = ]\J/]:)>’<

Thus Z(T/D*) < R/D* and Z(T/D*)NE/D* =1 and so is (locally)
cyclic.

Proor — Clearly B is not abelian by Lemma 2.4 (b) by the choice
of t. Now T = BNH and so T < H. Then also R<H since R=TNN
and N < H. Also D < N since E << N. Put H = H/D*.

(a) Obviously R/D is (locally) cyclic since N/E has this proper-
ty. [R, N] is normal in H since R, N < H and is contained in E since N/E
is (locally) cyclic. Clearly then [R,N] < D* and so [R,N] = 1, which
implies that R < Z(N).

Next Z(G)#1by Lemma 2.2 (a) and Z(G) NE=1 since Coreg (E)=1.
Therefore if z € Z(G) with |z| = p, then Q7 (R) < (z)D since R/D is (lo-
cally) cyclic.

(b) Now suppose that N is large. Assume if possible that [t,R] = 1.
Then

1=[t",N]=[t,N]P

since tP € R and R < Z(N). Therefore [t,N] is a subgroup of or-
der < p of R. Clearly then [t,N] < Q;(R) < (z)D < (z)E by (a) and
thus t normalizes (z)E. But then since t normalizes ECg(E) by Lem-
ma 2.4 (a) and N is large we have t € N, which is a contradiction.
Therefore C+(R) = R. Since R < Z(N), it follows that Cx(R) = N.
In particular now Z(T) < N. Then also Z(T)ND = 1 and so Z(T)
is (locally) cyclic since Z(T)ND < H and so is trivial by definition
of D*. O
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Lemma 2.6 (see [3], Lemma 2.7) Let G be a locally finite p-group and
let (w,V) be a (x)-pair in G such that W*(w,V) = 1, where w € G\ 1.
Assume that there exists an E € E*(w,V) such that Ng(E)/E is (lo-
cally) cyclic and N (E) is large. Furthermore let B be a normal nilpotent
subgroup of G with c(B) < p and A be a normal abelian subgroup of
G contained in B with that B/A is elementary abelian and Z(G) < A.
IFBNNG(NG(E)) \NG(E) # 1 whenever B £ N (E), then B is abelian.

PrROOF — Assume that B is not abelian. Then B £ Ng(E). For
if B < Ng(E), then B’ < E since N/E is (locally) cyclic by Lemma 2.1.
But then since Coreg(E) = 1, we must have B’ = 1, which is a contra-
diction. Therefore there exists at € B\ Ng(E) with Ng(E)' = Ng(E)
and tP € Ng(E). As before put

N =Ng(E),R=NNB,D=RNEand T = ()R

and H = TN. Let D* = Corey (D) and put H = H/D*. Then H = (t)N.
Also R < Z(N) by Lemma 2.5 (a).
Lety € N. Then

P
1=, = [[mxt®

k=1

since t* € Rand R < Z(N). Also (t)R/R is elementary abelian, which
implies that exp ([R, t]) < p by [3, Lemma 2.6] since ¢ < p. Using this
in the above equality we get

Moreover [y,, t] = 1 since ¢ < p. Using this above we get finally

1=[tP

so [N, t] < (z)E by Lemma 2.5 (a). Clearly this implies that [E, t] < (z)
and then t normalizes (z)E. But then since t normalizes ECg(E)
by Lemma 2.4 (a) and N is large, it follows that t € N, which is a
contradiction. Therefore the assumption is false and so B must be
abelian.

Here since y is any element of N, it follows that exp ([N, t]) < p and
t E

Lemma 2.7 Let G be a locally finite p-group satisfying the normalizer
condition, where p # 2. Suppose that in every homomorphic image H of G
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for every (x)-pair (wy, Vi) there exists an By € E*(wy, Vi) having a
large normalizer, where wyy € H\ 1. Let B be a normal metabelian subgroup
of G and A be a normal abelian subgroup of G contained in B such that B/A
is elementary abelian. Then B’ £ Z(B).

Proor — Clearly B’ # 1 since B is metabelian. Assume if possible
that B’ < Z(B). Then ¢(B) < 2. Let 1 # w € B’ and V be a finite
subgroup of G with w ¢ V. Thus (w, V) is a (¥)-pair in G and there is
an element of E*(w, V) having a large normalizer by hypothesis. Now
if W*(w, V) =1, then B is abelian by Lemma 2.6 since ¢(B) < 2 < p.
Therefore we may suppose that W*(w, V) # 1.

Let M be a maximal element of W*(w, V), which exists by [3, Lem-
ma 2.1 (b)] and put G = G/M. Then (w,V) is a (x)-pair in G
since w ¢ M and also W*(w, V) = 1. In addition there is E € E*(w, V)
having a large normalizer by hypothesis. But now since ¢(B) < 2, B
must be abelian by the first case and then B < N by Lemma 2.4 (b),
where N = Ng(E). Then B’ < E since N/E is abelian but this is im-
possible since w ¢ E and so the proof is complete. 0

3 Proofs of Theorems 1.1 and 1.2

Lemma 3.1 Let G be a locally finite p-group satisfying the normalizer
condition, where p > 2. Suppose that in every homomorphic image H of G
every (x)-pair (wy, Vi) satisfying W*(w, V) =1 has an Eyy in E* (wyy, Vi)
having a large normalizer, where wyy € H\ 1. Let B be a normal metabelian
subgroup of G and A be a normal abelian subgroup of G contained in B
such that B/A is elementary abelian and Z(G) < A. Then B/BP is abelian.

PrROOF — Assume that B/BP is not abelian. Put G = G/BP. Then B
is nilpotent of class > 2 by [11, Corollary to Theorem 7.18]. Next
put Q = G/v3(B). Then

(B/v3(B)) < Z(B/v3(B))

and so ¢(B/v3(B)) < 2.

Since Q satisfies the hypothesis of the Lemma 2.7, there is w € B’
such that wy3(B) € (B/v3 (ﬁ))’ \ Z(B/y3(B)). Also there exists a fi-
nite subgroup V of G such that (wy3(B), Vy3(B)/y3(B)) is a (*)-pair
in Q. Now if W*(wy3(B), Vy3(B)/y3(B)) = 1, then since Z(G) # 1
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by Lemma 2.2 (a), E*(Wy3(B), Vy3(B)/v3(B)) has an element hav-
ing a large normalizer by hypothesis. Therefore B/y3(B) 1s abehan
by Lemma 2.6 and by hypothesis since p > 2, so that B <v3(B).
Clearly this is possible only if B is abelian since B is n11potent and
then B’ < BP, contrary to our assumption. Therefore the assumption
is false and so B’ < BP in this case.

Next suppose that W*(Wwy3(B), Vy3(B)/y3(B)) # 1 and choose a
maximal element M /y3(B) in W*(wy3(B), Vy3(B)/y3(B). Consider

G/y3(B)/(M/y3(B)) ~ G/M.

Now, using this isomorphism, we have W* (WM, VM/M) = 1. But
since BM/M has class < 2, this group must be abelian by Lemma 2.6,

as in the first case, and then B < M and hence W € M since W € B
But since M = Core(E) for some E € E*(w, V) and W ¢ E, this is a
contradiction and so the proof is complete. O

Lemma 3.2 Let B be a metabelian p-group and A a normal abelian sub-
group of B such that B/A is elementary abelian and exp(B)' < p.
Let t € B\ A. Then the following hold.

(a) If It| =p, then [BP,t] < Cp(t).
(b) If[t| > p, then [BP,t,t] < Cpg(t).
Proor — (a) Lety € B. Then
[yP,tl = [y, I’ mod v2(H)Pyp(H), (1)
and this gives
[yP,t1=1 mod yp(H), (2)

since exp(B’) < p by hypothesis by [9, VIIL.1.1, Lemma (b)],
where H = ([y, t], t). Moreover, c((t)A) < p by [6, Lemma 4.2.1 (ii)]
since [t| = p, which means that v, ((t)A) < Z((t)A). Then in particu-
lar vy, (H) < Z(H) since H < (t)A. Therefore

[yP,t] < Cp(t).

Now since
xPyP, t] = [xP, tl[yP, t]

for every x,y € B due to exp(B/A) = p and A is abelian, it follows
that [xPyP,t] € Cg(t) and so (a) follows.
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(b) Let Z = Z((t)A). Then Z < B, since B’ < A and so (t)A < B.
Also tP € Z. Put B = B/Z. Now (2) takes the form

GP,t1=1 mod vyp(H),. (3)
Also c((t)A) < p since t* = 1 and so v, ((t)A) < Z((t)A). Then in
particular vy, (H) < Z(H). Clearly then [§P,t] € Z(H) by (3) and so
is centralized by t; that is, [yP,t,t] = 1. Since y is any element of B,
it follows as in the first case that [BY,t,1 = 1. Taking the inverse
images we get [BP,t,t] < Z < Cp(t). O

Lemma 3.3 Let G be a locally finite p-group satisfying the normalizer
condition, where p > 2. Suppose that in every homomorphic image H of G
every (x)-pair (wy, Vi) satisfying W*(w, V) = 1 has an By € E* (W, Vi)
having a large normalizer, where wyy € H\ 1. If B is a metabelian normal
subgroup of G, then B’ cannot be radicable abelian.

PrOOF — Assume that B’ is radicable abelian and put Q = B’.
First assume if possible that [Q,F] < Cq(F) for every finite sub-
group F of B. Since Q = Cq(F)[F, Q] by [11, Lemma 3.29.1], it follows
that Q < Cq (F) for every finite subgroup F of B. Clearly then Q <Z(B)
and so ¢(B) < 2. But now since p # 2 and G satisfies the normalizer
condition, B must be ablian by Lemma 2.6, which is a contradiction.
Therefore there exists a finite subgroup V of G with [V, Q] £ Cq (V).

Put C = Cq(V). Then Q = C[V, Ql. Now [Q, VIC/C is radicable
abelian since Q is. So if it is finite, then it is trivial and then [Q, V] < C,
which is impossible by the choice of V. Therefore [Q, V]C/C is infi-
nite. Clearly then also [Q, VIC(V N Q)/C(V N Q) is infinite since V is
finite. Therefore there exists a w € [Q, V] \ C(VN Q). Then in particu-
lar w ¢ VC. Indeed if w € VC, thenw € VCN Q = C(VNQ), which
is impossible. Thus (w, V) is a (*)-pair in G.

Now, if W*(w, V) = 1, there exists an E € E*(w, V) so that Ng(E)
is large. Then Q < Ng(E) by Lemma 2.4 (b) and then [Q,V] < E
since N/E is (locally) cyclic. But since w € [Q, V] \ E, this is a contra-
diction. Therefore the assumption is false and so Q cannot exists.

Next suppose that W*(w, V) # 1. Choose a maximal element M
in W*(w,V) and put G = G/M. Then since W*(w, V) = 1, there
exists an R € E*(w, V) whose normalizer is large and so Q < Ng(R)
by Lemma 2.4 (b). This means that Q < Ng(R) and hence [Q,w] < E,
which gives a contradiction as in the first case and so it follows that Q
cannot be radicable abelian. O
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Proor oF THEOREM 1.1 — Let G be a locally finite p-group satisfying
the normalizer condition, where p # 2. Suppose that in every homo-
morphic image H of G every (x)-pair (wy,Vy ) satisfying W*(w,V)=1,
where wyy € H\ 1, has a (wy, Viy)-maximal subgroup whose nor-
malizer is large. Let B be a normal abelian-by-elementary abelian
subgroup and A be a normal abelian subgroup of G contained in B
with B/A is elementary abelian and Z(G) < A.

(a) Assume that B is nilpotent but not abelian. Then [B’,B] < B’
since B is nilpotent. Let G = G/[B/,B]. Then 1 # B’ < Z(B) and

so ¢(B) < 2. Choose a w € B’ with w # 1 and let V be a finite sub-
group of G with w ¢ V. If W*(w, V) = 1 then B is abelian by Lem-
ma 2.6. But then since 1 2w € B =1, we get a contradiction. There-
fore W*(w, V) # 1.

Let M be a maximal element of W*(w, V) and consider G/M. Be-
cause of isomorphism we may consider Q =G/M. Then (WM, VM/M)
is a (x)-pair in Q and W*(wM, VM/M) = 1. Since the hypothesis
holds in Q, it follows that BM/M is abelian and so B’ < M. But
this gives another contradiction since w ¢ M. Therefore the assump-
tion is false and so B must be abelian. Thus every normal nilpotent
abelian-by-elementary subgroup of G is abelian.

Next let K,L be two normal abelian subgroups G. Let H = KL.
Then H is nilpotent of class cH) < 2. Let A be a largest normal abelian
subgroup of G contained in H with KNL < A and let B/A = Q¢ (H/A).
Then B is nilpotent and abelian-by-elementary abelian and so is a-
belian by the first part of the proof . Clearly then B = A and this
means that B = H since H is nilpotent. Therefore G contains a unique
maximal normal abelian subgroup.

(b) Let p be a prime > 5. Assume if possible that B is not abelian.
Then exp(B/A) =p. Also B’ cannot be radicable abelian by Lem-
ma 3.3. Therefore (B’)P < B’. Let G = G/(B’)P. Then exp(gl) =P
and so B is not abelian. Also G satisfies the hypothesis of G. There-
fore without loss of generality we may replace G with G and suppose
that exp(B’) = p.

By Lemma 2.7 there exists a w € B’ \ Z(B). Let V be a finite sub-
group with w ¢ V. Therefore (w,V) is a (x)-pair in G. Suppose
first that W*(w,V) =1. Let E € E*(w,V) have a large normalizer.
Put N = Ng(E), R=NnNB, D = RNE. Then N/E is (locally) cyclic
by Lemma 2.1. Moreover, A < R by Lemma 2.4 (b) and Z(G) NE =1
since Coreg (E) = 1. Since B is not abelian, thereist € BN Ng(N)\ N
(see the proof of Lemma 2.6). As before put T = (t)R and H = TN.
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Also define D* = Core(D) and put H=H/D*. Then R < Z(N)
and R/D is (locally) cyclic by Lemma 2.5 (a).

First suppose that [t| = p. Then [B”,t] < Cg(t) by Lemma 3.2 (a).
Then also [B,T] < Cg(t) since B < BP by Lemma 3.1 and then

— — —

B,t,tl=1.

Then in particular [T,%,%T = 1since T < B and so v4(T) = 1. Now
since ¢(T) < 3 < 5, it follows that T is abelian by Lemma 2.6 and
so t € Cx(R). But since Cz(R) = R by Lemma 2.5 (b), it follows
that t € R which is a contradiction.

Next suppose that [t| > p. Then BY,%,1 < Cg(t) by Lemma 3.2 (b).
Hence [BY,%,t,1] = 1 and hence also [B,t,t,T = 1 by Lemma 3.1.
Then since T < B, it follows that [T,%,t,1 = 1. Obviously the last
equality implies that ¢(T) < 5, and so applying Lemma 2.6 one more
time it follows that T is abelian and so t € C+(R) = R and this gives
another contradiction since t ¢ N. Therefore the assumption is false
and so B must be abelian.

Next assume that W*(w,V) # 1. In this case choose a maximal
element M of W*(w, V) and define G = G/M. Then (WM, VM/M)
is a (*)-pair in G since w ¢ M and W*(WM,VM/M) = 1. There-
fore E*(WM, VM/M) contains an element having a large normalizer
by hypothesis. Also exp(ﬁl) = p. Clearly then we get another con-
tradiction as in the first case. Thus, the assumption is false and so B
must be abelian. O

ProoF OoF THEOREM 1.2 — Let G be a solvable p-group satisfying the
normalizer condition, where p > 5. Suppose that in every homomor-
phic image H of G every (x)-pair (wy, Vi) satisfying W*(w, V) =1
has a (wy, Vi)-maximal subgroup whose normalizer is large. As-
sume that G is not abelian. By Lemma 2.7 there exists aw € G’ \ Z(G).
Let V be a finite subgroup of G such that w ¢ V and consider
the (x)-pair (w, V). First suppose that W*(w,V) = 1. Then there
exists E € E*(w,V) whose normalizer is large. Put N = Ng(E).
Then N = Ng (ECg(E)) by hypothesis.

Now suppose that G’ is abelian. Assume first that W*(w, V) = 1.
Then G’ < N by Lemma 2.4 (b) since p # 2 and then N < G. But then
since G is (locally) cyclic by Lemma 2.2 (b), we get a contradiction.
Therefore W*(w, V) # 1.

Choose a maximal element M € W*(w, V), which exists by [3, Lem-
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ma 2.1 (b)], and consider G = G/M. Then (W, V) is a (x)-pair in G
since M = Coreg(R) for some R € E*(w,V) and w ¢ R. More-
over W*(w, V) =1, since

E*w,V)={T:TeE*(w,V)and M < T}

(see [1, Lemma 4.2]). In addition there exists an S € E*(w, V) whose
normalizer is large. Therefore applying Lemma 2.4 (b) again
gives G < Ng(S) and so Ng(S) < G. Clearly then G is locally cyclic
as above and this implies that G < S. But since Core(S) = 1, it fol-

lows that G’ = 1 and then G/ < M. But since w ¢ §, this gives another
contradiction. Therefore we may suppose that G’ is not abelian.

Put G = G/G”. Then G is non-trivial and abelian. Also G satisfies
the hypothesis of the theorem. Therefore G is abelian as in the first
case. Thus G = 1 and this implies that G’ < G”, which is a contradic-
tion since G’ is not abelian. Therefore the assumption that G is not
abelian is false and so G must be abelian, which completes the proof
of the theorem. 0

Proo¥ oF THEOREM 1.3 — Let G be an hyperabelian p-group satisfy-
ing the normalizer condition, where p > 5. Suppose that in every ho-
momorphic image H of G every (x)-pair (wyy, Viy) with W*(w, V) =1
has a locally maximal subgroup whose normalizer is large. Assume
that G is not abelian. Then also G can not be solvable by Theorem 1.2.
Let A be the unique maximal normal abelian subgroup of G which ex-
ists by Theorem 1.1 (a). Then 1 # A # G since G is not abelian. In the
same way G/A contains a unique maximal normal abelian subgroup,
say, U/A such that 1 # U/A # G/A since G is hyperabelian but not
solvable. Let B/A = Q1 (U/A). Then B <1 G and is not abelian by defi-
nition of A and exp(B/A) = p. But since every abelian-by-elementary
abelian normal subgroup of G must be abelian by Theorem 1.1 (b)
this is a contradiction. Therefore the assumption is false and so G is
abelian, which completes the proof of the theorem. O

4 Proof of Theorem 1.5

In this section we give a complete characterization of [3, Theorem 1.1].
But first a lemma is needed.
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Lemma 4.1 Let G be a locally finite p-group satisfying the normalizer
condition, where p # 2 and let (w, V) be a (x)-pair in G, where w € G\ 1.
Let E € E*(w, V) satisfy (xx) and let N = Ng(E). Then N is large.

ProOF — By hypothesis N=Ng(E’). We claim that N=Ng (ECg(E)).
Put C = Cg(E). Then C < N. Since N/E is (locally) cyclic by Lem-
ma 2.1 and since CNE < Z(C), it follows that C/Z(C) is (locally)
cyclic. Let F/Z(C) be a finite subgroup of C/Z(C). Since F/Z(C) is
cyclic, F = (f,Z(C)) for some f € F and so F is abelian. Since F is
any subgroup of C with |[FZ(C) : Z(C)| is finite , it follows that C is
abelian. Now since

NG (CE) < Ng((CE)') =Ng(E') =N,

it follows that Ng(CE) < N. But also N < Ng(CE) since N = Ng(E).
Therefore we get the equality Ng(CE) = N and so it follows that N
is large. O

Proor oF THEOREM 1.5 — Let G be a Fitting p-group satisfying the
normalizer condition, where p # 2. Then G is generated by normal
nilpotent subgroups. Suppose that in every homomorphic image H
of G every (x)-pair (wy, Vi) has a (wy, Viy)-maximal subgroup sat-
isfying (xx). Clearly, then in every homomorphic image of G eve-
ry (x)-pair has a locally maximal subgroup whose normalizer is large
by Lemma 4.1.

Now assume if possible that G is not abelian. Then we can choose
a finite non-abelian subgroup F of G. Put M = (F&). Then M is nilpo-
tent since G is a Fitting group. Also exp(M) < oo by [11, Corollary
to Theorem 2.26]. Next let A be a maximal normal abelian subgroup
of G contained in M such that Z(M) < A and let B/A = Q; (Z(M/A)).
Then B is not abelian by the maximality of A since B is also normal
in G. Also exp(B) < oo. But now since G satisfies the hypothesis
of Theorem 1.1, B must be abelian, which is a contradiction. There-
fore F must be abelian. Since F is any finite subgroup of G, it follows
that G is abelian and so the proof of the theorem is complete. 0
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