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Abstract
This work is a continuation of the investigation of a locally nilpotent p-group sat-
isfying the normalizer condition by imposing certain conditions on locally maxi-
mal subgroups, where p 6= 2. A sufficient condition is obtained for making every
abelian-by-elementary abelian normal subgroup of such a group to be abelian. If
in addition the group in question is hyperabelian, then it is abelian, where p > 5.
In the general case if a locally nilpotent p-group satisfies the mentioned condition
above (p 6= 2), then it contains a unique maximal normal abelian subgroup.
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1 Introduction

This is a continuation of the study of a locally nilpotent p-group G
which satisfies the normalizer condition and/or is a Fitting group in
order to search for imperfectness conditions and to obtain some in-
formation about its inner structure when G is perfect (see [1, 2, 3, 5]).
In [2, 3], it was shown that if G is a Fitting p-group satisfying the
normalizer condition and if in every homomorphic image of G cer-
tain (w,V)-maximal subgroups satisfy the (⇤⇤)-condition (see below
for definitions), then, under certain conditions, G cannot be per-
fect (see [2, Theorem 1.1] and [3, Theorem 1.1]). Now it follows
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from Theorem 1.5 (see below) that a group G satisfying the hypothe-
ses of these theorems is actually abelian. In this work it is shown
that in a locally nilpotent p-group satisfying the normalizer con-
dition only and whose locally maximal subgroups have large nor-
malizers (see definitions below), every normal abelian-by-elementary
abelian subgroup is abelian, where p > 5 (see Theorem 1.1 (b)). If
in addition G is hyperabelian, then it is abelian (see Theorem 1.3
and Corollary 1.4). In the general case (p 6= 2), G contains a unique
maximal normal abelian subgroup (see Theorem 1.1 (a)).

But before stating the main results it will be suitable to recall some
of the definitions and notations given in [2] and [3] since they form
the basis of this work. Let G be a group, w 2 G \ 1 and V be a finitely
generated subgroup of G with w /2 V . Then the ordered pair (w,V)
is called a (⇤)-pair in G (note that in [2, 3]; that is in the definition
of ⇤(w,V), w 2 G \Z(G) but in the present definition there is no such
a restriction on w, the only restriction is that w 6= 1). A subgroup E
of G which is maximal with respect to the condition that

w /2 E but V 6 E

is called (w,V)-maximal or maximal at (w,V) and if (w,V) is not men-
tioned, then it is called locally maximal. In addition let the following
be defined.

E⇤(w,V) = {E : E is a (w,V)- maximal subgroup of G}

and
W⇤(w,V) = {CoreG(E) : E 2 E⇤(w,V)}.

An element E of E⇤(w,V) is said to satisfy the (⇤⇤)-property, if

NG(E) = NG(E0)

and (w,V) is said to satisfy (⇤⇤) if every element of E⇤(w,V) satisfies
it. On the other hand if

NG

�
ECG(E)

�
6 NG(E),

then E is said to have a large normalizer.
Obviously ECG(E) 6 NG(E) 6 NG

�
ECG(E)

�
. So if NG(E) is large,

then NG(E) = NG

�
ECG(E)

�
. Put N = NG(E). Now if G satisfies the

normalizer condition, N is large and N 6= G, then ECG(E) 6= N. In-
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deed if ECG(E) = N, then NG(N) = NG

�
ECG(E)

�
= NG(E) = N,

which cannot happen by the normalizer condition. This fact will be
used without further notice.

Furthermore if E satisfies (⇤⇤), then N is large (see Lemma 4.1),
which shows that the first property is stronger than the second one.

In a locally nilpotent group G a locally maximal subgroup E be-
haves similar to a maximal subgroup M of G (if M exists), since MCG
and so G/M is cyclic of order p. Also NG(E)/E is (locally) cyclic
by Lemma 2.1, provided p 6= 2. Moreover,

NG(M) = G = NG

�
MCG(M)

�

and so NG(M) is large. Every subgroup of a Dedekind group satis-
fies (⇤⇤) since in this group every subgroup is normal and if it has
odd exponent, then it is abelian by [12, 5.3.7].

Again let (w,V) be a (⇤)-pair in G. If there exists a proper sub-
group L of G such that

w 2 hV ,yi for every y 2 G \ L,

then (w,V , L) is called a (⇤)-triple in G. This situation occurs
when hE⇤(w,V)i 6= G. In this case L can be any proper subgroup
of G containing hE⇤(w,V)i. This case was studied in [5]. By means
of it a new characterization of a barely transitive p-group was given
(see [5, Theorem 1.2 (a)]). Furthermore G cannot be generated by nor-
mal abelian subgroups (see [1, Lemma 2.2]); as was shown in [5], if G
is minimal non-hypercentral or barely transitive, then (⇤)-triples ex-
ist. Thus it follows that if either E⇤(w,V) contains locally maximal
subgroups whose normalizers are large or hE⇤(w,V)i 6= G, then G
cannot be generated by normal abelian subgroups (this author knows
of no perfect locally nilpotent p-group other than McLain’s character-
istically simple group M(Q, F) [12, 12.1.9] which can be generated by
normal abelian subgroups).

As usual if a group G is solvable ( nilpotent), then its derived
length (nilpotent class) is denoted by d(G) (c(G)). If d(G) = 2, then G
is called metabelian. Also exp(G) = max{|g| : g 2 G} is called the
exponent of G. It may be expressed as exp(G) < 1 or exp(G) = 1
according as it is finite or infinite, respectively. A group is called hy-
perabelian if it has an ascending normal series with abelian factors
(see [12, p.365]).

Definitions and notations are standard and may be found in [7, 8,
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9, 10, 11, 12].

Theorem 1.1 Let G be a locally finite p-group satisfying the normalizer
condition, where p 6= 2. Suppose that in every homomorphic image H of G
every (⇤)-pair (wH,VH) satisfying W⇤(w,V) = 1 has a (wH,VH)-ma-
ximal subgroup whose normalizer is large. Then the following hold.

(a) Every abelian-by-elementary abelian normal nilpotent subgroup of G
is abelian. In particular G contains a unique maximal normal abelian
subgroup.

(b) If p > 5, then every abelian-by-elementary abelian normal subgroup
of G is abelian.

Theorem 1.2 Let G be a solvable p-group satisfying the normalizer con-
dition, where p > 5. Suppose that in every homomorphic image H of G ev-
ery (⇤)-pair (wH,VH) satisfying W⇤(w,V) = 1 has a (wH,VH)-maximal
subgroup whose normalizer is large. Then G is abelian.

Theorem 1.3 Let G be an hyperabelian p-group satisfying the normalizer
condition, where p > 5. Suppose that in every homomorphic image H of G
every (⇤)-pair (wH,VH) satisfying W⇤(w,V) = 1 has a (wH,VH)-ma-
ximal subgroup whose normalizer is large. Then G is abelian.

Corollary 1.4 Let G be a locally finite p-group satisfying the normalizer
condition, where p > 5. Suppose that every proper normal subgroup of G is
solvable and in every homomorphic image H of G every (⇤)-pair (wH,VH)
satisfying W⇤(w,V) = 1 has a (wH,VH)-maximal subgroup whose nor-
malizer is large. Then G is abelian.

Proof — Assume that G is not abelian. Then also G is not solvable
by Theorem 1.2 and so G is perfect. Then G has an ascending normal
series

1 = M0 CM1 C . . . M↵ CM↵+1 C . . . M� = G

with G =
S

↵<�
M↵ since a minimal normal subgroup of G is abelian.

But since M↵+1/M↵ is solvable for every ↵ < �, the above series can
be refined into an ascending normal series whose factors are abelian
and so it follows that G is hyperabelian. But now since G must be
abelian by Theorem 1.3, we get a contradiction and so G must be
abelian. ut

The following is a complete characterization of the group given
in [3, Theorem 1.1].



Locally maximal subgroups and the normalizer condition 9

Theorem 1.5 Let G be a Fitting p-group satisfying the normalizer con-
dition, where p 6= 2. Suppose that in every homomorphic image H of G ev-
ery (⇤)-pair (wH,VH) has a (wH,VH)-maximal subgroup satisfying (⇤⇤).
Then G is abelian.

In the following simple example for p = 3, the hypothesis of Theo-
rem 1.2 is not satisfied.

Example Let A = C3 and C = C31 be a cyclic group of order 3
and a locally cyclic 3-group respectively and let G = C wr A be the
standard wreath product. Then G = [C]A, where [C] is the base group.
Let

A = hai and C = hci : c0 = 1 and c3
i+1

= ci for every i > 0i.

Thus [C] = C0 ⇥ C1 ⇥ C2, where Ci = C
ai = C for i = 0, 1, 2.

Each f 2 [C] is a function f : A ! C with f(ai) 2 Ci, which is the ith

component of f. [C] is an abelian group under point-wise multiplica-
tion; that is, for f, g 2 [C] and y 2 A, fg(y) = f(y)g(y). We define an
action of A on [C] as follows.

fy(a) = f
�
ay-1

�
for every a,y 2 A.

For example if f = (c0, c1, c2), then

fa(1) = f
�
a2

�
= c2, fa(a) = f(1) = c0, fa

�
a2

�
= f(a) = c1.

Thus fa = (c2, c0, c1) an so every entry of f is moved one step to the
right.

The correspondence f ! fy defines an automorphism of [C]; that
is (fg)y = fygy and so a monomorphism of A into Aut

�
[C]

�
, which

we identify with A. The semidirect product of [C] with A is called the
wreath product of C with A and denoted by C wr A = [C]A.

Let f, g 2 [C] and a,b 2 A. Then

(f,a)(g,b) =
�
fga

-1

,ab
�
.

In particular
(f,a)-1 =

�
(f-1)a,a-1

�
.

If we identify (f, 1) and (1,a) with f and a respectively, then
(f,a) = (f, 1)(1,a) becomes fa.
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Let w = (c1, c1, c1) and consider the (⇤)-pair (w, 1), where |c1| = p.
Let E 2 E⇤(w, 1) and let N = NG(E), L = CG(E). First suppose E 6 [C].
Then L = [C] since w 62 E and a cannot centralize any subgroup 6= 1
of [C] not containing w. In this case N = L and CoreG(E) = 1.

Next suppose that ga 2 E for some g 2 [C]. Then since G = [C]hgai,
it follows that E = ([C]\ E)hgai = hgai since a cannot normalize any
subgroup of [C]. Thus hgaihwi 6 L. Since N = (N \ [C])hfai 6 L, it
follows again that N = L. Also obviously CoreG(E) = 1. Thus we see
that W⇤(w, 1) = 1 but (w, 1) cannot satisfy the hypothesis of Theo-
rem 1.2.

2 First properties of G given in Theorem 1.1

Lemma 2.1 Let G be a locally finite p-group and let (w,V) be a (⇤)-pair
in G, where w 2 G \ 1. Let E 2 E⇤(w,V). Then NG(E)/E is either (locally)
cyclic or p = 2 and isomorphic to a (locally) quaternion group.

Proof — Put N = NG(E) and define N = N/E. Let A be a fi-
nite abelian subgroup of N. Assume if possible that A is not cyclic.
Then A contains an elementary abelian subgroup hai⇥hbi. But
since E is (w,V)-maximal, we must have w 2 haiE and w 2 hbiE.
Hence w 2 haiE\ hbiE = E, but this is impossible since w /2 E. There-
fore every finite abelian subgroup of N is cyclic. In this case every
finite subgroup of N is cyclic or isomorphic to a generalized quater-
nion group by [7, Theorem 5.4.10 (ii)]. Therefore either N is (locally)
cyclic or isomorphic to a 2-group which is isomorphic to a (locally)
quaternion group. ut

Lemma 2.2 Let G be an infinitely generated locally nilpotent group and
let (w,V) be a (⇤)-pair in G, where w 2 G \ 1. If W⇤(w,V) = 1, then the
following hold.

(a) Z(G) 6= 1.

(b) Let E 2 E⇤(w,V) and put N = NG(E). Suppose that N/E is (locally)
cyclic. If NCG, then it is abelian. If in addition G satisfies the nor-
malizer condition and N is large, then G is (locally) cyclic and E = 1.
In particular if w /2 Z(G), then N 6 G.

Proof — (a) Assume if possible that Z(G) = 1. Now G contains
a proper normal subgroup N 6= 1 since a minimal normal subgroup
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of G is contained in Z(G) by [12, 12.1.6]. Let Q = {1 < L < N : LCG}.
Let Q be partially ordered by saying that if for L1, L2 2Q, L1 > L2,
then L1 2 L2. Then it is easy to check that (Q,2) is a partially or-
dered set. Assume if possible that Q has a maximal element L0. Then
since L0 6 L for every L 2 Q which is comparable with L0 , it follows
that L is a minimal normal subgroup of G and so L0 6 Z(G). But
since L0 6= 1 and Z(G) = 1 this is a contradiction. Therefore Q cannot
have a maximal element. Therefore there exists a chain

L1 2 L2 2 . . . L↵ 2 . . .

of elements of Q whose upper bound does not belong to Q by Zorn’s
Lemma. Since this upper bound is

T
↵>1

L↵, it must be equal to the
trivial group 1. Now if w 2 VL↵ for all ↵ > 1, then there exists
a v1 2 V and a � > 1 so that v-1

1
w 2 L↵ for all ↵ > � since V is

finite. Then since v-1

1
w = 1, it follows that w = v1, which is a contra-

diction since w /2 V . Therefore there exists an ↵ > 1 so that w /2 VL↵.
Clearly, then there exists an E 2 E⇤(w,V) such that VL↵ 6 E. But
since 1 6= L↵ CG and W⇤(w,V) = 1, this is a contradiction. Therefore
the assumption is false and so Z(G) 6= 1.

(b) Suppose that NCG. Since N/Eg is (locally) cyclic for every g
in G, there is natural homomorphism

N !
Y

(N/Eg)g2G

given by y ! (yEg)g2G with kernel E⇤ =
T

g2G
Eg. Hence it follows

that N/E⇤ is abelian. Since W⇤(w,V) = 1 by hypothesis, E⇤ = 1 and
therefore N is abelian.

Now suppose that N is large and satisfies the normalizer condi-
tion. Then N = NG

�
ECG(E)

�
. Also N = ECG(E) since N is abelian.

But since G satisfies the normalizer condition, this is possible only
if N = G and so G is abelian. Then E = 1 since E⇤ = 1 and so N/E = N
is (locally) cyclic. The last assertion is a trivial consequence of the first
one. ut
Lemma 2.3 Let G be a locally finite p-group and let (w,V) be a (⇤)-pair
in G such that W⇤(w,V) = 1, where w 2 G \ 1. Assume that there ex-
ists an E 2 E⇤(w,V) having a large normalizer. If ECG(E)/E is infinite,
then NG(E) is self-normalizing. In particular if G satisfies the normalizer
condition, then G is locally cyclic and E = 1.
Proof — Put N = NG(E). Assume that ECG(E)/E is infinite,
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then N = ECG(E) since N/E is (locally) cyclic by Lemma 2.1. Hence

NG(N) = NG

�
ECG(E)

�
= NG(E) = N

since N is large and so N = NG(N), which means that N is self-
normalizing. Now if G satisfies the normalizer condition, then this is
possible only if E = 1 and G is (locally) cyclic by Lemma 2.2 (b). ut

Lemma 2.4 Let G be a locally finite p-group and (w,V) be a (⇤)-pair in G,
where w 2 G\1. Let E 2 E⇤(w,V) and put N = NG(E). Suppose that N/E
is (locally) cyclic. Let A be a normal abelian subgroup of G with Z(G) 6 A.
Let R = N\A and D = R\ E. Then the following hold.

(a) Let t 2 G and U 6 Z(G). If t normalizes UE, then t normalizes
ECG(E).

(b) Suppose that W⇤(w,V) = 1. Let L = NG(ECG(E). Let a 2 A \N
with Na = N. If ap 2 R, then a normalizes ECG(E) and so a 2 L.
In particular if N is large then A\NG(N) 6 N.

Proof — If G is abelian, then there is nothing to prove. Therefore
in both cases we may suppose that G is not abelian.

(a) Assume that t normalizes UE. Let C = CG(E). Then C = CG(UE)
since U 6 Z(G). Since t normalizes UE, it must also normalize its
centralizer C. Clearly then t normalizes CE since U 6 C and so (a) is
verified.

(b) Suppose that W⇤(w,V)=1. Then Z(G)\E=1 since CoreG(E)=1
but also Z(G) 6= 1 by Lemma 2.2 (a). Therefore ⌦1(R) 6 hziD for
some z 2 Z(G) with |z| = p since N/E is (locally) cyclic. Assume
that a 2 A \N with Na = N and ap 2 R. Put H = haiD and H = H/D.
Since N/E is (locally) cyclic, [R,E] 6 D and so [R,E] 6 D = 1. Hence

1 = [ap,E] = [a,E]p

by [7, Lemma 2.2.2 (i)] since ap 2 R, [R,E] = 1, a 2 A, [a,E] 6 A
and A is abelian. Thus [a,E] has order 6 p and so is contained in hziD
since [a,E] 6 N. Clearly then [a,E] 6 hziE since D 6 E and so a
normalizes hziE. Then since a normalizes ECG(E) by (a), it follows
that a 2 L. The last assertion follows from the first one since N is
large means N = L. ut

Lemma 2.5 Let G be a locally finite p-group, (w,V) be a (⇤)-pair in G,
where w 2 G \ 1. Suppose that W⇤(w,V) = 1 and let E 2 E⇤(w,V).
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Let B be a normal abelian-by-elementary abelian subgroup of G and A be
a normal abelian subgroup of G contained in B such that B/A is elemen-
tary abelian and Z(G) 6 A. Put N = NG(E), R = N \ B, D = R \ E
and suppose that N/E is (locally) cyclic. Furthermore suppose that there
exists a t 2 B \N with Nt = N and tp 2 N. Put T = htiR, H = TN
and D⇤ = CoreH(D). Then the following hold.

(a) R/D is (locally) cyclic and

R/D⇤ 6 Z(N/D⇤).

Also Z(G) 6= 1 and Z(G)\ E = 1. Therefore ⌦1(R/D
⇤) 6 hziD/D⇤,

where hzi is the unique subgroup of order p in Z(G).

(b) Suppose that N is large. Then

CT/D⇤(R/D⇤) = R/D⇤ and so CH/D⇤(R/D⇤) = N/D⇤.

Thus Z(T/D⇤) 6 R/D⇤ and Z(T/D⇤)\ E/D⇤ = 1 and so is (locally)
cyclic.

Proof — Clearly B is not abelian by Lemma 2.4 (b) by the choice
of t. Now T = B \H and so T CH. Then also RCH since R = T \N
and NCH. Also DCN since ECN. Put H = H/D⇤.

(a) Obviously R/D is (locally) cyclic since N/E has this proper-
ty. [R,N] is normal in H since R,NCH and is contained in E since N/E
is (locally) cyclic. Clearly then [R,N] 6 D⇤ and so [R,N] = 1, which
implies that R 6 Z(N).

Next Z(G) 6=1 by Lemma 2.2 (a) and Z(G)\E=1 since CoreG(E)=1.
Therefore if z 2 Z(G) with |z| = p, then ⌦1(R) 6 hziD since R/D is (lo-
cally) cyclic.

(b) Now suppose that N is large. Assume if possible that [t,R] = 1.
Then

1 = [t
p,N] = [t,N]p

since tp 2 R and R 6 Z(N). Therefore [t,N] is a subgroup of or-
der 6 p of R. Clearly then [t,N] 6 ⌦1(R) 6 hziD 6 hziE by (a) and
thus t normalizes hziE. But then since t normalizes ECG(E) by Lem-
ma 2.4 (a) and N is large we have t 2 N, which is a contradiction.
Therefore C

T
(R) = R. Since R 6 Z(N), it follows that C

H
(R) = N.

In particular now Z(T) 6 N. Then also Z(T) \D = 1 and so Z(T)
is (locally) cyclic since Z(T) \DCH and so is trivial by definition
of D⇤. ut
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Lemma 2.6 (see [3], Lemma 2.7) Let G be a locally finite p-group and
let (w,V) be a (⇤)-pair in G such that W⇤(w,V) = 1, where w 2 G \ 1.
Assume that there exists an E 2 E⇤(w,V) such that NG(E)/E is (lo-
cally) cyclic and NG(E) is large. Furthermore let B be a normal nilpotent
subgroup of G with c(B) < p and A be a normal abelian subgroup of
G contained in B with that B/A is elementary abelian and Z(G) 6 A.
If B\NG(NG(E)) \NG(E) 6= 1 whenever B ⇥ NG(E), then B is abelian.

Proof — Assume that B is not abelian. Then B ⇥ NG(E). For
if B 6 NG(E), then B0 6 E since N/E is (locally) cyclic by Lemma 2.1.
But then since CoreG(E) = 1, we must have B0 = 1, which is a contra-
diction. Therefore there exists a t 2 B \NG(E) with NG(E)t = NG(E)
and tp 2 NG(E). As before put

N = NG(E),R = N\B,D = R\ E and T = htiR

and H = TN. Let D⇤ = CoreH(D) and put H = H/D⇤. Then H = htiN.
Also R 6 Z(N) by Lemma 2.5 (a).

Let y 2 N. Then

1 = [y, tp] =
pY

k=1

[y,k t](
p

k
)

since t
p 2 R and R 6 Z(N). Also htiR/R is elementary abelian, which

implies that exp
�
[R, t]

�
6 p by [3, Lemma 2.6] since c < p. Using this

in the above equality we get

1 = [y, t]p[y,p t]

Moreover [y,p t] = 1 since c < p. Using this above we get finally

1 = [y, t]p

Here since y is any element of N, it follows that exp
�
[N, t]

�
6 p and

so [N, t] 6 hziE by Lemma 2.5 (a). Clearly this implies that [E, t] 6 hziE
and then t normalizes hziE. But then since t normalizes ECG(E)
by Lemma 2.4 (a) and N is large, it follows that t 2 N, which is a
contradiction. Therefore the assumption is false and so B must be
abelian. ut

Lemma 2.7 Let G be a locally finite p-group satisfying the normalizer
condition, where p 6= 2. Suppose that in every homomorphic image H of G
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for every (⇤)-pair (wH,VH) there exists an EH 2 E⇤(wH,VH) having a
large normalizer, where wH 2 H\1. Let B be a normal metabelian subgroup
of G and A be a normal abelian subgroup of G contained in B such that B/A
is elementary abelian. Then B0 ⇥ Z(B).

Proof — Clearly B0 6= 1 since B is metabelian. Assume if possible
that B0 6 Z(B). Then c(B) 6 2. Let 1 6= w 2 B0 and V be a finite
subgroup of G with w /2 V . Thus (w,V) is a (⇤)-pair in G and there is
an element of E⇤(w,V) having a large normalizer by hypothesis. Now
if W⇤(w,V) = 1, then B is abelian by Lemma 2.6 since c(B) 6 2 < p.
Therefore we may suppose that W⇤(w,V) 6= 1.

Let M be a maximal element of W⇤(w,V), which exists by [3, Lem-
ma 2.1 (b)] and put G = G/M. Then (w,V) is a (⇤)-pair in G
since w /2 M and also W⇤(w,V) = 1. In addition there is E 2 E⇤(w,V)
having a large normalizer by hypothesis. But now since c(B) 6 2, B
must be abelian by the first case and then B 6 N by Lemma 2.4 (b),
where N = NG(E). Then B0 6 E since N/E is abelian but this is im-
possible since w /2 E and so the proof is complete. ut

3 Proofs of Theorems 1.1 and 1.2

Lemma 3.1 Let G be a locally finite p-group satisfying the normalizer
condition, where p > 2. Suppose that in every homomorphic image H of G
every (⇤)-pair (wH,VH) satisfying W⇤(w,V)=1 has an EH in E⇤(wH,VH)
having a large normalizer, where wH 2 H \ 1. Let B be a normal metabelian
subgroup of G and A be a normal abelian subgroup of G contained in B
such that B/A is elementary abelian and Z(G) 6 A. Then B/Bp is abelian.

Proof — Assume that B/Bp is not abelian. Put G = G/Bp. Then B
is nilpotent of class > 2 by [11, Corollary to Theorem 7.18]. Next
put Q = G/�3(B). Then

�
B/�3(B)

�0 6 Z
�
B/�3(B)

�

and so c
�
B/�3(B)

�
6 2.

Since Q satisfies the hypothesis of the Lemma 2.7, there is w 2 B
0

such that w�3(B) 2
�
B/�3(B)

�0
\ Z

�
B/�3(B)

�
. Also there exists a fi-

nite subgroup V of G such that
�
w�3(B),V�3(B)/�3(B)

�
is a (⇤)-pair

in Q. Now if W⇤�w�3(B),V�3(B)/�3(B)
�
= 1, then since Z(G) 6= 1



16 A.O. Asar

by Lemma 2.2 (a), E⇤�w�3(B),V�3(B)/�3(B)
�

has an element hav-
ing a large normalizer by hypothesis. Therefore B/�3(B) is abelian
by Lemma 2.6 and by hypothesis since p > 2, so that B

0 6 �3(B).
Clearly this is possible only if B is abelian since B is nilpotent and
then B0 6 Bp, contrary to our assumption. Therefore the assumption
is false and so B0 6 Bp in this case.

Next suppose that W⇤(w�3(B),V�3(B)/�3(B)) 6= 1 and choose a
maximal element M/�3(B) in W⇤(w�3(B),V�3(B)/�3(B). Consider

G/�3(B)/(M/�3(B)) ' G/M.

Now, using this isomorphism, we have W⇤(wM,VM/M) = 1. But
since BM/M has class 6 2, this group must be abelian by Lemma 2.6,
as in the first case, and then B

0 6 M and hence w 2 M since w 2 B
0.

But since M = Core
G
(E) for some E 2 E⇤(w,V) and w /2 E, this is a

contradiction and so the proof is complete. ut

Lemma 3.2 Let B be a metabelian p-group and A a normal abelian sub-
group of B such that B/A is elementary abelian and exp(B)0 6 p.
Let t 2 B \A. Then the following hold.

(a) If |t| = p, then [Bp, t] 6 CB(t).

(b) If |t| > p, then [Bp, t, t] 6 CB(t).

Proof — (a) Let y 2 B. Then

[yp, t] ⌘ [y, t]p mod �2(H)p�p(H), (1)

and this gives
[yp, t] ⌘ 1 mod �p(H), (2)

since exp(B0) 6 p by hypothesis by [9, VIII.1.1, Lemma (b)],
where H = h[y, t], ti. Moreover, c(htiA) 6 p by [6, Lemma 4.2.1 (ii)]
since |t| = p, which means that �p(htiA) 6 Z(htiA). Then in particu-
lar �p(H) 6 Z(H) since H 6 htiA. Therefore

[yp, t] 6 CB(t).

Now since
[xpyp, t] = [xp, t][yp, t]

for every x,y 2 B due to exp(B/A) = p and A is abelian, it follows
that [xpyp, t] 2 CB(t) and so (a) follows.
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(b) Let Z = Z
�
htiA

�
. Then ZC B, since B0 6 A and so htiAC B.

Also tp 2 Z. Put B = B/Z. Now (2) takes the form

[yp, t] ⌘ 1 mod �p(H), . (3)

Also c
�
htiA

�
6 p since t

p
= 1 and so �p(htiA) 6 Z

�
htiA

�
. Then in

particular �p(H) 6 Z(H). Clearly then [yp, t] 2 Z(H) by (3) and so
is centralized by t; that is, [yp, t, t] = 1. Since y is any element of B,
it follows as in the first case that [B

p, t, t] = 1. Taking the inverse
images we get [Bp, t, t] 6 Z 6 CB(t). ut

Lemma 3.3 Let G be a locally finite p-group satisfying the normalizer
condition, where p > 2. Suppose that in every homomorphic image H of G
every (⇤)-pair (wH,VH) satisfying W⇤(w,V) = 1 has an EH2E⇤(wH,VH)
having a large normalizer, where wH 2 H \ 1. If B is a metabelian normal
subgroup of G, then B0 cannot be radicable abelian.

Proof — Assume that B0 is radicable abelian and put Q = B0.
First assume if possible that [Q, F] 6 CQ(F) for every finite sub-
group F of B. Since Q = CQ(F)[F,Q] by [11, Lemma 3.29.1], it follows
that Q6CQ(F) for every finite subgroup F of B. Clearly then Q6Z(B)
and so c(B) 6 2. But now since p 6= 2 and G satisfies the normalizer
condition, B must be ablian by Lemma 2.6, which is a contradiction.
Therefore there exists a finite subgroup V of G with [V ,Q] ⇥ CQ(V).

Put C = CQ(V). Then Q = C[V ,Q]. Now [Q,V]C/C is radicable
abelian since Q is. So if it is finite, then it is trivial and then [Q,V] 6 C,
which is impossible by the choice of V . Therefore [Q,V]C/C is infi-
nite. Clearly then also [Q,V]C(V \Q)/C(V \Q) is infinite since V is
finite. Therefore there exists a w 2 [Q,V] \C(V \Q). Then in particu-
lar w /2 VC. Indeed if w 2 VC, then w 2 VC \Q = C(V \Q), which
is impossible. Thus (w,V) is a (⇤)-pair in G.

Now, if W⇤(w,V) = 1, there exists an E 2 E⇤(w,V) so that NG(E)
is large. Then Q 6 NG(E) by Lemma 2.4 (b) and then [Q,V] 6 E
since N/E is (locally) cyclic. But since w 2 [Q,V] \ E, this is a contra-
diction. Therefore the assumption is false and so Q cannot exists.

Next suppose that W⇤(w,V) 6= 1. Choose a maximal element M
in W⇤(w,V) and put G = G/M. Then since W⇤(w,V) = 1, there
exists an R 2 E⇤(w,V) whose normalizer is large and so Q 6 NG(R)
by Lemma 2.4 (b). This means that Q 6 NG(R) and hence [Q,w] 6 E,
which gives a contradiction as in the first case and so it follows that Q
cannot be radicable abelian. ut
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Proof of Theorem 1.1 — Let G be a locally finite p-group satisfying
the normalizer condition, where p 6= 2. Suppose that in every homo-
morphic image H of G every (⇤)-pair (wH,VH) satisfying W⇤(w,V)=1,
where wH 2 H \ 1, has a (wH,VH)-maximal subgroup whose nor-
malizer is large. Let B be a normal abelian-by-elementary abelian
subgroup and A be a normal abelian subgroup of G contained in B
with B/A is elementary abelian and Z(G) 6 A.

(a) Assume that B is nilpotent but not abelian. Then [B0,B] < B0

since B is nilpotent. Let G = G/[B0,B]. Then 1 6= B
0 6 Z(B) and

so c(B) 6 2. Choose a w 2 B0 with w 6= 1 and let V be a finite sub-
group of G with w /2 V . If W⇤(w,V) = 1 then B is abelian by Lem-
ma 2.6. But then since 1 6= w 2 B

0
= 1, we get a contradiction. There-

fore W⇤(w,V) 6= 1.
Let M be a maximal element of W⇤(w,V) and consider G/M. Be-

cause of isomorphism we may consider Q=G/M. Then (wM,VM/M)
is a (⇤)-pair in Q and W⇤(wM,VM/M) = 1. Since the hypothesis
holds in Q, it follows that BM/M is abelian and so B0 6 M. But
this gives another contradiction since w /2 M. Therefore the assump-
tion is false and so B must be abelian. Thus every normal nilpotent
abelian-by-elementary subgroup of G is abelian.

Next let K, L be two normal abelian subgroups G. Let H = KL.
Then H is nilpotent of class cH) 6 2. Let A be a largest normal abelian
subgroup of G contained in H with K\L 6 A and let B/A = ⌦1(H/A).
Then B is nilpotent and abelian-by-elementary abelian and so is a-
belian by the first part of the proof . Clearly then B = A and this
means that B = H since H is nilpotent. Therefore G contains a unique
maximal normal abelian subgroup.

(b) Let p be a prime > 5. Assume if possible that B is not abelian.
Then exp(B/A) = p. Also B0 cannot be radicable abelian by Lem-
ma 3.3. Therefore (B0)p < B0. Let G = G/(B0)p. Then exp(B0

) = p
and so B is not abelian. Also G satisfies the hypothesis of G. There-
fore without loss of generality we may replace G with G and suppose
that exp(B0) = p.

By Lemma 2.7 there exists a w 2 B0
\ Z(B). Let V be a finite sub-

group with w /2 V . Therefore (w,V) is a (⇤)-pair in G. Suppose
first that W⇤(w,V) = 1. Let E 2 E⇤(w,V) have a large normalizer.
Put N = NG(E), R = N \ B, D = R \ E. Then N/E is (locally) cyclic
by Lemma 2.1. Moreover, A 6 R by Lemma 2.4 (b) and Z(G) \ E = 1
since CoreG(E) = 1. Since B is not abelian, there is t 2 B\NG(N) \N
(see the proof of Lemma 2.6). As before put T = htiR and H = TN.
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Also define D⇤ = CoreH(D) and put H = H/D⇤. Then R 6 Z(N)
and R/D is (locally) cyclic by Lemma 2.5 (a).

First suppose that |t| = p. Then [B
p, t] 6 C

B
(t) by Lemma 3.2 (a).

Then also [B
0, t] 6 C

B
(t) since B0 6 Bp by Lemma 3.1 and then

[B
0, t, t] = 1.

Then in particular [T
0, t, t] = 1 since T 6 B and so �4(T) = 1. Now

since c(T) 6 3 < 5, it follows that T is abelian by Lemma 2.6 and
so t 2 C

B
(R). But since C

B
(R) = R by Lemma 2.5 (b), it follows

that t 2 R which is a contradiction.
Next suppose that |t| > p. Then [B

p, t, t] 6 C
B
(t) by Lemma 3.2 (b).

Hence [B
p, t, t, t] = 1 and hence also [B

0, t, t, t] = 1 by Lemma 3.1.
Then since T

0 6 B
0, it follows that [T

0, t, t, t] = 1. Obviously the last
equality implies that c(T) < 5, and so applying Lemma 2.6 one more
time it follows that T is abelian and so t 2 C

T
(R) = R and this gives

another contradiction since t /2 N. Therefore the assumption is false
and so B must be abelian.

Next assume that W⇤(w,V) 6= 1. In this case choose a maximal
element M of W⇤(w,V) and define G = G/M. Then (wM,VM/M)
is a (⇤)-pair in G since w /2 M and W⇤(wM,VM/M) = 1. There-
fore E⇤(wM,VM/M) contains an element having a large normalizer
by hypothesis. Also exp(B0

) = p. Clearly then we get another con-
tradiction as in the first case. Thus, the assumption is false and so B
must be abelian. ut

Proof of Theorem 1.2 — Let G be a solvable p-group satisfying the
normalizer condition, where p > 5. Suppose that in every homomor-
phic image H of G every (⇤)-pair (wH,VH) satisfying W⇤(w,V) = 1
has a (wH,VH)-maximal subgroup whose normalizer is large. As-
sume that G is not abelian. By Lemma 2.7 there exists a w 2 G0

\Z(G).
Let V be a finite subgroup of G such that w /2 V and consider
the (⇤)-pair (w,V). First suppose that W⇤(w,V) = 1. Then there
exists E 2 E⇤(w,V) whose normalizer is large. Put N = NG(E).
Then N = NG

�
ECG(E)

�
by hypothesis.

Now suppose that G0 is abelian. Assume first that W⇤(w,V) = 1.
Then G0 6 N by Lemma 2.4 (b) since p 6= 2 and then NCG. But then
since G is (locally) cyclic by Lemma 2.2 (b), we get a contradiction.
Therefore W⇤(w,V) 6= 1.

Choose a maximal element M2W⇤(w,V), which exists by [3, Lem-
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ma 2.1 (b)], and consider G = G/M. Then (w,V) is a (⇤)-pair in G
since M = CoreG(R) for some R 2 E⇤(w,V) and w /2 R. More-
over W⇤(w,V) = 1, since

E⇤(w,V) = {T : T 2 E⇤(w,V) and M 6 T }

(see [1, Lemma 4.2]). In addition there exists an S 2 E⇤(w,V) whose
normalizer is large. Therefore applying Lemma 2.4 (b) again
gives G

0 6 N
G
(S) and so N

G
(S)CG. Clearly then G is locally cyclic

as above and this implies that G0 6 S. But since Core
G
(S) = 1, it fol-

lows that G0
= 1 and then G0 6 M. But since w /2 S, this gives another

contradiction. Therefore we may suppose that G0 is not abelian.
Put G = G/G00. Then G

0 is non-trivial and abelian. Also G satisfies
the hypothesis of the theorem. Therefore G is abelian as in the first
case. Thus G

0
= 1 and this implies that G0 6 G00, which is a contradic-

tion since G0 is not abelian. Therefore the assumption that G is not
abelian is false and so G must be abelian, which completes the proof
of the theorem. ut

Proof of Theorem 1.3 — Let G be an hyperabelian p-group satisfy-
ing the normalizer condition, where p > 5. Suppose that in every ho-
momorphic image H of G every (⇤)-pair (wH,VH) with W⇤(w,V) = 1
has a locally maximal subgroup whose normalizer is large. Assume
that G is not abelian. Then also G can not be solvable by Theorem 1.2.
Let A be the unique maximal normal abelian subgroup of G which ex-
ists by Theorem 1.1 (a). Then 1 6= A 6= G since G is not abelian. In the
same way G/A contains a unique maximal normal abelian subgroup,
say, U/A such that 1 6= U/A 6= G/A since G is hyperabelian but not
solvable. Let B/A = ⌦1(U/A). Then BCG and is not abelian by defi-
nition of A and exp(B/A) = p. But since every abelian-by-elementary
abelian normal subgroup of G must be abelian by Theorem 1.1 (b)
this is a contradiction. Therefore the assumption is false and so G is
abelian, which completes the proof of the theorem. ut

4 Proof of Theorem 1.5

In this section we give a complete characterization of [3, Theorem 1.1].
But first a lemma is needed.
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Lemma 4.1 Let G be a locally finite p-group satisfying the normalizer
condition, where p 6= 2 and let (w,V) be a (⇤)-pair in G, where w 2 G \ 1.
Let E 2 E⇤(w,V) satisfy (⇤⇤) and let N = NG(E). Then N is large.
Proof — By hypothesis N=NG(E0). We claim that N=NG

�
ECG(E)

�
.

Put C = CG(E). Then C 6 N. Since N/E is (locally) cyclic by Lem-
ma 2.1 and since C \ E 6 Z(C), it follows that C/Z(C) is (locally)
cyclic. Let F/Z(C) be a finite subgroup of C/Z(C). Since F/Z(C) is
cyclic, F = hf,Z(C)i for some f 2 F and so F is abelian. Since F is
any subgroup of C with |FZ(C) : Z(C)| is finite , it follows that C is
abelian. Now since

NG(CE) 6 NG((CE)0) = NG(E0) = N,

it follows that NG(CE) 6 N. But also N 6 NG(CE) since N = NG(E).
Therefore we get the equality NG(CE) = N and so it follows that N
is large. ut
Proof of Theorem 1.5 — Let G be a Fitting p-group satisfying the
normalizer condition, where p 6= 2. Then G is generated by normal
nilpotent subgroups. Suppose that in every homomorphic image H
of G every (⇤)-pair (wH,VH) has a (wH,VH)-maximal subgroup sat-
isfying (⇤⇤). Clearly, then in every homomorphic image of G eve-
ry (⇤)-pair has a locally maximal subgroup whose normalizer is large
by Lemma 4.1.

Now assume if possible that G is not abelian. Then we can choose
a finite non-abelian subgroup F of G. Put M = hFGi. Then M is nilpo-
tent since G is a Fitting group. Also exp(M) < 1 by [11, Corollary
to Theorem 2.26]. Next let A be a maximal normal abelian subgroup
of G contained in M such that Z(M) 6 A and let B/A = ⌦1

�
Z(M/A)

�
.

Then B is not abelian by the maximality of A since B is also normal
in G. Also exp(B) < 1. But now since G satisfies the hypothesis
of Theorem 1.1, B must be abelian, which is a contradiction. There-
fore F must be abelian. Since F is any finite subgroup of G, it follows
that G is abelian and so the proof of the theorem is complete. ut
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