

Advances in Group Theory and Applications

© 2023 AGTA - www.advgrouptheory.com/journal 16 (2023), pp. 5–22 ISSN: 2499-1287

DOI: 10.32037/agta-2023-005

Locally Maximal Subgroups and the Normalizer Condition in p-Groups

A.O. Asar

(Received Dec. 13, 2021; Accepted Nov. 21, 2022 — Communicated by F. de Giovanni)

Abstract

This work is a continuation of the investigation of a locally nilpotent p-group satisfying the normalizer condition by imposing certain conditions on locally maximal subgroups, where p \neq 2. A sufficient condition is obtained for making every abelian-by-elementary abelian normal subgroup of such a group to be abelian. If in addition the group in question is hyperabelian, then it is abelian, where p \geqslant 5. In the general case if a locally nilpotent p-group satisfies the mentioned condition above (p \neq 2), then it contains a unique maximal normal abelian subgroup.

Mathematics Subject Classification (2020): 20E25, 20F19, 20F50 Keywords: normalizer condition; locally nilpotent group; locally maximal subgroup

1 Introduction

This is a continuation of the study of a locally nilpotent p-group G which satisfies the normalizer condition and/or is a Fitting group in order to search for imperfectness conditions and to obtain some information about its inner structure when G is perfect (see [1, 2, 3, 5]). In [2, 3], it was shown that if G is a Fitting p-group satisfying the normalizer condition and if in every homomorphic image of G certain (w, V)-maximal subgroups satisfy the (**)-condition (see below for definitions), then, under certain conditions, G cannot be perfect (see [2, Theorem 1.1] and [3, Theorem 1.1]). Now it follows

from Theorem 1.5 (see below) that a group G satisfying the hypotheses of these theorems is actually abelian. In this work it is shown that in a locally nilpotent p-group satisfying the normalizer condition only and whose locally maximal subgroups have large normalizers (see definitions below), every normal abelian-by-elementary abelian subgroup is abelian, where $p \geqslant 5$ (see Theorem 1.1 (b)). If in addition G is hyperabelian, then it is abelian (see Theorem 1.3 and Corollary 1.4). In the general case ($p \neq 2$), G contains a unique maximal normal abelian subgroup (see Theorem 1.1 (a)).

But before stating the main results it will be suitable to recall some of the definitions and notations given in [2] and [3] since they form the basis of this work. Let G be a group, $w \in G \setminus 1$ and V be a finitely generated subgroup of G with $w \notin V$. Then the ordered pair (w, V) is called a (*)-pair in G (note that in [2, 3]; that is in the definition of $\Lambda(w, V)$, $w \in G \setminus Z(G)$ but in the present definition there is no such a restriction on w, the only restriction is that $w \neq 1$). A subgroup E of G which is maximal with respect to the condition that

$$w \notin E$$
 but $V \leqslant E$

is called (w, V)-maximal or maximal at (w, V) and if (w, V) is not mentioned, then it is called *locally maximal*. In addition let the following be defined.

$$E^*(w, V) = \{E : E \text{ is a } (w, V) - \text{ maximal subgroup of } G\}$$

and

$$W^*(w,V) = \{ Core_G(E) : E \in E^*(w,V) \}.$$

An element E of $E^*(w, V)$ is said to satisfy the (**)-property, if

$$N_G(E) = N_G(E')$$

and (w, V) is said to satisfy (**) if every element of $E^*(w, V)$ satisfies it. On the other hand if

$$N_G(EC_G(E)) \leq N_G(E)$$

then E is said to have a large normalizer.

Obviously $EC_G(E) \leq N_G(E) \leq N_G(EC_G(E))$. So if $N_G(E)$ is large, then $N_G(E) = N_G(EC_G(E))$. Put $N = N_G(E)$. Now if G satisfies the normalizer condition, N is large and $N \neq G$, then $EC_G(E) \neq N$. In-

deed if $EC_G(E) = N$, then $N_G(N) = N_G(EC_G(E)) = N_G(E) = N$, which cannot happen by the normalizer condition. This fact will be used without further notice.

Furthermore if E satisfies (**), then N is large (see Lemma 4.1), which shows that the first property is stronger than the second one.

In a locally nilpotent group G a locally maximal subgroup E behaves similar to a maximal subgroup M of G (if M exists), since $M \triangleleft G$ and so G/M is cyclic of order p. Also $N_G(E)/E$ is (locally) cyclic by Lemma 2.1, provided $p \neq 2$. Moreover,

$$N_G(M) = G = N_G(MC_G(M))$$

and so $N_G(M)$ is large. Every subgroup of a Dedekind group satisfies (**) since in this group every subgroup is normal and if it has odd exponent, then it is abelian by [12, 5.3.7].

Again let (w, V) be a (*)-pair in G. If there exists a proper subgroup L of G such that

$$w \in \langle V, y \rangle$$
 for every $y \in G \setminus L$,

then (w,V,L) is called a (*)-triple in G. This situation occurs when $\langle E^*(w,V) \rangle \neq G$. In this case L can be any proper subgroup of G containing $\langle E^*(w,V) \rangle$. This case was studied in [5]. By means of it a new characterization of a barely transitive p-group was given (see [5, Theorem 1.2 (a)]). Furthermore G cannot be generated by normal abelian subgroups (see [1, Lemma 2.2]); as was shown in [5], if G is minimal non-hypercentral or barely transitive, then (*)-triples exist. Thus it follows that if either $E^*(w,V)$ contains locally maximal subgroups whose normalizers are large or $\langle E^*(w,V) \rangle \neq G$, then G cannot be generated by normal abelian subgroups (this author knows of no perfect locally nilpotent p-group other than McLain's characteristically simple group M(Q,F) [12, 12.1.9] which can be generated by normal abelian subgroups).

As usual if a group G is solvable (nilpotent), then its derived length (nilpotent class) is denoted by d(G) (c(G)). If d(G) = 2, then G is called *metabelian*. Also $\exp(G) = \max\{|g| : g \in G\}$ is called the *exponent* of G. It may be expressed as $\exp(G) < \infty$ or $\exp(G) = \infty$ according as it is finite or infinite, respectively. A group is called *hyperabelian* if it has an ascending normal series with abelian factors (see [12, p.365]).

Definitions and notations are standard and may be found in [7, 8,

9, 10, 11, 12].

Theorem 1.1 Let G be a locally finite p-group satisfying the normalizer condition, where $p \neq 2$. Suppose that in every homomorphic image H of G every (*)-pair (w_H, V_H) satisfying $W^*(w, V) = 1$ has a (w_H, V_H) -maximal subgroup whose normalizer is large. Then the following hold.

- (a) Every abelian-by-elementary abelian normal nilpotent subgroup of G is abelian. In particular G contains a unique maximal normal abelian subgroup.
- (b) If $p \ge 5$, then every abelian-by-elementary abelian normal subgroup of G is abelian.

Theorem 1.2 Let G be a solvable p-group satisfying the normalizer condition, where $p \ge 5$. Suppose that in every homomorphic image H of G every (*)-pair (w_H, V_H) satisfying $W^*(w, V) = 1$ has a (w_H, V_H) -maximal subgroup whose normalizer is large. Then G is abelian.

Theorem 1.3 Let G be an hyperabelian p-group satisfying the normalizer condition, where $p \ge 5$. Suppose that in every homomorphic image H of G every (*)-pair (w_H, V_H) satisfying $W^*(w, V) = 1$ has a (w_H, V_H) -maximal subgroup whose normalizer is large. Then G is abelian.

Corollary 1.4 Let G be a locally finite p-group satisfying the normalizer condition, where $p \geqslant 5$. Suppose that every proper normal subgroup of G is solvable and in every homomorphic image H of G every (*)-pair (w_H, V_H) satisfying $W^*(w, V) = 1$ has a (w_H, V_H) -maximal subgroup whose normalizer is large. Then G is abelian.

PROOF — Assume that G is not abelian. Then also G is not solvable by Theorem 1.2 and so G is perfect. Then G has an ascending normal series

$$1 = M_0 \triangleleft M_1 \triangleleft \ldots M_\alpha \triangleleft M_{\alpha+1} \triangleleft \ldots M_\lambda = G$$

with $G = \bigcup_{\alpha < \lambda} M_{\alpha}$ since a minimal normal subgroup of G is abelian. But since $M_{\alpha+1}/M_{\alpha}$ is solvable for every $\alpha < \lambda$, the above series can be refined into an ascending normal series whose factors are abelian and so it follows that G is hyperabelian. But now since G must be abelian by Theorem 1.3, we get a contradiction and so G must be abelian.

The following is a complete characterization of the group given in [3, Theorem 1.1].

Theorem 1.5 Let G be a Fitting p-group satisfying the normalizer condition, where $p \neq 2$. Suppose that in every homomorphic image H of G every (*)-pair (w_H, V_H) has a (w_H, V_H) -maximal subgroup satisfying (**). Then G is abelian.

In the following simple example for p = 3, the hypothesis of Theorem 1.2 is not satisfied.

Example Let $A = C_3$ and $C = C_{3\infty}$ be a cyclic group of order 3 and a locally cyclic 3-group respectively and let G = C wr A be the standard wreath product. Then G = [C]A, where [C] is the base group. Let

$$A=\langle \mathfrak{a}\rangle \quad \text{ and } \quad C=\langle c_{\mathfrak{i}}:c_{0}=1 \text{ and } c_{\mathfrak{i}+1}^{3}=c_{\mathfrak{i}} \text{ for every } \mathfrak{i}\geqslant 0\rangle.$$

Thus $[C] = C_0 \times C_1 \times C_2$, where $C_i = C_{\alpha^i} = C$ for i = 0,1,2. Each $f \in [C]$ is a function $f : A \to C$ with $f(\alpha^i) \in C_i$, which is the i^{th} component of f : [C] is an abelian group under point-wise multiplication; that is, for $f,g \in [C]$ and $g \in A$, fg(g) = f(g)g(g). We define an action of A on [C] as follows.

$$f^{y}(a) = f(ay^{-1})$$
 for every $a, y \in A$.

For example if $f = (c_0, c_1, c_2)$, then

$$f^{\alpha}(1) = f(\alpha^{2}) = c_{2}$$
, $f^{\alpha}(\alpha) = f(1) = c_{0}$, $f^{\alpha}(\alpha^{2}) = f(\alpha) = c_{1}$.

Thus $f^{\alpha}=(c_2,c_0,c_1)$ an so every entry of f is moved one step to the right.

The correspondence $f \to f^y$ defines an automorphism of [C]; that is $(fg)^y = f^y g^y$ and so a monomorphism of A into Aut ([C]), which we identify with A. The semidirect product of [C] with A is called the wreath product of C with A and denoted by C wr A = [C]A.

Let $f, g \in [C]$ and $a, b \in A$. Then

$$(f, a)(g, b) = (fg^{a^{-1}}, ab).$$

In particular

$$(f, a)^{-1} = ((f^{-1})^{\alpha}, a^{-1}).$$

If we identify (f,1) and $(1,\alpha)$ with f and α respectively, then $(f,\alpha)=(f,1)(1,\alpha)$ becomes $f\alpha$.

Let $w = (c_1, c_1, c_1)$ and consider the (*)-pair (w, 1), where $|c_1| = p$. Let $E \in E^*(w, 1)$ and let $N = N_G(E)$, $L = C_G(E)$. First suppose $E \le [C]$. Then L = [C] since $w \notin E$ and a cannot centralize any subgroup $\ne 1$ of [C] not containing w. In this case N = L and $Core_G(E) = 1$.

Next suppose that $ga \in E$ for some $g \in [C]$. Then since $G = [C]\langle ga \rangle$, it follows that $E = ([C] \cap E)\langle ga \rangle = \langle ga \rangle$ since a cannot normalize any subgroup of [C]. Thus $\langle ga \rangle \langle w \rangle \leqslant L$. Since $N = (N \cap [C])\langle fa \rangle \leqslant L$, it follows again that N = L. Also obviously $Core_G(E) = 1$. Thus we see that $W^*(w,1) = 1$ but (w,1) cannot satisfy the hypothesis of Theorem 1.2.

2 First properties of G given in Theorem 1.1

Lemma 2.1 Let G be a locally finite p-group and let (w, V) be a (*)-pair in G, where $w \in G \setminus 1$. Let $E \in E^*(w, V)$. Then $N_G(E)/E$ is either (locally) cyclic or p = 2 and isomorphic to a (locally) quaternion group.

PROOF — Put $N = N_G(E)$ and define $\overline{N} = N/E$. Let \overline{A} be a finite abelian subgroup of \overline{N} . Assume if possible that \overline{A} is not cyclic. Then \overline{A} contains an elementary abelian subgroup $\langle \overline{a} \rangle \times \langle \overline{b} \rangle$. But since E is (w,V)-maximal, we must have $w \in \langle a \rangle E$ and $w \in \langle b \rangle E$. Hence $w \in \langle a \rangle E \cap \langle b \rangle E = E$, but this is impossible since $w \notin E$. Therefore every finite abelian subgroup of \overline{N} is cyclic. In this case every finite subgroup of \overline{N} is cyclic or isomorphic to a generalized quaternion group by [7, Theorem 5.4.10 (ii)]. Therefore either \overline{N} is (locally) cyclic or isomorphic to a 2-group which is isomorphic to a (locally) quaternion group.

Lemma 2.2 Let G be an infinitely generated locally nilpotent group and let (w, V) be a (*)-pair in G, where $w \in G \setminus 1$. If $W^*(w, V) = 1$, then the following hold.

- (a) $Z(G) \neq 1$.
- (b) Let $E \in E^*(w, V)$ and put $N = N_G(E)$. Suppose that N/E is (locally) cyclic. If $N \triangleleft G$, then it is abelian. If in addition G satisfies the normalizer condition and N is large, then G is (locally) cyclic and E = 1. In particular if $w \notin Z(G)$, then $N \not \triangleleft G$.

PROOF — (a) Assume if possible that Z(G) = 1. Now G contains a proper normal subgroup $N \neq 1$ since a minimal normal subgroup

of G is contained in Z(G) by [12, 12.1.6]. Let $Q = \{1 < L < N : L \lhd G\}$. Let Q be partially ordered by saying that if for $L_1, L_2 \in Q$, $L_1 \geqslant L_2$, then $L_1 \curlyeqprec L_2$. Then it is easy to check that (Q, \curlyeqprec) is a partially ordered set. Assume if possible that Q has a maximal element L_0 . Then since $L_0 \leqslant L$ for every $L \in Q$ which is comparable with L_0 , it follows that L is a minimal normal subgroup of G and so $L_0 \leqslant Z(G)$. But since $L_0 \ne 1$ and Z(G) = 1 this is a contradiction. Therefore Q cannot have a maximal element. Therefore there exists a chain

$$L_1 \curlyeqprec L_2 \curlyeqprec \dots L_\alpha \curlyeqprec \dots$$

of elements of Q whose upper bound does not belong to Q by Zorn's Lemma. Since this upper bound is $\bigcap_{\alpha\geqslant 1}L_{\alpha}$, it must be equal to the trivial group 1. Now if $w\in VL_{\alpha}$ for all $\alpha\geqslant 1$, then there exists a $v_1\in V$ and a $\beta\geqslant 1$ so that $v_1^{-1}w\in L_{\alpha}$ for all $\alpha\geqslant \beta$ since V is finite. Then since $v_1^{-1}w=1$, it follows that $w=v_1$, which is a contradiction since $w\notin V$. Therefore there exists an $\alpha\geqslant 1$ so that $w\notin VL_{\alpha}$. Clearly, then there exists an $E\in E^*(w,V)$ such that $VL_{\alpha}\leqslant E$. But since $1\neq L_{\alpha}\lhd G$ and $W^*(w,V)=1$, this is a contradiction. Therefore the assumption is false and so $Z(G)\neq 1$.

(b) Suppose that $N \triangleleft G$. Since N/E^g is (locally) cyclic for every g in G, there is natural homomorphism

$$N \to \prod (N/E^g)_{g \in G}$$

given by $y \to (yE^g)_{g \in G}$ with kernel $E^* = \bigcap_{g \in G} E^g$. Hence it follows that N/E^* is abelian. Since $W^*(w, V) = 1$ by hypothesis, $E^* = 1$ and therefore N is abelian.

Now suppose that N is large and satisfies the normalizer condition. Then $N = N_G(EC_G(E))$. Also $N = EC_G(E)$ since N is abelian. But since G satisfies the normalizer condition, this is possible only if N = G and so G is abelian. Then E = 1 since $E^* = 1$ and so N/E = N is (locally) cyclic. The last assertion is a trivial consequence of the first one.

Lemma 2.3 Let G be a locally finite p-group and let (w,V) be a (*)-pair in G such that $W^*(w,V)=1$, where $w\in G\setminus I$. Assume that there exists an $E\in E^*(w,V)$ having a large normalizer. If $EC_G(E)/E$ is infinite, then $N_G(E)$ is self-normalizing. In particular if G satisfies the normalizer condition, then G is locally cyclic and E=1.

Proof — Put $N = N_G(E)$. Assume that $EC_G(E)/E$ is infinite,

then $N = EC_G(E)$ since N/E is (locally) cyclic by Lemma 2.1. Hence

$$N_G(N) = N_G(EC_G(E)) = N_G(E) = N$$

since N is large and so $N = N_G(N)$, which means that N is self-normalizing. Now if G satisfies the normalizer condition, then this is possible only if E = 1 and G is (locally) cyclic by Lemma 2.2 (b). \Box

Lemma 2.4 Let G be a locally finite p-group and (w,V) be a (*)-pair in G, where $w \in G \setminus 1$. Let $E \in E^*(w,V)$ and put $N = N_G(E)$. Suppose that N/E is (locally) cyclic. Let A be a normal abelian subgroup of G with $Z(G) \leqslant A$. Let $R = N \cap A$ and $D = R \cap E$. Then the following hold.

- (a) Let $t \in G$ and $U \leqslant Z(G)$. If t normalizes UE, then t normalizes $EC_G(E)$.
- (b) Suppose that $W^*(w,V) = 1$. Let $L = N_G(EC_G(E)$. Let $\alpha \in A \setminus N$ with $N^{\alpha} = N$. If $\alpha^p \in R$, then α normalizes $EC_G(E)$ and so $\alpha \in L$. In particular if N is large then $A \cap N_G(N) \leq N$.

PROOF — If G is abelian, then there is nothing to prove. Therefore in both cases we may suppose that G is not abelian.

- (a) Assume that t normalizes UE. Let $C = C_G(E)$. Then $C = C_G(UE)$ since $U \leq Z(G)$. Since t normalizes UE, it must also normalize its centralizer C. Clearly then t normalizes CE since $U \leq C$ and so (a) is verified.
- (b) Suppose that $W^*(w,V)=1$. Then $Z(G)\cap E=1$ since $\operatorname{Core}_G(E)=1$ but also $Z(G)\neq 1$ by Lemma 2.2 (a). Therefore $\Omega_1(R)\leqslant \langle z\rangle D$ for some $z\in Z(G)$ with |z|=p since N/E is (locally) cyclic. Assume that $\alpha\in A\setminus N$ with $N^\alpha=N$ and $\alpha^p\in R$. Put $H=\langle \alpha\rangle D$ and $\overline{H}=H/D$. Since N/E is (locally) cyclic, $[R,E]\leqslant D$ and so $[\overline{R},\overline{E}]\leqslant \overline{D}=1$. Hence

$$1 = [\overline{a}^p, \overline{E}] = [\overline{a}, \overline{E}]^p$$

by [7, Lemma 2.2.2 (i)] since $\overline{\alpha}^p \in \overline{R}$, $[\overline{R}, \overline{E}] = 1$, $\alpha \in A$, $[\overline{\alpha}, \overline{E}] \leqslant \overline{A}$ and A is abelian. Thus $[\overline{\alpha}, \overline{E}]$ has order $\leqslant p$ and so is contained in $\langle \overline{z} \rangle \overline{D}$ since $[\overline{\alpha}, \overline{E}] \leqslant N$. Clearly then $[\alpha, E] \leqslant \langle z \rangle E$ since $D \leqslant E$ and so α normalizes $\langle z \rangle E$. Then since α normalizes $EC_G(E)$ by (a), it follows that $\alpha \in L$. The last assertion follows from the first one since N is large means N = L.

Lemma 2.5 Let G be a locally finite p-group, (w, V) be a (*)-pair in G, where $w \in G \setminus 1$. Suppose that $W^*(w, V) = 1$ and let $E \in E^*(w, V)$.

Let B be a normal abelian-by-elementary abelian subgroup of G and A be a normal abelian subgroup of G contained in B such that B/A is elementary abelian and $Z(G) \leq A$. Put $N = N_G(E)$, $R = N \cap B$, $D = R \cap E$ and suppose that N/E is (locally) cyclic. Furthermore suppose that there exists a $t \in B \setminus N$ with $N^t = N$ and $t^p \in N$. Put $T = \langle t \rangle R$, H = TN and $D^* = Core_H(D)$. Then the following hold.

(a) R/D is (locally) cyclic and

$$R/D^*\leqslant Z(N/D^*).$$

Also $Z(G) \neq 1$ and $Z(G) \cap E = 1$. Therefore $\Omega_1(R/D^*) \leq \langle z \rangle D/D^*$, where $\langle z \rangle$ is the unique subgroup of order p in Z(G).

(b) Suppose that N is large. Then

$$C_{T/D^*}(R/D^*) = R/D^* \ \text{and so} \ C_{H/D^*}(R/D^*) = N/D^*.$$

Thus $Z(T/D^*) \le R/D^*$ and $Z(T/D^*) \cap E/D^* = 1$ and so is (locally) cyclic.

PROOF — Clearly B is not abelian by Lemma 2.4 (b) by the choice of t. Now $T = B \cap H$ and so $T \triangleleft H$. Then also $R \triangleleft H$ since $R = T \cap N$ and $N \triangleleft H$. Also $D \triangleleft N$ since $E \triangleleft N$. Put $\overline{H} = H/D^*$.

(a) Obviously R/D is (locally) cyclic since N/E has this property. [R,N] is normal in H since R, N \lhd H and is contained in E since N/E is (locally) cyclic. Clearly then $[R,N] \leqslant D^*$ and so $[\overline{R},\overline{N}]=1$, which implies that $\overline{R} \leqslant Z(\overline{N})$.

Next $Z(G) \neq 1$ by Lemma 2.2 (a) and $Z(G) \cap E = 1$ since $Core_G(E) = 1$. Therefore if $z \in Z(G)$ with |z| = p, then $\Omega_1(\overline{R}) \leq \langle \overline{z} \rangle \overline{D}$ since R/D is (locally) cyclic.

(b) Now suppose that N is large. Assume if possible that $[\overline{t}, \overline{R}] = 1$. Then

$$1 = [\overline{t}^p, \overline{N}] = [\overline{t}, \overline{N}]^p$$

since $t^p \in R$ and $\overline{R} \leqslant Z(\overline{N})$. Therefore $[\overline{t}, \overline{N}]$ is a subgroup of order $\leqslant p$ of \overline{R} . Clearly then $[\overline{t}, \overline{N}] \leqslant \Omega_1(\overline{R}) \leqslant \langle \overline{z} \rangle \overline{D} \leqslant \langle \overline{z} \rangle \overline{E}$ by (a) and thus t normalizes $\langle z \rangle E$. But then since t normalizes $EC_G(E)$ by Lemma 2.4 (a) and N is large we have $t \in N$, which is a contradiction. Therefore $C_{\overline{T}}(\overline{R}) = \overline{R}$. Since $\overline{R} \leqslant Z(\overline{N})$, it follows that $C_{\overline{H}}(\overline{R}) = \overline{N}$. In particular now $Z(\overline{T}) \leqslant \overline{N}$. Then also $Z(\overline{T}) \cap \overline{D} = 1$ and so $Z(\overline{T})$ is (locally) cyclic since $Z(\overline{T}) \cap \overline{D} \lhd \overline{H}$ and so is trivial by definition of D^* .

Lemma 2.6 (see [3], Lemma 2.7) Let G be a locally finite p-group and let (w,V) be a (*)-pair in G such that $W^*(w,V)=1$, where $w\in G\setminus 1$. Assume that there exists an $E\in E^*(w,V)$ such that $N_G(E)/E$ is (locally) cyclic and $N_G(E)$ is large. Furthermore let B be a normal nilpotent subgroup of G with c(B) < p and A be a normal abelian subgroup of G contained in B with that B/A is elementary abelian and $Z(G) \leqslant A$. If $B\cap N_G(N_G(E))\setminus N_G(E) \neq 1$ whenever $B\nleq N_G(E)$, then B is abelian.

PROOF — Assume that B is not abelian. Then B $\nleq N_G(E)$. For if $B \leqslant N_G(E)$, then $B' \leqslant E$ since N/E is (locally) cyclic by Lemma 2.1. But then since $Core_G(E) = 1$, we must have B' = 1, which is a contradiction. Therefore there exists a $t \in B \setminus N_G(E)$ with $N_G(E)^t = N_G(E)$ and $t^p \in N_G(E)$. As before put

$$N = N_G(E)$$
, $R = N \cap B$, $D = R \cap E$ and $T = \langle t \rangle R$

and H = TN. Let $D^* = Core_H(D)$ and put $\overline{H} = H/D^*$. Then $\overline{H} = \langle \overline{t} \rangle \overline{N}$. Also $\overline{R} \leq Z(\overline{N})$ by Lemma 2.5 (a).

Let $y \in N$. Then

$$1 = [\overline{y}, \overline{t}^p] = \prod_{k=1}^p [\overline{y}_{,k} \, \overline{t}]^{\binom{p}{k}}$$

since $\overline{t}^p \in \overline{R}$ and $\overline{R} \leqslant Z(\overline{N})$. Also $\langle \overline{t} \rangle \overline{R}/\overline{R}$ is elementary abelian, which implies that $exp\left([\overline{R},\overline{t}]\right) \leqslant p$ by [3, Lemma 2.6] since c < p. Using this in the above equality we get

$$1=[\overline{y},\overline{t}]^p[\overline{y},_p\overline{t}]$$

Moreover $[\overline{y}_{,p} \overline{t}] = 1$ since c < p. Using this above we get finally

$$1=[\overline{y},\overline{t}]^p$$

Here since y is any element of N, it follows that $\exp\left([\overline{N},\overline{t}]\right) \leqslant p$ and so $[\overline{N},\overline{t}] \leqslant \langle \overline{z} \rangle \overline{E}$ by Lemma 2.5 (a). Clearly this implies that $[\overline{E},\overline{t}] \leqslant \langle \overline{z} \rangle \overline{E}$ and then t normalizes $\langle z \rangle E$. But then since t normalizes $EC_G(E)$ by Lemma 2.4 (a) and N is large, it follows that $t \in N$, which is a contradiction. Therefore the assumption is false and so B must be abelian.

Lemma 2.7 Let G be a locally finite p-group satisfying the normalizer condition, where $p \neq 2$. Suppose that in every homomorphic image H of G

for every (*)-pair (w_H, V_H) there exists an $E_H \in E^*(w_H, V_H)$ having a large normalizer, where $w_H \in H \setminus 1$. Let B be a normal metabelian subgroup of G and A be a normal abelian subgroup of G contained in B such that B/A is elementary abelian. Then $B' \nleq Z(B)$.

PROOF — Clearly B' \neq 1 since B is metabelian. Assume if possible that B' \leq Z(B). Then $c(B) \leq$ 2. Let $1 \neq w \in B'$ and V be a finite subgroup of G with $w \notin V$. Thus (w, V) is a (*)-pair in G and there is an element of $E^*(w, V)$ having a large normalizer by hypothesis. Now if $W^*(w, V) = 1$, then B is abelian by Lemma 2.6 since $c(B) \leq 2 < p$. Therefore we may suppose that $W^*(w, V) \neq 1$.

Let M be a maximal element of $W^*(w,V)$, which exists by [3, Lemma 2.1 (b)] and put $\overline{G} = G/M$. Then $(\overline{w},\overline{V})$ is a (*)-pair in \overline{G} since $w \notin M$ and also $W^*(\overline{w},\overline{V}) = 1$. In addition there is $\overline{E} \in E^*(\overline{w},\overline{V})$ having a large normalizer by hypothesis. But now since $c(\overline{B}) \leqslant 2$, \overline{B} must be abelian by the first case and then $\overline{B} \leqslant \overline{N}$ by Lemma 2.4 (b), where $N = N_G(E)$. Then $B' \leqslant E$ since N/E is abelian but this is impossible since $w \notin E$ and so the proof is complete.

3 Proofs of Theorems 1.1 and 1.2

Lemma 3.1 Let G be a locally finite p-group satisfying the normalizer condition, where p > 2. Suppose that in every homomorphic image H of G every (*)-pair (w_H, V_H) satisfying $W^*(w, V) = 1$ has an E_H in $E^*(w_H, V_H)$ having a large normalizer, where $w_H \in H \setminus 1$. Let B be a normal metabelian subgroup of G and A be a normal abelian subgroup of G contained in B such that B/A is elementary abelian and $Z(G) \leq A$. Then B/B^p is abelian.

Proof — Assume that B/B^p is not abelian. Put $\overline{G}=G/B^p$. Then \overline{B} is nilpotent of class $\geqslant 2$ by [11, Corollary to Theorem 7.18]. Next put $Q=\overline{G}/\gamma_3(\overline{B})$. Then

$$\left(\overline{B}/\gamma_3(\overline{B})\right)'\leqslant \mathsf{Z}\!\left(\overline{B}/\gamma_3(\overline{B})\right)$$

and so $c(\overline{B}/\gamma_3(\overline{B})) \leq 2$.

Since Q satisfies the hypothesis of the Lemma 2.7, there is $\overline{w} \in \overline{B}'$ such that $\overline{w}\gamma_3(\overline{B}) \in (\overline{B}/\gamma_3(\overline{B}))' \setminus Z(\overline{B}/\gamma_3(\overline{B}))$. Also there exists a finite subgroup \overline{V} of \overline{G} such that $(\overline{w}\gamma_3(\overline{B}), \overline{V}\gamma_3(\overline{B})/\gamma_3(\overline{B}))$ is a (*)-pair in Q. Now if $W^*(\overline{w}\gamma_3(\overline{B}), \overline{V}\gamma_3(\overline{B})/\gamma_3(\overline{B})) = 1$, then since $Z(G) \neq 1$

by Lemma 2.2 (a), $E^*(\overline{w}\gamma_3(\overline{B}), \overline{V}\gamma_3(\overline{B})/\gamma_3(\overline{B}))$ has an element having a large normalizer by hypothesis. Therefore $\overline{B}/\gamma_3(\overline{B})$ is abelian by Lemma 2.6 and by hypothesis since p>2, so that $\overline{B}'\leqslant\gamma_3(\overline{B})$. Clearly this is possible only if \overline{B} is abelian since \overline{B} is nilpotent and then $B'\leqslant B^p$, contrary to our assumption. Therefore the assumption is false and so $B'\leqslant B^p$ in this case.

Next suppose that $W^*(\overline{w}\gamma_3(\overline{B}), \overline{V}\gamma_3(\overline{B})/\gamma_3(\overline{B})) \neq 1$ and choose a maximal element $\overline{M}/\gamma_3(\overline{B})$ in $W^*(\overline{w}\gamma_3(\overline{B}), \overline{V}\gamma_3(\overline{B})/\gamma_3(\overline{B})$. Consider

$$\overline{G}/\gamma_3(\overline{B})/(\overline{M}/\gamma_3(\overline{B})) \simeq \overline{G}/\overline{M}.$$

Now, using this isomorphism, we have $W^*(\overline{w}\overline{M}, \overline{VM}/\overline{M}) = 1$. But since $\overline{BM}/\overline{M}$ has class ≤ 2 , this group must be abelian by Lemma 2.6, as in the first case, and then $\overline{B}' \leq \overline{M}$ and hence $\overline{w} \in \overline{M}$ since $\overline{w} \in \overline{B}'$. But since $\overline{M} = \operatorname{Core}_{\overline{G}}(\overline{E})$ for some $\overline{E} \in E^*(\overline{w}, \overline{V})$ and $\overline{w} \notin \overline{E}$, this is a contradiction and so the proof is complete.

Lemma 3.2 Let B be a metabelian p-group and A a normal abelian subgroup of B such that B/A is elementary abelian and $\exp(B)' \leq p$. Let $t \in B \setminus A$. Then the following hold.

- (a) If |t| = p, then $[B^p, t] \le C_B(t)$.
- (b) If |t| > p, then $[B^p, t, t] \leqslant C_B(t)$.

PROOF — (a) Let $y \in B$. Then

$$[y^{p},t] \equiv [y,t]^{p} \mod \gamma_{2}(H)^{p} \gamma_{p}(H), \tag{1}$$

and this gives

$$[y^p, t] \equiv 1 \mod \gamma_p(H), \tag{2}$$

since $\exp(B') \leqslant p$ by hypothesis by [9, VIII.1.1, Lemma (b)], where $H = \langle [y,t],t \rangle$. Moreover, $c(\langle t \rangle A) \leqslant p$ by [6, Lemma 4.2.1 (ii)] since |t| = p, which means that $\gamma_p(\langle t \rangle A) \leqslant Z(\langle t \rangle A)$. Then in particular $\gamma_p(H) \leqslant Z(H)$ since $H \leqslant \langle t \rangle A$. Therefore

$$[y^p,t] \leqslant C_B(t).$$

Now since

$$[x^py^p, t] = [x^p, t][y^p, t]$$

for every $x,y \in B$ due to exp(B/A) = p and A is abelian, it follows that $[x^py^p,t] \in C_B(t)$ and so (a) follows.

(b) Let $Z = Z(\langle t \rangle A)$. Then $Z \triangleleft B$, since $B' \leqslant A$ and so $\langle t \rangle A \triangleleft B$. Also $t^p \in Z$. Put $\overline{B} = B/Z$. Now (2) takes the form

$$[\overline{y}^p, \overline{t}] \equiv 1 \mod \gamma_p(\overline{H}),.$$
 (3)

Also $c\left(\langle \overline{t} \rangle \overline{A}\right) \leqslant p$ since $\overline{t}^p = 1$ and so $\gamma_p(\langle \overline{t} \rangle \overline{A}) \leqslant Z\left(\langle \overline{t} \rangle \overline{A}\right)$. Then in particular $\gamma_p(\overline{H}) \leqslant Z(\overline{H})$. Clearly then $[\overline{y}^p, \overline{t}] \in Z(\overline{H})$ by (3) and so is centralized by \overline{t} ; that is, $[\overline{y}^p, \overline{t}, \overline{t}] = 1$. Since \overline{y} is any element of \overline{B} , it follows as in the first case that $[\overline{B}^p, \overline{t}, \overline{t}] = 1$. Taking the inverse images we get $[B^p, t, t] \leqslant Z \leqslant C_B(t)$.

Lemma 3.3 Let G be a locally finite p-group satisfying the normalizer condition, where p > 2. Suppose that in every homomorphic image H of G every (*)-pair (w_H, V_H) satisfying $W^*(w, V) = 1$ has an $E_H \in E^*(w_H, V_H)$ having a large normalizer, where $w_H \in H \setminus 1$. If B is a metabelian normal subgroup of G, then B' cannot be radicable abelian.

PROOF — Assume that B' is radicable abelian and put Q = B'. First assume if possible that $[Q,F] \leq C_Q(F)$ for every finite subgroup F of B. Since $Q = C_Q(F)[F,Q]$ by [11, Lemma 3.29.1], it follows that $Q \leq C_Q(F)$ for every finite subgroup F of B. Clearly then $Q \leq Z(B)$ and so $c(B) \leq 2$. But now since $p \neq 2$ and G satisfies the normalizer condition, B must be ablian by Lemma 2.6, which is a contradiction. Therefore there exists a finite subgroup V of G with $[V,Q] \nleq C_Q(V)$.

Put $C = C_Q(V)$. Then Q = C[V,Q]. Now [Q,V]C/C is radicable abelian since Q is. So if it is finite, then it is trivial and then $[Q,V] \leq C$, which is impossible by the choice of V. Therefore [Q,V]C/C is infinite. Clearly then also $[Q,V]C(V\cap Q)/C(V\cap Q)$ is infinite since V is finite. Therefore there exists a $w \in [Q,V] \setminus C(V\cap Q)$. Then in particular $w \notin VC$. Indeed if $w \in VC$, then $w \in VC \cap Q = C(V\cap Q)$, which is impossible. Thus (w,V) is a (*)-pair in G.

Now, if $W^*(w,V)=1$, there exists an $E\in E^*(w,V)$ so that $N_G(E)$ is large. Then $Q\leqslant N_G(E)$ by Lemma 2.4 (b) and then $[Q,V]\leqslant E$ since N/E is (locally) cyclic. But since $w\in [Q,V]\setminus E$, this is a contradiction. Therefore the assumption is false and so Q cannot exists.

Next suppose that $W^*(w,V) \neq 1$. Choose a maximal element M in $W^*(w,V)$ and put $\overline{G} = G/M$. Then since $W^*(\overline{w},\overline{V}) = 1$, there exists an $\overline{R} \in E^*(\overline{w},\overline{V})$ whose normalizer is large and so $\overline{Q} \leqslant \overline{N_G(R)}$ by Lemma 2.4 (b). This means that $Q \leqslant N_G(R)$ and hence $[Q,w] \leqslant E$, which gives a contradiction as in the first case and so it follows that Q cannot be radicable abelian.

PROOF OF THEOREM 1.1 — Let G be a locally finite p-group satisfying the normalizer condition, where $p \neq 2$. Suppose that in every homomorphic image H of G every (*)-pair (w_H, V_H) satisfying $W^*(w, V) = 1$, where $w_H \in H \setminus 1$, has a (w_H, V_H) -maximal subgroup whose normalizer is large. Let B be a normal abelian-by-elementary abelian subgroup and A be a normal abelian subgroup of G contained in B with B/A is elementary abelian and $Z(G) \leq A$.

(a) Assume that B is nilpotent but not abelian. Then [B',B] < B' since B is nilpotent. Let $\overline{G} = G/[B',B]$. Then $1 \neq \overline{B}' \leqslant Z(\overline{B})$ and so $c(\overline{B}) \leqslant 2$. Choose a $w \in B'$ with $\overline{w} \neq 1$ and let V be a finite subgroup of G with $\overline{w} \notin \overline{V}$. If $W^*(\overline{w},\overline{V}) = 1$ then \overline{B} is abelian by Lemma 2.6. But then since $1 \neq \overline{w} \in \overline{B}' = 1$, we get a contradiction. Therefore $W^*(\overline{w},\overline{V}) \neq 1$.

Let M be a maximal element of $W^*(\overline{w}, \overline{V})$ and consider $\overline{G}/\overline{M}$. Because of isomorphism we may consider Q = G/M. Then (wM, VM/M) is a (*)-pair in Q and $W^*(wM, VM/M) = 1$. Since the hypothesis holds in Q, it follows that BM/M is abelian and so $B' \leq M$. But this gives another contradiction since $w \notin M$. Therefore the assumption is false and so B must be abelian. Thus every normal nilpotent abelian-by-elementary subgroup of G is abelian.

Next let K, L be two normal abelian subgroups G. Let H = KL. Then H is nilpotent of class cH) ≤ 2 . Let A be a largest normal abelian subgroup of G contained in H with $K \cap L \leq A$ and let $B/A = \Omega_1(H/A)$. Then B is nilpotent and abelian-by-elementary abelian and so is abelian by the first part of the proof . Clearly then B = A and this means that B = H since H is nilpotent. Therefore G contains a unique maximal normal abelian subgroup.

(b) Let p be a prime $\geqslant 5$. Assume if possible that B is not abelian. Then $\exp(B/A) = p$. Also B' cannot be radicable abelian by Lemma 3.3. Therefore $(B')^p < B'$. Let $\overline{G} = G/(B')^p$. Then $\exp(\overline{B}') = p$ and so \overline{B} is not abelian. Also \overline{G} satisfies the hypothesis of G. Therefore without loss of generality we may replace \overline{G} with G and suppose that $\exp(B') = p$.

By Lemma 2.7 there exists a $w \in B' \setminus Z(B)$. Let V be a finite subgroup with $w \notin V$. Therefore (w,V) is a (*)-pair in G. Suppose first that $W^*(w,V)=1$. Let $E \in E^*(w,V)$ have a large normalizer. Put $N = N_G(E)$, $R = N \cap B$, $D = R \cap E$. Then N/E is (locally) cyclic by Lemma 2.1. Moreover, $A \leq R$ by Lemma 2.4 (b) and $Z(G) \cap E = 1$ since $Core_G(E) = 1$. Since B is not abelian, there is $E \in B \cap N_G(N) \setminus N$ (see the proof of Lemma 2.6). As before put $E \in A$ and $E \in B$ and $E \in B$.

Also define $D^* = Core_H(D)$ and put $\overline{H} = H/D^*$. Then $\overline{R} \leqslant Z(\overline{N})$ and $\overline{R}/\overline{D}$ is (locally) cyclic by Lemma 2.5 (a).

First suppose that $|\overline{t}|=p$. Then $[\overline{B}^p,\overline{t}]\leqslant C_{\overline{B}}(\overline{t})$ by Lemma 3.2 (a). Then also $[\overline{B}',\overline{t}]\leqslant C_{\overline{B}}(\overline{t})$ since $B'\leqslant B^p$ by Lemma 3.1 and then

$$[\overline{B}', \overline{t}, \overline{t}] = 1.$$

Then in particular $[\overline{T}', \overline{t}, \overline{t}] = 1$ since $T \leqslant B$ and so $\gamma_4(\overline{T}) = 1$. Now since $c(\overline{T}) \leqslant 3 < 5$, it follows that \overline{T} is abelian by Lemma 2.6 and so $\overline{t} \in C_{\overline{B}}(\overline{R})$. But since $C_{\overline{B}}(\overline{R}) = \overline{R}$ by Lemma 2.5 (b), it follows that $\overline{t} \in \overline{R}$ which is a contradiction.

Next suppose that $|\overline{t}| > p$. Then $[\overline{B}^p, \overline{t}, \overline{t}] \leqslant C_{\overline{B}}(\overline{t})$ by Lemma 3.2 (b). Hence $[\overline{B}^p, \overline{t}, \overline{t}, \overline{t}] = 1$ and hence also $[\overline{B}', \overline{t}, \overline{t}, \overline{t}] = 1$ by Lemma 3.1. Then since $\overline{T}' \leqslant \overline{B}'$, it follows that $[\overline{T}', \overline{t}, \overline{t}, \overline{t}] = 1$. Obviously the last equality implies that $c(\overline{T}) < 5$, and so applying Lemma 2.6 one more time it follows that \overline{T} is abelian and so $\overline{t} \in C_{\overline{T}}(\overline{R}) = \overline{R}$ and this gives another contradiction since $\overline{t} \notin \overline{N}$. Therefore the assumption is false and so B must be abelian.

Next assume that $W^*(w,V) \neq 1$. In this case choose a maximal element M of $W^*(w,V)$ and define $\overline{G} = G/M$. Then $(\overline{w}M, \overline{V}M/M)$ is a (*)-pair in \overline{G} since $w \notin M$ and $W^*(\overline{w}M, \overline{V}M/M) = 1$. Therefore $E^*(\overline{w}M, \overline{V}M/M)$ contains an element having a large normalizer by hypothesis. Also $\exp(\overline{B}') = p$. Clearly then we get another contradiction as in the first case. Thus, the assumption is false and so B must be abelian.

Proof of Theorem 1.2 — Let G be a solvable p-group satisfying the normalizer condition, where $p \ge 5$. Suppose that in every homomorphic image H of G every (*)-pair (w_H, V_H) satisfying $W^*(w, V) = 1$ has a (w_H, V_H) -maximal subgroup whose normalizer is large. Assume that G is not abelian. By Lemma 2.7 there exists a $w \in G' \setminus Z(G)$. Let V be a finite subgroup of G such that $w \notin V$ and consider the (*)-pair (w, V). First suppose that $W^*(w, V) = 1$. Then there exists $E \in E^*(w, V)$ whose normalizer is large. Put $N = N_G(E)$. Then $N = N_G(EC_G(E))$ by hypothesis.

Now suppose that G' is abelian. Assume first that $W^*(w,V) = 1$. Then $G' \leq N$ by Lemma 2.4 (b) since $p \neq 2$ and then $N \triangleleft G$. But then since G is (locally) cyclic by Lemma 2.2 (b), we get a contradiction. Therefore $W^*(w,V) \neq 1$.

Choose a maximal element $M \in W^*(w, V)$, which exists by [3, Lem-

ma 2.1 (b)], and consider $\overline{G} = G/M$. Then $(\overline{w}, \overline{V})$ is a (*)-pair in \overline{G} since $M = \operatorname{Core}_{G}(R)$ for some $R \in E^{*}(w, V)$ and $w \notin R$. Moreover $W^{*}(\overline{w}, \overline{V}) = 1$, since

$$E^*(\overline{w}, \overline{V}) = {\overline{T} : T \in E^*(w, V) \text{ and } M \leqslant T}$$

(see [1, Lemma 4.2]). In addition there exists an $\overline{S} \in E^*(\overline{w}, \overline{V})$ whose normalizer is large. Therefore applying Lemma 2.4 (b) again gives $\overline{G}' \leq N_{\overline{G}}(\overline{S})$ and so $N_{\overline{G}}(\overline{S}) \lhd \overline{G}$. Clearly then \overline{G} is locally cyclic as above and this implies that $\overline{G}' \leq \overline{S}$. But since $Core_{\overline{G}}(\overline{S}) = 1$, it follows that $\overline{G}' = 1$ and then $G' \leq M$. But since $w \notin S$, this gives another contradiction. Therefore we may suppose that G' is not abelian.

Put $\overline{G} = G/G''$. Then \overline{G}' is non-trivial and abelian. Also \overline{G} satisfies the hypothesis of the theorem. Therefore \overline{G} is abelian as in the first case. Thus $\overline{G}' = 1$ and this implies that $G' \leqslant G''$, which is a contradiction since G' is not abelian. Therefore the assumption that G is not abelian is false and so G must be abelian, which completes the proof of the theorem.

Proof of Theorem 1.3 — Let G be an hyperabelian p-group satisfying the normalizer condition, where $p \geqslant 5$. Suppose that in every homomorphic image H of G every (*)-pair (w_H, V_H) with $W^*(w, V) = 1$ has a locally maximal subgroup whose normalizer is large. Assume that G is not abelian. Then also G can not be solvable by Theorem 1.2. Let A be the unique maximal normal abelian subgroup of G which exists by Theorem 1.1 (a). Then $1 \neq A \neq G$ since G is not abelian. In the same way G/A contains a unique maximal normal abelian subgroup, say, U/A such that $1 \neq U/A \neq G/A$ since G is hyperabelian but not solvable. Let $B/A = \Omega_1(U/A)$. Then $B \triangleleft G$ and is not abelian by definition of A and exp(B/A) = p. But since every abelian-by-elementary abelian normal subgroup of G must be abelian by Theorem 1.1 (b) this is a contradiction. Therefore the assumption is false and so G is abelian, which completes the proof of the theorem.

4 Proof of Theorem 1.5

In this section we give a complete characterization of [3, Theorem 1.1]. But first a lemma is needed.

Lemma 4.1 Let G be a locally finite p-group satisfying the normalizer condition, where $p \neq 2$ and let (w, V) be a (*)-pair in G, where $w \in G \setminus 1$. Let $E \in E^*(w, V)$ satisfy (**) and let $N = N_G(E)$. Then N is large.

PROOF — By hypothesis $N=N_G(E')$. We claim that $N=N_G\bigl(EC_G(E)\bigr)$. Put $C=C_G(E)$. Then $C\leqslant N$. Since N/E is (locally) cyclic by Lemma 2.1 and since $C\cap E\leqslant Z(C)$, it follows that C/Z(C) is (locally) cyclic. Let F/Z(C) be a finite subgroup of C/Z(C). Since F/Z(C) is cyclic, $F=\langle f,Z(C)\rangle$ for some $f\in F$ and so F is abelian. Since F is any subgroup of C with |FZ(C):Z(C)| is finite , it follows that C is abelian. Now since

$$N_G(CE) \leqslant N_G((CE)') = N_G(E') = N_G(E')$$

it follows that $N_G(CE) \leq N$. But also $N \leq N_G(CE)$ since $N = N_G(E)$. Therefore we get the equality $N_G(CE) = N$ and so it follows that N is large.

Proof of Theorem 1.5 — Let G be a Fitting p-group satisfying the normalizer condition, where $p \neq 2$. Then G is generated by normal nilpotent subgroups. Suppose that in every homomorphic image H of G every (*)-pair (w_H , V_H) has a (w_H , V_H)-maximal subgroup satisfying (**). Clearly, then in every homomorphic image of G every (*)-pair has a locally maximal subgroup whose normalizer is large by Lemma 4.1.

Now assume if possible that G is not abelian. Then we can choose a finite non-abelian subgroup F of G. Put $M = \langle F^G \rangle$. Then M is nilpotent since G is a Fitting group. Also $\exp(M) < \infty$ by [11, Corollary to Theorem 2.26]. Next let A be a maximal normal abelian subgroup of G contained in M such that $Z(M) \leq A$ and let $B/A = \Omega_1(Z(M/A))$. Then B is not abelian by the maximality of A since B is also normal in G. Also $\exp(B) < \infty$. But now since G satisfies the hypothesis of Theorem 1.1, B must be abelian, which is a contradiction. Therefore F must be abelian. Since F is any finite subgroup of G, it follows that G is abelian and so the proof of the theorem is complete.

5 Acknowledgments

The author is very grateful to the referee for a detailed evaluation of the first version of this work which led to a significant change and improvement in the final version.

REFERENCES

- [1] A.O. Asar: "On infinitely generated groups whose proper subgroups are solvable", *J. Algebra* 399 (2014), 870–886.
- [2] A.O. Asar: "On Fitting groups whose proper subgroups are solvable", *Int. J. Group Theory* 5, No. 2 (2016), 7–24.
- [3] A.O. Asar: "Characterization of Fitting p-groups whose proper subgroups are solvable", *Adv. Group Theory Appl.* 3 (2017), 31–53
- [4] A.O. Asar: "Corrigendum II to: Characterization of Fitting p-groups whose proper subgroups are solvable", *Adv. Group Theory Appl.* 6 (2018), 111–126.
- [5] A.O. Asar: "On minimal non-(residually nilpotent) locally graded groups", *Mediterr. J. Math.* 18, No. 2 (2021), Paper No. 54, 18pp.
- [6] J. Buckley J. Wiegold: "Nilpotent extensions of abelian p-groups", *Canad. J. Math.* 38 (1986), 1025–1052.
- [7] D. Gorenstein: "Finite Groups", Harper and Row, New York (1968).
- [8] B. Huppert: "Endliche Gruppen I", Springer, Berlin (1979).
- [9] B. Huppert N. Blackburn: "Finite Groups II", Springer, Berlin (1982).
- [10] O.H. Kegel B.A.F. Wehrfritz: "Locally Finite Groups", North-Holland, Amsterdam (1973).
- [11] D.J.S. Robinson: "Finiteness Conditions and Generalized Soluble Groups", Springer, New York (1972).
- [12] D.J.S. Robinson: "A Course in the Theory of Groups", Springer, New York (1980).

A.O. Asar Yargic Sokak 11/6 Cebeci, Ankara (Turkey) e-mail: aliasar@gazi.edu.tr