Locally Maximal Subgroups and the Normalizer Condition in p-Groups

A.O. Asar
(Received Dec. 13, 2021; Accepted Nov. 21, 2022 - Communicated by F. de Giovanni)

Abstract

This work is a continuation of the investigation of a locally nilpotent p-group satisfying the normalizer condition by imposing certain conditions on locally maximal subgroups, where $p \neq 2$. A sufficient condition is obtained for making every abelian-by-elementary abelian normal subgroup of such a group to be abelian. If in addition the group in question is hyperabelian, then it is abelian, where $p \geqslant 5$. In the general case if a locally nilpotent p -group satisfies the mentioned condition above $(p \neq 2)$, then it contains a unique maximal normal abelian subgroup.

Mathematics Subject Classification (2020): 20E25, 20F19, 20F50
Keywords: normalizer condition; locally nilpotent group;
locally maximal subgroup

1 Introduction

This is a continuation of the study of a locally nilpotent p-group G which satisfies the normalizer condition and/or is a Fitting group in order to search for imperfectness conditions and to obtain some information about its inner structure when G is perfect (see $[1,2,3,5]$). In [2,3], it was shown that if G is a Fitting p-group satisfying the normalizer condition and if in every homomorphic image of G certain ($w, \mathrm{~V}$)-maximal subgroups satisfy the $(* *)$-condition (see below for definitions), then, under certain conditions, G cannot be perfect (see [2, Theorem 1.1] and [3, Theorem 1.1]). Now it follows
from Theorem 1.5 (see below) that a group G satisfying the hypotheses of these theorems is actually abelian. In this work it is shown that in a locally nilpotent p-group satisfying the normalizer condition only and whose locally maximal subgroups have large normalizers (see definitions below), every normal abelian-by-elementary abelian subgroup is abelian, where $p \geqslant 5$ (see Theorem 1.1 (b)). If in addition G is hyperabelian, then it is abelian (see Theorem 1.3 and Corollary 1.4). In the general case ($p \neq 2$), G contains a unique maximal normal abelian subgroup (see Theorem 1.1 (a)).
But before stating the main results it will be suitable to recall some of the definitions and notations given in [2] and [3] since they form the basis of this work. Let G be a group, $w \in \mathrm{G} \backslash 1$ and V be a finitely generated subgroup of G with $w \notin \mathrm{~V}$. Then the ordered pair ($w, \mathrm{~V}$) is called a $(*)$-pair in G (note that in $[2,3]$; that is in the definition of $\Lambda(w, \mathrm{~V}), w \in \mathrm{G} \backslash \mathrm{Z}(\mathrm{G})$ but in the present definition there is no such a restriction on w, the only restriction is that $w \neq 1$). A subgroup E of G which is maximal with respect to the condition that

$$
w \notin \mathrm{E} \text { but } \mathrm{V} \leqslant \mathrm{E}
$$

is called $(w, \mathrm{~V})$-maximal or maximal at $(w, \mathrm{~V})$ and if $(w, \mathrm{~V})$ is not mentioned, then it is called locally maximal. In addition let the following be defined.

$$
E^{*}(w, V)=\{E: E \text { is a }(w, V)-\text { maximal subgroup of } G\}
$$

and

$$
\mathrm{W}^{*}(w, \mathrm{~V})=\left\{\operatorname{Core}_{\mathrm{G}}(\mathrm{E}): \mathrm{E} \in \mathrm{E}^{*}(w, \mathrm{~V})\right\} .
$$

An element E of $\mathrm{E}^{*}(w, \mathrm{~V})$ is said to satisfy the $(* *)$-property, if

$$
N_{G}(E)=N_{G}\left(E^{\prime}\right)
$$

and $(w, \mathrm{~V})$ is said to satisfy $(* *)$ if every element of $\mathrm{E}^{*}(w, \mathrm{~V})$ satisfies it. On the other hand if

$$
\mathrm{N}_{\mathrm{G}}\left(\mathrm{EC}_{\mathrm{G}}(\mathrm{E})\right) \leqslant \mathrm{N}_{\mathrm{G}}(\mathrm{E}),
$$

then E is said to have a large normalizer.
Obviously $\mathrm{EC}_{\mathrm{G}}(\mathrm{E}) \leqslant \mathrm{N}_{\mathrm{G}}(\mathrm{E}) \leqslant \mathrm{N}_{\mathrm{G}}\left(\mathrm{EC}_{\mathrm{G}}(\mathrm{E})\right)$. So if $\mathrm{N}_{\mathrm{G}}(\mathrm{E})$ is large, then $N_{G}(E)=N_{G}\left(E C_{G}(E)\right)$. Put $N=N_{G}(E)$. Now if G satisfies the normalizer condition, N is large and $N \neq G$, then $E_{G}(E) \neq N$. In-
deed if $\mathrm{EC}_{\mathrm{G}}(\mathrm{E})=\mathrm{N}$, then $\mathrm{N}_{\mathrm{G}}(\mathrm{N})=\mathrm{N}_{\mathrm{G}}\left(\mathrm{EC}_{\mathrm{G}}(\mathrm{E})\right)=\mathrm{N}_{\mathrm{G}}(\mathrm{E})=\mathrm{N}$, which cannot happen by the normalizer condition. This fact will be used without further notice.
Furthermore if E satisfies ($* *$), then N is large (see Lemma 4.1), which shows that the first property is stronger than the second one.

In a locally nilpotent group G a locally maximal subgroup E behaves similar to a maximal subgroup M of G (if M exists), since $M \triangleleft G$ and so G / M is cyclic of order p. Also $N_{G}(E) / E$ is (locally) cyclic by Lemma 2.1, provided $p \neq 2$. Moreover,

$$
N_{G}(M)=G=N_{G}\left(M C_{G}(M)\right)
$$

and so $N_{G}(M)$ is large. Every subgroup of a Dedekind group satisfies $(* *)$ since in this group every subgroup is normal and if it has odd exponent, then it is abelian by [12, 5.3.7].

Again let $(w, \mathrm{~V})$ be a $(*)$-pair in G . If there exists a proper subgroup L of G such that

$$
w \in\langle V, y\rangle \text { for every } y \in G \backslash L
$$

then $(w, \mathrm{~V}, \mathrm{~L})$ is called a $(*)$-triple in G . This situation occurs when $\left\langle\mathrm{E}^{*}(w, \mathrm{~V})\right\rangle \neq \mathrm{G}$. In this case L can be any proper subgroup of G containing $\left\langle\mathrm{E}^{*}(w, \mathrm{~V})\right\rangle$. This case was studied in [5]. By means of it a new characterization of a barely transitive p-group was given (see [5, Theorem 1.2 (a)]). Furthermore G cannot be generated by normal abelian subgroups (see [1, Lemma 2.2]); as was shown in [5], if G is minimal non-hypercentral or barely transitive, then (*)-triples exist. Thus it follows that if either $\mathrm{E}^{*}(w, \mathrm{~V})$ contains locally maximal subgroups whose normalizers are large or $\left\langle\mathrm{E}^{*}(w, \mathrm{~V})\right\rangle \neq \mathrm{G}$, then G cannot be generated by normal abelian subgroups (this author knows of no perfect locally nilpotent p-group other than McLain's characteristically simple group $M(Q, F)$ [12, 12.1.9] which can be generated by normal abelian subgroups).

As usual if a group G is solvable (nilpotent), then its derived length (nilpotent class) is denoted by $\mathrm{d}(\mathrm{G})(\mathrm{c}(\mathrm{G})$). If $\mathrm{d}(\mathrm{G})=2$, then G is called metabelian. Also $\exp (\mathrm{G})=\max \{|\mathrm{g}|: \mathrm{g} \in \mathrm{G}\}$ is called the exponent of G. It may be $\operatorname{expressed}$ as $\exp (\mathrm{G})<\infty$ or $\exp (\mathrm{G})=\infty$ according as it is finite or infinite, respectively. A group is called hyperabelian if it has an ascending normal series with abelian factors (see [12, p.365]).

Definitions and notations are standard and may be found in [7, 8,
$9,10,11,12]$.
Theorem 1.1 Let G be a locally finite p-group satisfying the normalizer condition, where $\mathrm{p} \neq 2$. Suppose that in every homomorphic image H of G every $(*)$-pair $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$ satisfying $\mathrm{W}^{*}(w, \mathrm{~V})=1$ has a $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$-maximal subgroup whose normalizer is large. Then the following hold.
(a) Every abelian-by-elementary abelian normal nilpotent subgroup of G is abelian. In particular G contains a unique maximal normal abelian subgroup.
(b) If $\mathrm{p} \geqslant 5$, then every abelian-by-elementary abelian normal subgroup of G is abelian.

Theorem 1.2 Let G be a solvable p-group satisfying the normalizer condition, where $\mathrm{p} \geqslant 5$. Suppose that in every homomorphic image H of G every $(*)$-pair $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$ satisfying $\mathrm{W}^{*}(w, \mathrm{~V})=1$ has a $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$-maximal subgroup whose normalizer is large. Then G is abelian.

Theorem 1.3 Let G be an hyperabelian p -group satisfying the normalizer condition, where $\mathrm{p} \geqslant 5$. Suppose that in every homomorphic image H of G every $(*)$-pair $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$ satisfying $\mathrm{W}^{*}(w, \mathrm{~V})=1$ has a $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$-maximal subgroup whose normalizer is large. Then G is abelian.

Corollary 1.4 Let G be a locally finite p-group satisfying the normalizer condition, where $p \geqslant 5$. Suppose that every proper normal subgroup of G is solvable and in every homomorphic image H of G every $(*)$-pair $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$ satisfying $\mathrm{W}^{*}(w, \mathrm{~V})=1$ has a $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$-maximal subgroup whose normalizer is large. Then G is abelian.

Proof - Assume that G is not abelian. Then also G is not solvable by Theorem 1.2 and so G is perfect. Then G has an ascending normal series

$$
1=M_{0} \triangleleft M_{1} \triangleleft \ldots M_{\alpha} \triangleleft M_{\alpha+1} \triangleleft \ldots M_{\lambda}=G
$$

with $G=\bigcup_{\alpha<\lambda} M_{\alpha}$ since a minimal normal subgroup of G is abelian. But since $M_{\alpha+1} / M_{\alpha}$ is solvable for every $\alpha<\lambda$, the above series can be refined into an ascending normal series whose factors are abelian and so it follows that G is hyperabelian. But now since G must be abelian by Theorem 1.3, we get a contradiction and so G must be abelian.

The following is a complete characterization of the group given in [3, Theorem 1.1].

Theorem 1.5 Let G be a Fitting p-group satisfying the normalizer condition, where $\mathrm{p} \neq 2$. Suppose that in every homomorphic image H of G every $(*)$-pair $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$ has a $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$-maximal subgroup satisfying ($* *$). Then G is abelian.

In the following simple example for $p=3$, the hypothesis of Theorem 1.2 is not satisfied.

Example Let $A=C_{3}$ and $C=C_{3 \infty}$ be a cyclic group of order 3 and a locally cyclic 3-group respectively and let $G=C$ wr A be the standard wreath product. Then $G=[C] A$, where $[C]$ is the base group. Let

$$
A=\langle a\rangle \quad \text { and } \quad C=\left\langle c_{i}: c_{0}=1 \text { and } c_{i+1}^{3}=c_{i} \text { for every } \mathfrak{i} \geqslant 0\right\rangle .
$$

Thus $[\mathrm{C}]=\mathrm{C}_{0} \times \mathrm{C}_{1} \times \mathrm{C}_{2}$, where $\mathrm{C}_{\mathfrak{i}}=\mathrm{C}_{\mathrm{a}^{i}}=\mathrm{C}$ for $\mathfrak{i}=0,1,2$. Each $f \in[C]$ is a function $f: A \rightarrow C$ with $f\left(a^{i}\right) \in C_{i}$, which is the $i^{\text {th }}$ component of f. [$C]$ is an abelian group under point-wise multiplication; that is, for $f, g \in[C]$ and $y \in A, f g(y)=f(y) g(y)$. We define an action of A on $[C]$ as follows.

$$
f^{y}(a)=f\left(a y^{-1}\right) \text { for every } a, y \in A .
$$

For example if $f=\left(c_{0}, c_{1}, c_{2}\right)$, then

$$
f^{a}(1)=f\left(a^{2}\right)=c_{2}, f^{a}(a)=f(1)=c_{0}, f^{a}\left(a^{2}\right)=f(a)=c_{1} .
$$

Thus $f^{a}=\left(c_{2}, c_{0}, c_{1}\right)$ an so every entry of f is moved one step to the right.

The correspondence $\mathrm{f} \rightarrow \mathrm{f}^{\mathrm{y}}$ defines an automorphism of $[\mathrm{C}]$; that is $(f g)^{y}=f^{y} g^{y}$ and so a monomorphism of A into $\operatorname{Aut}([C])$, which we identify with A. The semidirect product of $[C]$ with A is called the wreath product of C with A and denoted by C wr $A=[C] A$.

Let $f, g \in[C]$ and $a, b \in A$. Then

$$
(f, a)(g, b)=\left(f^{a^{-1}}, a b\right) .
$$

In particular

$$
(f, a)^{-1}=\left(\left(f^{-1}\right)^{a}, a^{-1}\right) .
$$

If we identify $(f, 1)$ and $(1, a)$ with f and a respectively, then $(f, a)=(f, 1)(1, a)$ becomes $f a$.

Let $w=\left(c_{1}, c_{1}, c_{1}\right)$ and consider the $(*)$-pair $(w, 1)$, where $\left|c_{1}\right|=p$. Let $E \in E^{*}(w, 1)$ and let $N=N_{G}(E), L=C_{G}(E)$. First suppose $E \leqslant[C]$. Then $L=[C]$ since $w \notin E$ and a cannot centralize any subgroup $\neq 1$ of [C] not containing w. In this case $N=L$ and $\operatorname{Core}_{G}(E)=1$.

Next suppose that $g a \in E$ for some $g \in[C]$. Then since $G=[C]\langle g a\rangle$, it follows that $E=([C] \cap E)\langle g a\rangle=\langle g a\rangle$ since a cannot normalize any subgroup of $[C]$. Thus $\langle g a\rangle\langle w\rangle \leqslant L$. Since $N=(N \cap[C])\langle f a\rangle \leqslant L$, it follows again that $\mathrm{N}=\mathrm{L}$. Also obviously $\operatorname{Core}_{\mathrm{G}}(\mathrm{E})=1$. Thus we see that $W^{*}(w, 1)=1$ but $(w, 1)$ cannot satisfy the hypothesis of Theorem 1.2.

2 First properties of G given in Theorem 1.1

Lemma 2.1 Let G be a locally finite p -group and let $(w, \mathrm{~V})$ be a $(*)$-pair in G , where $w \in \mathrm{G} \backslash 1$. Let $\mathrm{E} \in \mathrm{E}^{*}(w, \mathrm{~V})$. Then $\mathrm{N}_{\mathrm{G}}(\mathrm{E}) / \mathrm{E}$ is either (locally) cyclic or $\mathrm{p}=2$ and isomorphic to a (locally) quaternion group.

Proof - Put $N=N_{G}(E)$ and define $\bar{N}=N / E$. Let \bar{A} be a finite abelian subgroup of \bar{N}. Assume if possible that \bar{A} is not cyclic. Then \bar{A} contains an elementary abelian subgroup $\langle\bar{a}\rangle \times\langle\bar{b}\rangle$. But since E is (w, V)-maximal, we must have $w \in\langle a\rangle E$ and $w \in\langle b\rangle E$. Hence $w \in\langle a\rangle E \cap\langle b\rangle E=E$, but this is impossible since $w \notin E$. Therefore every finite abelian subgroup of \bar{N} is cyclic. In this case every finite subgroup of \bar{N} is cyclic or isomorphic to a generalized quaternion group by [7, Theorem 5.4.10 (ii)]. Therefore either $\overline{\mathrm{N}}$ is (locally) cyclic or isomorphic to a 2-group which is isomorphic to a (locally) quaternion group.

Lemma 2.2 Let G be an infinitely generated locally nilpotent group and let $(w, \mathrm{~V})$ be a $(*)$-pair in G , where $w \in \mathrm{G} \backslash 1$. If $\mathrm{W}^{*}(w, \mathrm{~V})=1$, then the following hold.
(a) $Z(G) \neq 1$.
(b) Let $\mathrm{E} \in \mathrm{E}^{*}(w, \mathrm{~V})$ and put $\mathrm{N}=\mathrm{N}_{\mathrm{G}}(\mathrm{E})$. Suppose that N / E is (locally) cyclic. If $\mathrm{N} \triangleleft \mathrm{G}$, then it is abelian. If in addition G satisfies the normalizer condition and N is large, then G is (locally) cyclic and $\mathrm{E}=1$. In particular if $w \notin \mathrm{Z}(\mathrm{G})$, then $\mathrm{N} \nexists \mathrm{G}$.

Proof - (a) Assume if possible that $Z(G)=1$. Now G contains a proper normal subgroup $\mathrm{N} \neq 1$ since a minimal normal subgroup
of G is contained in $Z(G)$ by [12, 12.1.6]. Let $Q=\{1<L<N: L \triangleleft G\}$. Let Q be partially ordered by saying that if for $L_{1}, L_{2} \in Q, L_{1} \geqslant L_{2}$, then $L_{1} \prec L_{2}$. Then it is easy to check that (Q, \prec) is a partially ordered set. Assume if possible that Q has a maximal element L_{0}. Then since $L_{0} \leqslant L$ for every $L \in Q$ which is comparable with L_{0}, it follows that L is a minimal normal subgroup of G and so $L_{0} \leqslant Z(G)$. But since $L_{0} \neq 1$ and $Z(G)=1$ this is a contradiction. Therefore Q cannot have a maximal element. Therefore there exists a chain

$$
L_{1} \prec L_{2} \prec \ldots L_{\alpha} \prec \ldots
$$

of elements of Q whose upper bound does not belong to Q by Zorn's Lemma. Since this upper bound is $\bigcap_{\alpha \geqslant 1} L_{\alpha}$, it must be equal to the trivial group 1. Now if $w \in \mathrm{VL}_{\alpha}$ for all $\alpha \geqslant 1$, then there exists a $v_{1} \in \mathrm{~V}$ and a $\beta \geqslant 1$ so that $v_{1}^{-1} w \in \mathrm{~L}_{\alpha}$ for all $\alpha \geqslant \beta$ since V is finite. Then since $v_{1}^{-1} w=1$, it follows that $w=v_{1}$, which is a contradiction since $w \notin \mathrm{~V}$. Therefore there exists an $\alpha \geqslant 1$ so that $w \notin \mathrm{~V} \mathrm{~L}_{\alpha}$. Clearly, then there exists an $E \in E^{*}(w, V)$ such that $V L_{\alpha} \leqslant E$. But since $1 \neq \mathrm{L}_{\alpha} \triangleleft \mathrm{G}$ and $\mathrm{W}^{*}(w, \mathrm{~V})=1$, this is a contradiction. Therefore the assumption is false and so $Z(G) \neq 1$.
(b) Suppose that $N \triangleleft G$. Since N / E^{g} is (locally) cyclic for every g in G, there is natural homomorphism

$$
N \rightarrow \prod\left(N / E^{g}\right)_{g \in G}
$$

given by $y \rightarrow\left(y^{g}\right)_{g \in G}$ with kernel $E^{*}=\bigcap_{g \in G} E^{g}$. Hence it follows that N / E^{*} is abelian. Since $W^{*}(w, V)=1$ by hypothesis, $E^{*}=1$ and therefore N is abelian.

Now suppose that N is large and satisfies the normalizer condition. Then $N=N_{G}\left(E C_{G}(E)\right)$. Also $N=E C_{G}(E)$ since N is abelian. But since G satisfies the normalizer condition, this is possible only if $N=G$ and so G is abelian. Then $E=1$ since $E^{*}=1$ and so $N / E=N$ is (locally) cyclic. The last assertion is a trivial consequence of the first one.

Lemma 2.3 Let G be a locally finite p -group and let $(w, \mathrm{~V})$ be a $(*)$-pair in G such that $\mathrm{W}^{*}(w, \mathrm{~V})=1$, where $w \in \mathrm{G} \backslash 1$. Assume that there exists an $\mathrm{E} \in \mathrm{E}^{*}(w, \mathrm{~V})$ having a large normalizer. If $\mathrm{EC}_{\mathrm{G}}(\mathrm{E}) / \mathrm{E}$ is infinite, then $\mathrm{N}_{\mathrm{G}}(\mathrm{E})$ is self-normalizing. In particular if G satisfies the normalizer condition, then G is locally cyclic and $\mathrm{E}=1$.

Proof - Put $N=N_{G}(E)$. Assume that $E C_{G}(E) / E$ is infinite,
then $N=E C_{G}(E)$ since N / E is (locally) cyclic by Lemma 2.1. Hence

$$
N_{G}(N)=N_{G}\left(E C_{G}(E)\right)=N_{G}(E)=N
$$

since N is large and so $N=N_{G}(N)$, which means that N is selfnormalizing. Now if G satisfies the normalizer condition, then this is possible only if $\mathrm{E}=1$ and G is (locally) cyclic by Lemma 2.2 (b).

Lemma 2.4 Let G be a locally finite p -group and $(w, \mathrm{~V})$ be a $(*)$-pair in G , where $w \in \mathrm{G} \backslash 1$. Let $\mathrm{E} \in \mathrm{E}^{*}(w, \mathrm{~V})$ and put $\mathrm{N}=\mathrm{N}_{\mathrm{G}}(\mathrm{E})$. Suppose that N / E is (locally) cyclic. Let A be a normal abelian subgroup of G with $\mathrm{Z}(\mathrm{G}) \leqslant A$. Let $\mathrm{R}=\mathrm{N} \cap \mathrm{A}$ and $\mathrm{D}=\mathrm{R} \cap \mathrm{E}$. Then the following hold.
(a) Let $\mathrm{t} \in \mathrm{G}$ and $\mathrm{U} \leqslant \mathrm{Z}(\mathrm{G})$. If t normalizes UE , then t normalizes $E C_{G}(E)$.
(b) Suppose that $\mathrm{W}^{*}(w, \mathrm{~V})=1$. Let $\mathrm{L}=\mathrm{N}_{\mathrm{G}}\left(\mathrm{EC}_{\mathrm{G}}(\mathrm{E})\right.$. Let $\mathrm{a} \in \mathrm{A} \backslash \mathrm{N}$ with $\mathrm{N}^{\mathrm{a}}=\mathrm{N}$. If $\mathrm{a}^{\mathrm{p}} \in \mathrm{R}$, then a normalizes $\mathrm{EC}_{\mathrm{G}}(\mathrm{E})$ and so $\mathrm{a} \in \mathrm{L}$. In particular if N is large then $\mathrm{A} \cap \mathrm{N}_{\mathrm{G}}(\mathrm{N}) \leqslant \mathrm{N}$.

Proof - If G is abelian, then there is nothing to prove. Therefore in both cases we may suppose that G is not abelian.
(a) Assume that t normalizes UE . Let $\mathrm{C}=\mathrm{C}_{\mathrm{G}}(\mathrm{E})$. Then $\mathrm{C}=\mathrm{C}_{\mathrm{G}}(\mathrm{UE})$ since $U \leqslant Z(G)$. Since t normalizes $U E$, it must also normalize its centralizer C. Clearly then t normalizes $C E$ since $U \leqslant C$ and so (a) is verified.
(b) Suppose that $W^{*}(w, V)=1$. Then $Z(G) \cap E=1$ since Core ${ }_{G}(E)=1$ but also $Z(G) \neq 1$ by Lemma 2.2 (a). Therefore $\Omega_{1}(R) \leqslant\langle z\rangle D$ for some $z \in Z(G)$ with $|z|=p$ since N / E is (locally) cyclic. Assume that $a \in A \backslash N$ with $N^{a}=N$ and $a^{p} \in R$. Put $H=\langle a\rangle D$ and $\bar{H}=H / D$. Since N / E is (locally) cyclic, $[R, E] \leqslant D$ and so $[\bar{R}, \bar{E}] \leqslant \bar{D}=1$. Hence

$$
1=\left[\overline{\mathrm{a}}^{\mathrm{p}}, \overline{\mathrm{E}}\right]=[\overline{\mathrm{a}}, \overline{\mathrm{E}}]^{\mathrm{p}}
$$

by $\left[7\right.$, Lemma 2.2.2 (i)] since $\bar{a}^{p} \in \bar{R},[\bar{R}, \bar{E}]=1, a \in A,[\bar{a}, \bar{E}] \leqslant \bar{A}$ and A is abelian. Thus $[\bar{a}, \bar{E}]$ has order $\leqslant p$ and so is contained in $\langle\bar{z}\rangle \bar{D}$ since $[\bar{a}, \bar{E}] \leqslant N$. Clearly then $[a, E] \leqslant\langle z\rangle E$ since $D \leqslant E$ and so a normalizes $\langle z\rangle \mathrm{E}$. Then since a normalizes $\mathrm{EC}_{\mathrm{G}}(\mathrm{E})$ by (a), it follows that $a \in L$. The last assertion follows from the first one since N is large means $\mathrm{N}=\mathrm{L}$.

Lemma 2.5 Let G be a locally finite p -group, (w, V) be a $(*)$-pair in G , where $w \in \mathrm{G} \backslash 1$. Suppose that $\mathrm{W}^{*}(w, \mathrm{~V})=1$ and let $\mathrm{E} \in \mathrm{E}^{*}(w, \mathrm{~V})$.

Let B be a normal abelian-by-elementary abelian subgroup of G and A be a normal abelian subgroup of G contained in B such that B / A is elementary abelian and $\mathrm{Z}(\mathrm{G}) \leqslant \mathrm{A}$. Put $\mathrm{N}=\mathrm{N}_{\mathrm{G}}(\mathrm{E}), \mathrm{R}=\mathrm{N} \cap \mathrm{B}, \mathrm{D}=\mathrm{R} \cap \mathrm{E}$ and suppose that N/E is (locally) cyclic. Furthermore suppose that there exists a $\mathrm{t} \in \mathrm{B} \backslash \mathrm{N}$ with $\mathrm{N}^{\mathrm{t}}=\mathrm{N}$ and $\mathrm{t}^{\mathrm{p}} \in \mathrm{N}$. Put $\mathrm{T}=\langle\mathrm{t}\rangle \mathrm{R}, \mathrm{H}=\mathrm{TN}$ and $\mathrm{D}^{*}=\operatorname{Core}_{\mathrm{H}}(\mathrm{D})$. Then the following hold.
(a) R/D is (locally) cyclic and

$$
R / D^{*} \leqslant Z\left(N / D^{*}\right) .
$$

Also $\mathrm{Z}(\mathrm{G}) \neq 1$ and $\mathrm{Z}(\mathrm{G}) \cap \mathrm{E}=1$. Therefore $\Omega_{1}\left(\mathrm{R} / \mathrm{D}^{*}\right) \leqslant\langle z\rangle \mathrm{D} / \mathrm{D}^{*}$, where $\langle z\rangle$ is the unique subgroup of order p in $\mathrm{Z}(\mathrm{G})$.
(b) Suppose that N is large. Then

$$
\mathrm{C}_{\mathrm{T} / \mathrm{D}^{*}}\left(\mathrm{R} / \mathrm{D}^{*}\right)=\mathrm{R} / \mathrm{D}^{*} \text { and so } \mathrm{C}_{\mathrm{H} / \mathrm{D}^{*}}\left(\mathrm{R} / \mathrm{D}^{*}\right)=\mathrm{N} / \mathrm{D}^{*} \text {. }
$$

Thus $\mathrm{Z}\left(\mathrm{T} / \mathrm{D}^{*}\right) \leqslant \mathrm{R} / \mathrm{D}^{*}$ and $\mathrm{Z}\left(\mathrm{T} / \mathrm{D}^{*}\right) \cap \mathrm{E} / \mathrm{D}^{*}=1$ and so is (locally) cyclic.

Proof - Clearly B is not abelian by Lemma 2.4 (b) by the choice of t. Now $T=B \cap H$ and so $T \triangleleft H$. Then also $R \triangleleft H$ since $R=T \cap N$ and $\mathrm{N} \triangleleft \mathrm{H}$. Also $\mathrm{D} \triangleleft \mathrm{N}$ since $\mathrm{E} \triangleleft \mathrm{N}$. Put $\overline{\mathrm{H}}=\mathrm{H} / \mathrm{D}^{*}$.
(a) Obviously R/D is (locally) cyclic since N / E has this property. $[R, N]$ is normal in H since $R, N \triangleleft H$ and is contained in E since N / E is (locally) cyclic. Clearly then $[R, N] \leqslant D^{*}$ and so $[R, N]=1$, which implies that $\overline{\mathrm{R}} \leqslant \mathrm{Z}(\overline{\mathrm{N}})$.

Next $Z(G) \neq 1$ by Lemma 2.2 (a) and $Z(G) \cap E=1$ since $\operatorname{Core}_{G}(E)=1$. Therefore if $z \in Z(G)$ with $|z|=p$, then $\Omega_{1}(\overline{\mathrm{R}}) \leqslant\langle\bar{z}\rangle \overline{\mathrm{D}}$ since R / D is (locally) cyclic.
(b) Now suppose that N is large. Assume if possible that $[\bar{t}, \bar{R}]=1$. Then

$$
1=\left[\mathbb{t}^{\mathrm{p}}, \overline{\mathrm{~N}}\right]=[\mathrm{t}, \overline{\mathrm{~N}}]^{\mathrm{p}}
$$

since $t^{p} \in R$ and $\bar{R} \leqslant Z(\bar{N})$. Therefore $[\bar{t}, \bar{N}]$ is a subgroup of order $\leqslant p$ of \bar{R}. Clearly then $[t, \bar{N}] \leqslant \Omega_{1}(\bar{R}) \leqslant\langle\bar{z}\rangle \overline{\mathrm{D}} \leqslant\langle\bar{z}\rangle \overline{\mathrm{E}}$ by (a) and thus t normalizes $\langle z\rangle \mathrm{E}$. But then since t normalizes $\mathrm{EC}_{\mathrm{G}}(\mathrm{E})$ by Lemma 2.4 (a) and N is large we have $\mathrm{t} \in \mathrm{N}$, which is a contradiction. Therefore $C_{\bar{T}}(\bar{R})=\bar{R}$. Since $\bar{R} \leqslant Z(\bar{N})$, it follows that $C_{\bar{H}}(\bar{R})=\bar{N}$. In particular now $Z(\bar{T}) \leqslant \bar{N}$. Then also $Z(\bar{T}) \cap \bar{D}=1$ and so $Z(\bar{T})$ is (locally) cyclic since $\mathrm{Z}(\overline{\mathrm{T}}) \cap \overline{\mathrm{D}} \triangleleft \overline{\mathrm{H}}$ and so is trivial by definition of D^{*}.

Lemma 2.6 (see [3], Lemma 2.7) Let G be a locally finite p-group and let $(w, \mathrm{~V})$ be a $(*)$-pair in G such that $\mathrm{W}^{*}(w, \mathrm{~V})=1$, where $w \in \mathrm{G} \backslash 1$. Assume that there exists an $\mathrm{E} \in \mathrm{E}^{*}(w, \mathrm{~V})$ such that $\mathrm{N}_{\mathrm{G}}(\mathrm{E}) / \mathrm{E}$ is (locally) cyclic and $\mathrm{N}_{\mathrm{G}}(\mathrm{E})$ is large. Furthermore let B be a normal nilpotent subgroup of G with $\mathrm{c}(\mathrm{B})<\mathrm{p}$ and A be a normal abelian subgroup of G contained in B with that B / A is elementary abelian and $\mathrm{Z}(\mathrm{G}) \leqslant \mathcal{A}$. If $\mathrm{B} \cap \mathrm{N}_{\mathrm{G}}\left(\mathrm{N}_{\mathrm{G}}(\mathrm{E})\right) \backslash \mathrm{N}_{\mathrm{G}}(\mathrm{E}) \neq 1$ whenever $\mathrm{B} \not \approx \mathrm{N}_{\mathrm{G}}(\mathrm{E})$, then B is abelian.

Proof - Assume that B is not abelian. Then $B \not \approx N_{G}(E)$. For if $B \leqslant N_{G}(E)$, then $B^{\prime} \leqslant E$ since N / E is (locally) cyclic by Lemma 2.1. But then since $\operatorname{Core}_{G}(E)=1$, we must have $B^{\prime}=1$, which is a contradiction. Therefore there exists a $t \in B \backslash N_{G}(E)$ with $N_{G}(E)^{t}=N_{G}(E)$ and $\mathrm{t}^{\mathrm{p}} \in \mathrm{N}_{\mathrm{G}}(\mathrm{E})$. As before put

$$
N=N_{G}(E), R=N \cap B, D=R \cap E \text { and } T=\langle t\rangle R
$$

and $\mathrm{H}=\mathrm{TN}$. Let $\mathrm{D}^{*}=\operatorname{Core}_{\mathrm{H}}(\mathrm{D})$ and put $\overline{\mathrm{H}}=\mathrm{H} / \mathrm{D}^{*}$. Then $\overline{\mathrm{H}}=\langle\overline{\mathrm{t}}\rangle \overline{\mathrm{N}}$. Also $\bar{R} \leqslant Z(\overline{\mathrm{~N}})$ by Lemma 2.5 (a).

Let $y \in N$. Then

$$
1=\left[\bar{y}, \bar{t}^{p}\right]=\prod_{k=1}^{p}\left[\bar{y}, k \overline{\mathrm{t}}^{\binom{p}{k}}\right.
$$

since $\bar{t}^{p} \in \bar{R}$ and $\bar{R} \leqslant Z(\bar{N})$. Also $\langle\bar{t}\rangle \bar{R} / \bar{R}$ is elementary abelian, which implies that $\exp ([\overline{\mathrm{R}}, \overline{\mathrm{t}}]) \leqslant \mathrm{p}$ by [3, Lemma 2.6] since $\mathrm{c}<\mathrm{p}$. Using this in the above equality we get

$$
1=[\bar{y}, \overline{\mathrm{t}}]^{\mathrm{p}}[\overline{\mathrm{y}}, \mathrm{p} \overline{\mathrm{t}}]
$$

Moreover $[\bar{y}, p \bar{t}]=1$ since $c<p$. Using this above we get finally

$$
1=[\bar{y}, \overline{\mathrm{t}}]^{p}
$$

Here since y is any element of N, it follows that $\exp ([\bar{N}, \bar{t}]) \leqslant p$ and so $[\bar{N}, \bar{t}] \leqslant\langle\bar{z}\rangle \overline{\mathrm{E}}$ by Lemma 2.5 (a). Clearly this implies that $[\overline{\mathrm{E}}, \overline{\mathrm{t}}] \leqslant\langle\bar{z}\rangle \overline{\mathrm{E}}$ and then t normalizes $\langle z\rangle$. But then since t normalizes $E C_{G}(E)$ by Lemma 2.4 (a) and N is large, it follows that $t \in N$, which is a contradiction. Therefore the assumption is false and so B must be abelian.

Lemma 2.7 Let G be a locally finite p-group satisfying the normalizer condition, where $\mathrm{p} \neq 2$. Suppose that in every homomorphic image H of G
for every $(*)$-pair $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$ there exists an $\mathrm{E}_{\mathrm{H}} \in \mathrm{E}^{*}\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$ having a large normalizer, where $w_{\mathrm{H}} \in \mathrm{H} \backslash 1$. Let B be a normal metabelian subgroup of G and A be a normal abelian subgroup of G contained in B such that B / A is elementary abelian. Then $\mathrm{B}^{\prime} \not \subset \mathrm{Z}(\mathrm{B})$.

Proof - Clearly $B^{\prime} \neq 1$ since B is metabelian. Assume if possible that $B^{\prime} \leqslant Z(B)$. Then $c(B) \leqslant 2$. Let $1 \neq w \in B^{\prime}$ and V be a finite subgroup of G with $w \notin \mathrm{~V}$. Thus ($w, \mathrm{~V}$) is a ($*$)-pair in G and there is an element of $\mathrm{E}^{*}(w, \mathrm{~V})$ having a large normalizer by hypothesis. Now if $W^{*}(w, V)=1$, then B is abelian by Lemma 2.6 since $c(B) \leqslant 2<p$. Therefore we may suppose that $\mathrm{W}^{*}(w, \mathrm{~V}) \neq 1$.

Let M be a maximal element of $W^{*}(w, V)$, which exists by [3, Lemma 2.1 (b)] and put $\bar{G}=G / M$. Then $(\bar{w}, \overline{\mathrm{~V}})$ is a (*)-pair in \bar{G} since $w \notin M$ and also $W^{*}(\bar{w}, \overline{\mathrm{~V}})=1$. In addition there is $\overline{\mathrm{E}} \in \mathrm{E}^{*}(\bar{w}, \overline{\mathrm{~V}})$ having a large normalizer by hypothesis. But now since $c(\bar{B}) \leqslant 2, \bar{B}$ must be abelian by the first case and then $\bar{B} \leqslant \bar{N}$ by Lemma 2.4 (b), where $N=N_{G}(E)$. Then $B^{\prime} \leqslant E$ since N / E is abelian but this is impossible since $w \notin \mathrm{E}$ and so the proof is complete.

3 Proofs of Theorems 1.1 and 1.2

Lemma 3.1 Let G be a locally finite p-group satisfying the normalizer condition, where $\mathrm{p}>2$. Suppose that in every homomorphic image H of G every $(*)$-pair $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$ satisfying $\mathrm{W}^{*}(w, \mathrm{~V})=1$ has an E_{H} in $\mathrm{E}^{*}\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$ having a large normalizer, where $w_{\mathrm{H}} \in \mathrm{H} \backslash 1$. Let B be a normal metabelian subgroup of G and A be a normal abelian subgroup of G contained in B such that B / A is elementary abelian and $\mathrm{Z}(\mathrm{G}) \leqslant \mathrm{A}$. Then $\mathrm{B} / \mathrm{B}^{\mathrm{p}}$ is abelian.

Proof - Assume that B / B^{p} is not abelian. Put $\bar{G}=G / B^{p}$. Then \bar{B} is nilpotent of class $\geqslant 2$ by [11, Corollary to Theorem 7.18]. Next put $\mathrm{Q}=\overline{\mathrm{G}} / \gamma_{3}(\overline{\mathrm{~B}})$. Then

$$
\left(\bar{B} / \gamma_{3}(\bar{B})\right)^{\prime} \leqslant Z\left(\bar{B} / \gamma_{3}(\bar{B})\right)
$$

and so $c\left(\bar{B} / \gamma_{3}(\bar{B})\right) \leqslant 2$.
Since Q satisfies the hypothesis of the Lemma 2.7, there is $\bar{w} \in \overline{\mathrm{~B}}^{\prime}$ such that $\bar{w} \gamma_{3}(\overline{\mathrm{~B}}) \in\left(\overline{\mathrm{B}} / \gamma_{3}(\overline{\mathrm{~B}})\right)^{\prime} \backslash Z\left(\overline{\mathrm{~B}} / \gamma_{3}(\overline{\mathrm{~B}})\right)$. Also there exists a finite subgroup $\overline{\mathrm{V}}$ of $\overline{\mathrm{G}}$ such that $\left(\overline{\mathrm{w}} \gamma_{3}(\overline{\mathrm{~B}}), \overline{\mathrm{V}} \gamma_{3}(\overline{\mathrm{~B}}) / \gamma_{3}(\overline{\mathrm{~B}})\right)$ is a $(*)$-pair in Q . Now if $\mathrm{W}^{*}\left(\bar{w} \gamma_{3}(\overline{\mathrm{~B}}), \overline{\mathrm{V}} \gamma_{3}(\overline{\mathrm{~B}}) / \gamma_{3}(\overline{\mathrm{~B}})\right)=1$, then since $\mathrm{Z}(\mathrm{G}) \neq 1$
by Lemma 2.2 (a), $E^{*}\left(\bar{w} \gamma_{3}(\overline{\mathrm{~B}}), \overline{\mathrm{V}} \gamma_{3}(\overline{\mathrm{~B}}) / \gamma_{3}(\overline{\mathrm{~B}})\right)$ has an element having a large normalizer by hypothesis. Therefore $\overline{\mathrm{B}} / \gamma_{3}(\overline{\mathrm{~B}})$ is abelian by Lemma 2.6 and by hypothesis since $p>2$, so that $\bar{B}^{\prime} \leqslant \gamma_{3}(\bar{B})$. Clearly this is possible only if \bar{B} is abelian since \bar{B} is nilpotent and then $B^{\prime} \leqslant B^{p}$, contrary to our assumption. Therefore the assumption is false and so $B^{\prime} \leqslant B^{p}$ in this case.

Next suppose that $W^{*}\left(\bar{w} \gamma_{3}(\overline{\mathrm{~B}}), \overline{\mathrm{V}} \gamma_{3}(\overline{\mathrm{~B}}) / \gamma_{3}(\overline{\mathrm{~B}})\right) \neq 1$ and choose a maximal element $\bar{M} / \gamma_{3}(\overline{\mathrm{~B}})$ in $W^{*}\left(\bar{w} \gamma_{3}(\overline{\mathrm{~B}}), \overline{\mathrm{V}} \gamma_{3}(\overline{\mathrm{~B}}) / \gamma_{3}(\overline{\mathrm{~B}})\right.$. Consider

$$
\overline{\mathrm{G}} / \gamma_{3}(\overline{\mathrm{~B}}) /\left(\overline{\mathrm{M}} / \gamma_{3}(\overline{\mathrm{~B}})\right) \simeq \overline{\mathrm{G}} / \overline{\mathrm{M}} .
$$

Now, using this isomorphism, we have $\mathrm{W}^{*}(\bar{w} \bar{M}, \overline{\mathrm{VM}} / \overline{\mathrm{M}})=1$. But since $\overline{B M} / \bar{M}$ has class $\leqslant 2$, this group must be abelian by Lemma 2.6 , as in the first case, and then $\bar{B}^{\prime} \leqslant \bar{M}$ and hence $\bar{w} \in \bar{M}$ since $\bar{w} \in \bar{B}^{\prime}$. But since $\bar{M}=\operatorname{Core}_{\bar{G}}(\overline{\mathrm{E}})$ for some $\overline{\mathrm{E}} \in \mathrm{E}^{*}(\bar{w}, \overline{\mathrm{~V}})$ and $\bar{w} \notin \overline{\mathrm{E}}$, this is a contradiction and so the proof is complete.

Lemma 3.2 Let B be a metabelian p-group and A a normal abelian subgroup of B such that B / A is elementary abelian and $\exp (B)^{\prime} \leqslant p$. Let $\mathrm{t} \in \mathrm{B} \backslash \mathrm{A}$. Then the following hold.
(a) If $|t|=p$, then $\left[B^{p}, t\right] \leqslant C_{B}(t)$.
(b) If $|t|>p$, then $\left[B^{p}, t, t\right] \leqslant C_{B}(t)$.

Proof - (a) Let $y \in B$. Then

$$
\begin{equation*}
\left[y^{p}, t\right] \equiv[y, t]^{p} \quad \bmod \gamma_{2}(H)^{p} \gamma_{p}(H), \tag{1}
\end{equation*}
$$

and this gives

$$
\begin{equation*}
\left[y^{p}, \mathrm{t}\right] \equiv 1 \bmod \gamma_{\mathrm{p}}(\mathrm{H}), \tag{2}
\end{equation*}
$$

since $\exp \left(B^{\prime}\right) \leqslant p$ by hypothesis by [9, VIII.1.1, Lemma (b)], where $\mathrm{H}=\langle[\mathrm{y}, \mathrm{t}], \mathrm{t}\rangle$. Moreover, $\mathrm{c}(\langle\mathrm{t}\rangle \mathcal{A}) \leqslant \mathrm{p}$ by [6, Lemma 4.2.1 (ii)] since $|t|=p$, which means that $\gamma_{p}(\langle t\rangle A) \leqslant Z(\langle t\rangle A)$. Then in particu$\operatorname{lar} \gamma_{p}(H) \leqslant Z(H)$ since $H \leqslant\langle t\rangle A$. Therefore

$$
\left[y^{p}, t\right] \leqslant C_{B}(t) .
$$

Now since

$$
\left[x^{p} y^{p}, t\right]=\left[x^{p}, t\right]\left[y^{p}, t\right]
$$

for every $x, y \in B$ due to $\exp (B / A)=p$ and A is abelian, it follows that $\left[x^{p} y^{p}, t\right] \in C_{B}(t)$ and so (a) follows.
(b) Let $Z=Z(\langle t\rangle A)$. Then $Z \triangleleft B$, since $B^{\prime} \leqslant A$ and so $\langle t\rangle A \triangleleft B$. Also $t^{p} \in Z$. Put $\bar{B}=B / Z$. Now (2) takes the form

$$
\begin{equation*}
\left[\bar{y}^{p}, \bar{t}\right] \equiv 1 \bmod \gamma_{p}(\overline{\mathrm{H}}), . \tag{3}
\end{equation*}
$$

Also $c(\langle\bar{t}\rangle \bar{A}) \leqslant p$ since $\bar{t}^{p}=1$ and so $\gamma_{p}(\langle\bar{t}\rangle \overline{\mathcal{A}}) \leqslant Z(\langle\bar{t}\rangle \bar{A})$. Then in particular $\gamma_{p}(\overline{\mathrm{H}}) \leqslant \mathrm{Z}(\overline{\mathrm{H}})$. Clearly then $\left[\overline{\mathrm{y}}^{p}, \overline{\mathrm{t}}\right] \in \mathrm{Z}(\overline{\mathrm{H}})$ by (3) and so is centralized by $\overline{\mathrm{t}}$; that is, $\left[\overline{\mathrm{y}}^{p}, \overline{\mathrm{t}}, \overline{\mathrm{t}}\right]=1$. Since $\overline{\mathrm{y}}$ is any element of $\overline{\mathrm{B}}$, it follows as in the first case that $\left[\overline{\mathrm{B}}^{\mathrm{p}}, \overline{\mathrm{t}}, \mathrm{t}\right]=1$. Taking the inverse images we get $\left[B^{p}, t, t\right] \leqslant Z \leqslant C_{B}(t)$.

Lemma 3.3 Let G be a locally finite p-group satisfying the normalizer condition, where $\mathrm{p}>2$. Suppose that in every homomorphic image H of G every $(*)$-pair $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$ satisfying $\mathrm{W}^{*}(w, \mathrm{~V})=1$ has an $\mathrm{E}_{\mathrm{H}} \in \mathrm{E}^{*}\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$ having a large normalizer, where $w_{\mathrm{H}} \in \mathrm{H} \backslash 1$. If B is a metabelian normal subgroup of G , then B^{\prime} cannot be radicable abelian.

Proof - Assume that B^{\prime} is radicable abelian and put $Q=B^{\prime}$. First assume if possible that $[Q, F] \leqslant C_{Q}(F)$ for every finite subgroup F of B. Since $Q=C_{Q}(F)[F, Q]$ by [11, Lemma 3.29.1], it follows that $Q \leqslant C_{Q}(F)$ for every finite subgroup F of B. Clearly then $Q \leqslant Z(B)$ and so $c(B) \leqslant 2$. But now since $p \neq 2$ and G satisfies the normalizer condition, B must be ablian by Lemma 2.6 , which is a contradiction. Therefore there exists a finite subgroup V of G with $[\mathrm{V}, \mathrm{Q}] \not \nexists \mathrm{C}_{\mathrm{Q}}(\mathrm{V})$.

Put $C=C_{Q}(V)$. Then $\mathrm{Q}=\mathrm{C}[\mathrm{V}, \mathrm{Q}]$. Now $[\mathrm{Q}, \mathrm{V}] \mathrm{C} / \mathrm{C}$ is radicable abelian since Q is. So if it is finite, then it is trivial and then $[Q, V] \leqslant C$, which is impossible by the choice of V . Therefore $[\mathrm{Q}, \mathrm{V}] \mathrm{C} / \mathrm{C}$ is infinite. Clearly then also $[Q, V] C(V \cap Q) / C(V \cap Q)$ is infinite since V is finite. Therefore there exists a $w \in[\mathrm{Q}, \mathrm{V}] \backslash \mathrm{C}(\mathrm{V} \cap \mathrm{Q})$. Then in particular $w \notin \mathrm{VC}$. Indeed if $w \in \mathrm{VC}$, then $w \in \mathrm{VC} \cap \mathrm{Q}=\mathrm{C}(\mathrm{V} \cap \mathrm{Q})$, which is impossible. Thus ($w, \mathrm{~V}$) is a ($*$)-pair in G .

Now, if $W^{*}(w, V)=1$, there exists an $E \in E^{*}(w, V)$ so that $N_{G}(E)$ is large. Then $\mathrm{Q} \leqslant \mathrm{N}_{\mathrm{G}}(\mathrm{E})$ by Lemma 2.4 (b) and then $[\mathrm{Q}, \mathrm{V}] \leqslant \mathrm{E}$ since N / E is (locally) cyclic. But since $w \in[\mathrm{Q}, \mathrm{V}] \backslash \mathrm{E}$, this is a contradiction. Therefore the assumption is false and so Q cannot exists.

Next suppose that $W^{*}(w, V) \neq 1$. Choose a maximal element M in $W^{*}(w, V)$ and put $\bar{G}=G / M$. Then since $W^{*}(\bar{w}, \overline{\mathrm{~V}})=1$, there exists an $\bar{R} \in \mathrm{E}^{*}(\bar{w}, \overline{\mathrm{~V}})$ whose normalizer is large and so $\overline{\mathrm{Q}} \leqslant \overline{\mathrm{N}_{\mathrm{G}}(\mathrm{R})}$ by Lemma 2.4 (b). This means that $Q \leqslant N_{G}(R)$ and hence $[Q, w] \leqslant E$, which gives a contradiction as in the first case and so it follows that Q cannot be radicable abelian.

Proof of Theorem 1.1 - Let G be a locally finite p-group satisfying the normalizer condition, where $p \neq 2$. Suppose that in every homomorphic image H of G every $(*)$-pair $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$ satisfying $\mathrm{W}^{*}(w, \mathrm{~V})=1$, where $w_{\mathrm{H}} \in \mathrm{H} \backslash 1$, has a ($w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}$)-maximal subgroup whose normalizer is large. Let B be a normal abelian-by-elementary abelian subgroup and A be a normal abelian subgroup of G contained in B with B / A is elementary abelian and $Z(G) \leqslant A$.
(a) Assume that B is nilpotent but not abelian. Then $\left[B^{\prime}, B\right]<B^{\prime}$ since B is nilpotent. Let $\bar{G}=G /\left[B^{\prime}, B\right]$. Then $1 \neq \bar{B}^{\prime} \leqslant Z(\bar{B})$ and so $c(\bar{B}) \leqslant 2$. Choose a $w \in B^{\prime}$ with $\bar{w} \neq 1$ and let V be a finite subgroup of G with $\bar{w} \notin \overline{\mathrm{~V}}$. If $\mathrm{W}^{*}(\bar{w}, \overline{\mathrm{~V}})=1$ then $\overline{\mathrm{B}}$ is abelian by Lemma 2.6. But then since $1 \neq \bar{w} \in \overline{\mathrm{~B}}^{\prime}=1$, we get a contradiction. Therefore $W^{*}(\bar{w}, \overline{\mathrm{~V}}) \neq 1$.

Let M be a maximal element of $W^{*}(\bar{w}, \bar{V})$ and consider \bar{G} / \bar{M}. Because of isomorphism we may consider $\mathrm{Q}=\mathrm{G} / \mathrm{M}$. Then ($w \mathrm{~m}, \mathrm{VM} / \mathrm{M}$) is a $(*)$-pair in Q and $\mathrm{W}^{*}(w M, V M / M)=1$. Since the hypothesis holds in Q, it follows that $B M / M$ is abelian and so $B^{\prime} \leqslant M$. But this gives another contradiction since $w \notin M$. Therefore the assumption is false and so B must be abelian. Thus every normal nilpotent abelian-by-elementary subgroup of G is abelian.
Next let K, L be two normal abelian subgroups G. Let H = KL. Then H is nilpotent of class cH$) \leqslant 2$. Let A be a largest normal abelian subgroup of G contained in H with $K \cap L \leqslant A$ and let $B / A=\Omega_{1}(H / A)$. Then B is nilpotent and abelian-by-elementary abelian and so is abelian by the first part of the proof. Clearly then $B=A$ and this means that $B=H$ since H is nilpotent. Therefore G contains a unique maximal normal abelian subgroup.
(b) Let p be a prime $\geqslant 5$. Assume if possible that B is not abelian. Then $\exp (B / A)=p$. Also B^{\prime} cannot be radicable abelian by Lemma 3.3. Therefore $\left(B^{\prime}\right)^{p}<B^{\prime}$. Let $\bar{G}=G /\left(B^{\prime}\right)^{p}$. Then $\exp \left(\bar{B}^{\prime}\right)=p$ and so \bar{B} is not abelian. Also \bar{G} satisfies the hypothesis of G. Therefore without loss of generality we may replace \bar{G} with G and suppose that $\exp \left(B^{\prime}\right)=p$.

By Lemma 2.7 there exists a $w \in B^{\prime} \backslash Z(B)$. Let V be a finite subgroup with $w \notin \mathrm{~V}$. Therefore $(w, \mathrm{~V})$ is a $(*)$-pair in G . Suppose first that $\mathrm{W}^{*}(w, \mathrm{~V})=1$. Let $\mathrm{E} \in \mathrm{E}^{*}(w, \mathrm{~V})$ have a large normalizer. Put $N=N_{G}(E), R=N \cap B, D=R \cap E$. Then N / E is (locally) cyclic by Lemma 2.1. Moreover, $A \leqslant R$ by Lemma 2.4 (b) and $Z(G) \cap E=1$ since $\operatorname{Core}_{G}(E)=1$. Since B is not abelian, there is $t \in B \cap N_{G}(N) \backslash N$ (see the proof of Lemma 2.6). As before put $T=\langle t\rangle R$ and $H=T N$.

Also define $\mathrm{D}^{*}=\operatorname{Core}_{\mathrm{H}}(\mathrm{D})$ and put $\overline{\mathrm{H}}=\mathrm{H} / \mathrm{D}^{*}$. Then $\overline{\mathrm{R}} \leqslant \mathrm{Z}(\overline{\mathrm{N}})$ and \bar{R} / \bar{D} is (locally) cyclic by Lemma 2.5 (a).

First suppose that $|\bar{t}|=p$. Then $\left[\bar{B}^{p}, \bar{t}\right] \leqslant C_{\bar{B}}(\bar{t})$ by Lemma 3.2 (a). Then also $\left[\bar{B}^{\prime}, \bar{t}\right] \leqslant C_{\bar{B}}(\bar{t})$ since $B^{\prime} \leqslant B^{p}$ by Lemma 3.1 and then

$$
\left[\overline{\mathrm{B}}^{\prime}, \overline{\mathrm{t}}, \overline{\mathrm{t}}\right]=1 .
$$

Then in particular $\left[\bar{T}^{\prime}, \overline{\mathrm{t}}, \overline{\mathrm{t}}\right]=1$ since $\mathrm{T} \leqslant \mathrm{B}$ and so $\gamma_{4}(\overline{\mathrm{~T}})=1$. Now since $c(\overline{\mathrm{~T}}) \leqslant 3<5$, it follows that $\overline{\mathrm{T}}$ is abelian by Lemma 2.6 and so $\overline{\mathrm{t}} \in \mathrm{C}_{\overline{\mathrm{B}}}(\overline{\mathrm{R}})$. But since $\mathrm{C}_{\overline{\mathrm{B}}}(\overline{\mathrm{R}})=\overline{\mathrm{R}}$ by Lemma 2.5 (b), it follows that $\overline{\mathrm{t}} \in \overline{\mathrm{R}}$ which is a contradiction.

Next suppose that $|\bar{t}|>p$. Then $\left[\bar{B}^{p}, \bar{t}, \bar{t}\right] \leqslant C_{\bar{B}}(\bar{t})$ by Lemma 3.2 (b). Hence $\left[\bar{B}^{p}, \overline{\mathrm{t}}, \overline{\mathrm{t}}, \overline{\mathrm{t}}\right]=1$ and hence also $\left[\overline{\mathrm{B}}^{\prime}, \overline{\mathrm{t}}, \overline{\mathrm{t}}, \overline{\mathrm{t}}\right]=1$ by Lemma 3.1. Then since $\bar{T}^{\prime} \leqslant \bar{B}^{\prime}$, it follows that $\left[\bar{T}^{\prime}, \overline{\mathrm{t}}, \overline{\mathrm{t}}, \overline{\mathrm{t}}\right]=1$. Obviously the last equality implies that $c(\overline{\mathrm{~T}})<5$, and so applying Lemma 2.6 one more time it follows that \bar{T} is abelian and so $\bar{t} \in C_{\bar{T}}(\bar{R})=\bar{R}$ and this gives another contradiction since $\overline{\mathrm{t}} \notin \overline{\mathrm{N}}$. Therefore the assumption is false and so B must be abelian.
Next assume that $W^{*}(w, V) \neq 1$. In this case choose a maximal element M of $W^{*}(w, V)$ and define $\bar{G}=G / M$. Then ($\bar{w} M, \overline{\mathrm{~V}} M / M$) is a (*)-pair in \bar{G} since $w \notin M$ and $W^{*}(\bar{w} M, \overline{\mathrm{~V}} M / M)=1$. Therefore $E^{*}(\bar{w} M, \bar{V} M / M)$ contains an element having a large normalizer by hypothesis. Also $\exp \left(\overline{\mathrm{B}}^{\prime}\right)=\mathrm{p}$. Clearly then we get another contradiction as in the first case. Thus, the assumption is false and so B must be abelian.

Proof of Theorem 1.2 - Let G be a solvable p-group satisfying the normalizer condition, where $p \geqslant 5$. Suppose that in every homomorphic image H of G every $(*)$-pair $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$ satisfying $\mathrm{W}^{*}(w, \mathrm{~V})=1$ has a $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$-maximal subgroup whose normalizer is large. Assume that G is not abelian. By Lemma 2.7 there exists a $w \in \mathrm{G}^{\prime} \backslash \mathrm{Z}(\mathrm{G})$. Let V be a finite subgroup of G such that $w \notin V$ and consider the $(*)$-pair (w, V). First suppose that $W^{*}(w, V)=1$. Then there exists $E \in E^{*}(w, V)$ whose normalizer is large. Put $N=N_{G}(E)$. Then $N=N_{G}\left(E C_{G}(E)\right)$ by hypothesis.

Now suppose that G^{\prime} is abelian. Assume first that $\mathrm{W}^{*}(w, \mathrm{~V})=1$. Then $G^{\prime} \leqslant N$ by Lemma 2.4 (b) since $p \neq 2$ and then $N \triangleleft G$. But then since G is (locally) cyclic by Lemma 2.2 (b), we get a contradiction. Therefore $\mathrm{W}^{*}(w, \mathrm{~V}) \neq 1$.

Choose a maximal element $M \in W^{*}(w, V)$, which exists by [3, Lem-
ma 2.1 (b)], and consider $\overline{\mathrm{G}}=\mathrm{G} / \mathrm{M}$. Then ($\bar{w}, \overline{\mathrm{~V}}$) is a (*)-pair in $\overline{\mathrm{G}}$ since $M=\operatorname{Core}_{G}(R)$ for some $R \in E^{*}(w, V)$ and $w \notin R$. Moreover $\mathrm{W}^{*}(\bar{w}, \overline{\mathrm{~V}})=1$, since

$$
\mathrm{E}^{*}(\bar{w}, \overline{\mathrm{~V}})=\left\{\overline{\mathrm{T}}: \mathrm{T} \in \mathrm{E}^{*}(w, \mathrm{~V}) \text { and } \mathrm{M} \leqslant \mathrm{~T}\right\}
$$

(see [1, Lemma 4.2]). In addition there exists an $\bar{S} \in E^{*}(\bar{w}, \overline{\mathrm{~V}})$ whose normalizer is large. Therefore applying Lemma 2.4 (b) again gives $\overline{\mathrm{G}}^{\prime} \leqslant \mathrm{N}_{\overline{\mathrm{G}}}(\overline{\mathrm{S}})$ and so $\mathrm{N}_{\overline{\mathrm{G}}}(\overline{\mathrm{S}}) \triangleleft \overline{\mathrm{G}}$. Clearly then $\overline{\mathrm{G}}$ is locally cyclic as above and this implies that $\overline{\mathrm{G}}^{\prime} \leqslant \overline{\mathrm{S}}$. But since $\operatorname{Core}_{\overline{\mathrm{G}}}(\overline{\mathrm{S}})=1$, it follows that $\overline{\mathrm{G}}^{\prime}=1$ and then $\mathrm{G}^{\prime} \leqslant M$. But since $w \notin \mathrm{~S}$, this gives another contradiction. Therefore we may suppose that G^{\prime} is not abelian.
Put $\overline{\mathrm{G}}=\mathrm{G} / \mathrm{G}^{\prime \prime}$. Then $\overline{\mathrm{G}}^{\prime}$ is non-trivial and abelian. Also $\overline{\mathrm{G}}$ satisfies the hypothesis of the theorem. Therefore $\overline{\mathrm{G}}$ is abelian as in the first case. Thus $\overline{\mathrm{G}}^{\prime}=1$ and this implies that $\mathrm{G}^{\prime} \leqslant \mathrm{G}^{\prime \prime}$, which is a contradiction since G^{\prime} is not abelian. Therefore the assumption that G is not abelian is false and so G must be abelian, which completes the proof of the theorem.

Proof of Theorem 1.3 - Let G be an hyperabelian p-group satisfying the normalizer condition, where $p \geqslant 5$. Suppose that in every homomorphic image H of G every $(*)$-pair $\left(w_{\mathrm{H}}, \mathrm{V}_{\mathrm{H}}\right)$ with $\mathrm{W}^{*}(w, \mathrm{~V})=1$ has a locally maximal subgroup whose normalizer is large. Assume that G is not abelian. Then also G can not be solvable by Theorem 1.2. Let A be the unique maximal normal abelian subgroup of G which exists by Theorem 1.1 (a). Then $1 \neq A \neq G$ since G is not abelian. In the same way G / A contains a unique maximal normal abelian subgroup, say, U / A such that $1 \neq \mathrm{U} / A \neq \mathrm{G} / A$ since G is hyperabelian but not solvable. Let $B / A=\Omega_{1}(U / A)$. Then $B \triangleleft G$ and is not abelian by definition of A and $\exp (B / A)=p$. But since every abelian-by-elementary abelian normal subgroup of G must be abelian by Theorem 1.1 (b) this is a contradiction. Therefore the assumption is false and so G is abelian, which completes the proof of the theorem.

4 Proof of Theorem 1.5

In this section we give a complete characterization of [3, Theorem 1.1]. But first a lemma is needed.

Lemma 4.1 Let G be a locally finite p-group satisfying the normalizer condition, where $p \neq 2$ and let $(w, \mathrm{~V})$ be a $(*)$-pair in G , where $w \in \mathrm{G} \backslash 1$. Let $\mathrm{E} \in \mathrm{E}^{*}(w, \mathrm{~V})$ satisfy $(* *)$ and let $\mathrm{N}=\mathrm{N}_{\mathrm{G}}(\mathrm{E})$. Then N is large.
Proof - By hypothesis $N=N_{G}\left(E^{\prime}\right)$. We claim that $N=N_{G}\left(E C_{G}(E)\right)$. Put $C=C_{G}(E)$. Then $C \leqslant N$. Since N / E is (locally) cyclic by Lemma 2.1 and since $C \cap E \leqslant Z(C)$, it follows that $C / Z(C)$ is (locally) cyclic. Let $F / Z(C)$ be a finite subgroup of $C / Z(C)$. Since $F / Z(C)$ is cyclic, $F=\langle f, Z(C)\rangle$ for some $f \in F$ and so F is abelian. Since F is any subgroup of C with $|F Z(C): Z(C)|$ is finite, it follows that C is abelian. Now since

$$
\mathrm{N}_{\mathrm{G}}(\mathrm{CE}) \leqslant \mathrm{N}_{\mathrm{G}}\left((\mathrm{CE})^{\prime}\right)=\mathrm{N}_{\mathrm{G}}\left(\mathrm{E}^{\prime}\right)=\mathrm{N},
$$

it follows that $N_{G}(C E) \leqslant N$. But also $N \leqslant N_{G}(C E)$ since $N=N_{G}(E)$. Therefore we get the equality $\mathrm{N}_{\mathrm{G}}(\mathrm{CE})=\mathrm{N}$ and so it follows that N is large.
Proof of Theorem 1.5 - Let G be a Fitting p-group satisfying the normalizer condition, where $p \neq 2$. Then G is generated by normal nilpotent subgroups. Suppose that in every homomorphic image H of G every $(*)$-pair $\left(w_{H}, V_{H}\right)$ has a $\left(w_{H}, V_{H}\right)$-maximal subgroup satisfying $(* *)$. Clearly, then in every homomorphic image of G every $(*)$-pair has a locally maximal subgroup whose normalizer is large by Lemma 4.1.

Now assume if possible that G is not abelian. Then we can choose a finite non-abelian subgroup F of G. Put $M=\left\langle F^{G}\right\rangle$. Then M is nilpotent since G is a Fitting group. Also $\exp (M)<\infty$ by [11, Corollary to Theorem 2.26]. Next let A be a maximal normal abelian subgroup of G contained in M such that $Z(M) \leqslant A$ and let $B / A=\Omega_{1}(Z(M / A))$. Then B is not abelian by the maximality of A since B is also normal in G. Also $\exp (B)<\infty$. But now since G satisfies the hypothesis of Theorem 1.1, B must be abelian, which is a contradiction. Therefore F must be abelian. Since F is any finite subgroup of G, it follows that G is abelian and so the proof of the theorem is complete.

5 Acknowledgments

The author is very grateful to the referee for a detailed evaluation of the first version of this work which led to a significant change and improvement in the final version.

REFERENCES

[1] A.O. Asar: "On infinitely generated groups whose proper subgroups are solvable", J. Algebra 399 (2014), 870-886.
[2] A.O. Asar: "On Fitting groups whose proper subgroups are solvable", Int. J. Group Theory 5, No. 2 (2016), 7-24.
[3] A.O. Asar: "Characterization of Fitting p-groups whose proper subgroups are solvable", Adv. Group Theory Appl. 3 (2017), 31-53
[4] A.O. Asar: "Corrigendum II to: Characterization of Fitting p-groups whose proper subgroups are solvable", Adv. Group Theory Appl. 6 (2018), 111-126.
[5] A.O. Asar: "On minimal non-(residually nilpotent) locally graded groups", Mediterr. J. Math. 18, No. 2 (2021), Paper No. 54, 18pp.
[6] J. Buckley - J. Wiegold: "Nilpotent extensions of abelian p-groups", Canad. J. Math. 38 (1986), 1025-1052.
[7] D. Gorenstein: "Finite Groups", Harper and Row, New York (1968).
[8] B. Huppert: "Endliche Gruppen I", Springer, Berlin (1979).
[9] B. Huppert - N. Blackburn: "Finite Groups II", Springer, Berlin (1982).
[10] O.H. Kegel - B.A.F. Wehrfritz: "Locally Finite Groups", NorthHolland, Amsterdam (1973).
[11] D.J.S. Robinson: "Finiteness Conditions and Generalized Soluble Groups", Springer, New York (1972).
[12] D.J.S. Robinson: "A Course in the Theory of Groups", Springer, New York (1980).

A.O. Asar

Yargic Sokak 11/6
Cebeci, Ankara (Turkey)
e-mail: aliasar@gazi.edu.tr

