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Abstract

In these notes we recall the classical notions of growth and growth rate for finitely
generated groups and the main results in the theory related to Milnor’s problem.
Then, we describe how one can extend these concepts and results to the general case
of group endomorphisms, using the language and features of the algebraic entropy.
Finally, we mention the main properties of the algebraic entropy, paying special
attention to its additivity with respect to short exact sequences.
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1 Introduction

These are the notes of the mini-course given by the author at the con-
ference GABY 2022 held at the University of Milano-Bicocca in 2022,
June 13th–17th. They can be considered also a survey on the recent
theory of growth for group endomorphisms and on the additivity of
the algebraic entropy with respect to short exact sequences.

The notion of growth for finitely generated groups (see Section 2.2)
was introduced by Milnor in the sixties and since then it has be-
come a prominent field of research. In particular, the famous Mil-
nor Problem on group growth [41] was completely solved by Gro-
mov [35] in his celebrated theorem characterizing the finitely gener-
ated groups of polynomial growth as those that are virtually nilpo-
tent, and by Grigorchuk [32] by constructing his famous examples
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of finitely generated groups of intermediate growth. Another central
result in this theory is the so-called Milnor–Wolf Theorem [40, 55]
establishing that solvable finitely generated groups have either poly-
nomial or exponential growth (so no intermediate growth is allowed).
This dichotomy was extended by Chou [9] to elementary amenable
finitely generated groups (see Section 2.3 for the details).

Inspired by the work of Kolmogorov and Sinai concerning the mea-
sure entropy in ergodic theory, Adler, Konheim and McAndrew [1]
introduced the topological entropy for continuous selfmaps of com-
pact spaces, and in a final remark of their paper they proposed a
notion of algebraic entropy for endomorphisms of abelian groups.
Later, Weiss [54] studied this algebraic entropy, which is suitable for
torsion abelian groups, and its connection to the topological entropy,
while Peters [44] developed it for automorphisms out of the torsion
case. The interest in this topic increased after the work by Dikran-
jan, Goldsmith, Salce and Zanardo [21], where a rather complete
description of the algebraic entropy for endomorphisms of torsion
abelian groups was obtained. A further extension of the algebraic en-
tropy and its properties to all abelian groups can be found in [18],
while in [15] the algebraic entropy was introduced for the first time
for endomorphisms of arbitrary groups (see Section 3.3).

See [45, 52] for the algebraic entropy of continuous endomorphisms
of locally compact abelian groups, see [16, 17, 20, 24, 45] for the
connection of the algebraic entropy with the topological entropy by
means of the Pontryagin duality, and see [3, 12, 13, 20, 38, 53] for the
algebraic entropy for (semi)group actions.

In [15], using the language of algebraic entropy, the classical no-
tion of growth is extended to endomorphisms of arbitrary groups,
that is, neither necessarily abelian nor finitely generated (see Sec-
tion 3.1). In particular, considering the growth of the identity auto-
morphism idG : G ! G of a group G, one gets a notion of growth for
arbitrary groups and in [27] the classical Gromov Theorem and Mil-
nor–Wolf Theorem were extended to this setting (see Section 3.2). On
the other hand, it is worth to mention here that Xi, Dikranjan, Freni
and Toller [56] gave a new proof of the Milnor–Wolf Theorem us-
ing the theory of growth and algebraic entropy for group endomor-
phisms.

In the already cited paper [27], the dichotomy between polyno-
mial and exponential growth, as in the classical Milnor–Wolf Theo-
rem, was proved for endomorphisms of locally finite groups (see Sec-
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tion 4.1). The same dichotomy was already known for endomor-
phisms of abelian groups, as a consequence of the study offered
in [14] of the Pinsker subgroup (see Section 4.2). Moreover, Chou’s ex-
tension of the Milnor–Wolf Theorem was proved for endomorphisms
of elementary amenable groups in [28] (see Section 4.3).

The main property that one wishes to have for the algebraic en-
tropy is the so-called Addition Theorem: namely, for a group G, an
endomorphism � : G ! G and a �-invariant normal subgroup H
of G, one expects that

h(�) = h
�
� �H

�
+ h

�
�G/H

�
, (1.1)

where
�G/H : G/H ! G/H

is the endomorphism induced by � on G/H and � �H is the restric-
tion of � to H. If (1.1) holds for every endomorphism � : G ! G, we
briefly say that AT(G) holds.

The Addition Theorem for abelian groups was proved in the tor-
sion case in [21], then it was extended to the general setting in [18]
(see Section 5.2). In particular, among others, it is the fundamental
property in the Uniqueness Theorem (see Theorem 5.12), which char-
acterizes the algebraic entropy as the unique invariant for abelian
groups and their endomorphisms satisfying the Addition Theorem
and the continuity with respect to direct limits, and taking suitable
values on the right Bernoulli shifts (see Example 5.7) and on the en-
domorphisms of Q

n (see the Algebraic Yuzvinski Formula in The-
orem 5.10); see Section 5.1 for the basic properties of the algebraic
entropy.

The importance of the Addition Theorem comes also from the
fact that, together with the property of being continuous with re-
spect to direct limits, it implies that the algebraic entropy is a length
function of the category of Z[x]-modules in the sense of Northcott
and Reufel [43] and Vámos [51] (see [18, 47] for the details on this
connection). In fact, since an endomorphism of an abelian group G
induces on G the structure of a Z[x]-module, and vice versa, one
can consider the algebraic entropy as an invariant of the category
of Z[x]-modules.

In the non-abelian context, a metabelian counterexample to the Ad-
dition Theorem was found in [27] (see Example 5.13), by exploiting
the knowledge on the classical growth for finitely generated groups
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(see Section 5.3). Anyway, we conjecture that the Addition Theo-
rem holds for locally virtually nilpotent groups, and so in partic-
ular for locally finite groups. In this setting some positive results
were obtained in [26, 57] (where also the locally compact case was
considered), then covered by the Addition Theorem in [25] (see The-
orem 5.19) for finitely quasihamiltonian locally finite groups (e.g., all
quasihamiltonian groups, also called Iwasawa groups, and
all FC-groups, also called locally finite and normal groups, are finitely
quasihamiltonian).

Recently, Shlossberg [49] proved the Addition Theorem for tor-
sion nilpotent groups of nilpotency class 2 (see Theorem 5.21), and
also for locally finite groups admitting a fully characteristic finite in-
dex simple subgroup (see Theorem 5.22), hence in particular for the
group Sfin

�
N+

�
of all permutations of N+ with finite support, that

is not finitely quasihamiltonian.

2 Growth of finitely generated groups

In this section, we first recall the classical notions of growth type
and growth rate for finitely generated groups, and then we state the
main classical results we are interested in. We refer to [34] and to the
monographs [8, 11, 39].

2.1 Growth of functions

Given two maps �,� 0 : N ! R>0, we write � � � 0 if there ex-
ists C 2 N such that �(n) 6 � 0(Cn) for every n 2 N. Moreover, we
say that � and � 0 are equivalent, and write � ⇠ � 0, if � � � 0 and � 0 � �;
indeed, ⇠ is an equivalence relation.

Example 2.1 Routine computations show that:

(1) for every ↵,� 2 R>0, n↵ ⇠ n� if and only if ↵ = �;

(2) for every a,b 2 R>1, an ⇠ bn;

(3) for every d 2 N, nd � en and nd 6⇠ en.

Using the equivalence relation ⇠, now we recall the following no-
tion of growth for functions N ! R>0, which we later see to be
suitable for the case of growth functions of finitely generated groups.
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Definition 2.2 A function � : N ! R>0 is called:

- polynomial if �(n) � nd for some d 2 N+;

- exponential if �(n) ⇠ en;

- intermediate if nd� �(n) for all d 2 N+, �(n)�en and en 6��(n).

As in [34], we recall also the following related notions.

Definition 2.3 A function � : N ! R>0 is called:

- superpolynomial if limn!1
log�(n)

logn
exists and equals 1;

- subexponential if limn!1
log�(n)

n
exists and equals 0.

Clearly, a function � : N ! R>0 is intermediate if and only if it is
superpolynomial and subexponential.

Example 2.4 Here we list some basic examples:

(1) n logn is polynomial;

(2) for every ` 2 N, n`en is exponential;

(3) for ↵ 2 (0, 1), the functions en
↵ are intermediate, pairwise non

equivalent;

(4) e
p
n, en logn, e

p
logn and nlog logn are intermediate;

(5) nn and en
sinn are not classifiable.

2.2 Growth type and growth rate

Let G be a finitely generated group and let S be a finite set of genera-
tors for G. Let `S(eG) := 0, where eG is the neutral element of G. For
every g 2 G \

�
eG

 
, let

`S(g) := min
�
n 2 N+ : g = s"1

1
s"2
2

. . . s"`
`

, si 2 S, "i 2 {1,-1}
 

be the length of a shortest word representing g in the alphabet S[ S-1,
where S-1 :=

�
s-1 : s 2 S

 
.

Remark 2.5 In many cases, it is convenient to take the finite set of
generators S for the group G to be symmetric, that is, S = S-1. With
this assumption, for g 2 G \ {eG},

`S(eG) = min
�
` 2 N+ : g = s1s2 . . . s`, si 2 S

 
.
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Definition 2.6 Let G be a finitely generated group and let S be a
finite set of generators for G. The word metric on G with respect to S
is dS : G⇥G ! N, defined by dS(g,h) = `S(g

-1h) for every g,h 2 G.

The word metric dS is a left invariant (i.e., dS(xg, xh) = dS(g,h)
for every x, g,h 2 G) metric on G. In other words, the action of G on
itself by left multiplication is an isometric action with respect to dS.

For n 2 N, let

BS(n) := {g 2 G : `S(g) 6 n} (2.1)

be the ball centered in eG of radius n in the word metric dS of G. Clear-
ly, BS(0) = {eG} and BS(1) = S[ S-1 [ {eG}. Moreover,

BS(n) ✓ BS(n+ 1) for every n 2 N. (2.2)

Definition 2.7 Let G be a finitely generated group and let S be a
finite set of generators for G. The growth function of G with respect
to S is

�S : N ! N, n 7! |BS(n)|.

Remark 2.8 From (2.2) we get that �S(n) 6 �S(n+1) for every n2N.
Moreover, �S(n) 6 |S[S-1[ {eG}|n for every n 2 N, showing that �S

is at most exponential.

Routine computations show that �S ⇠ �S 0 , for every pair of finite
generating sets S, S 0 for G. This observation allows us to give the
following definition of growth type and to notice that it does not
depend on S.

Definition 2.9 Let G be a finitely generated group and let S be a fi-
nite set of generators for G. The group G has polynomial (respectively,
exponential, intermediate, superpolynomial, subexponential) growth if �S

is polynomial (respectively, exponential, intermediate, superpolyno-
mial, subexponential).

Example 2.10 Let G be a finitely generated group and let S be a
finite set of generators for G. Then:

(1) �S ⇠ 1 precisely when �S is bounded, if and only if G is finite;

(2) if G is infinite, n � �S.
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The above example shows that the growth of a finitely generated
group recalled in Definition 2.9 is not interesting in the finite case
and that an infinite finitely generated group has at least polynomial
growth (and at most exponential growth by Remark 2.8), that is, de-
noting by S a finite set of generators for a group G,

n � �S � en.

Example 2.11 (1) Let G = Z and S = {1} (take S = {1,-1} for a
symmetric set of generators). Then, for every n 2 N,

BS(n) = {-n, . . . ,n} and �S(n) = 2n+ 1.

So, �S ⇠ n and Z has polynomial growth.

(2) Let G = Z
2 and S = {(1, 0), (0, 1)}. Then �S(n) = 2n2+2n+1 for

every n 2 N, and so �S ⇠ n2 and Z
2 has polynomial growth.

(3) If, for i = 1, 2, Gi is a finitely generated group and Si is a finite
set of generators for Gi, then S =

�
S1 ⇥ {eG2

}
�
[
�
{eG1

}⇥ S2
�

is
a finite set of generators for G = G1 ⇥G2 and �S ⇠ �S1

· �S2
.

Then one can prove by induction that for d 2 N+ and S a finite
set of generators for Z

d, �S ⇠ nd and so Z
d has polynomial

growth.

(4) Since every finitely generated abelian group G is isomorphic
to Z

d ⇥ F for some d 2 N and some finite abelian group F, we
get that �S ⇠ nd for S a finite set of generators for G, and so
also that G has polynomial growth.

Example 2.12 Let again G = Z
2. For S 0 = {(1, 0), (0, 1), (1, 1), (1,-1)},

we get a different growth function with respect to �S from Exam-
ple 2.11 (2), that is, �S 0(n) = 4n2 + 4n + 1 for every n 2 N; any-
way, �S 0 ⇠ n2 ⇠ �S.

Example 2.13 Let G = F2 be the free group on two generators a,b
and S = {a,b}. Then �S(n) = 2 · 3n - 1 for every n 2 N, so �S ⇠ en

and clearly F2 has exponential growth.

Definition 2.14 Let G be a finitely generated group and let S be a
finite set of generators for G. The growth rate of G with respect to S is

�S := lim
n!1

log�S(n)

n
.
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As the sequence
�

log�S(n)
 
n2N

is subadditive (that is, for eve-
ry n,m 2 N, log�S(n+m) 6 log�S(n) + log�S(m)), by Fekete Lem-
ma (see [23]) the above limit exists and �S = infn2N+

log�S(n)
n

.

It is easy to see (e.g., by changing set of generators in Example 2.13)
that �S depends on S. Nevertheless, the following equivalence holds,
namely, when G has exponential growth �S is positive for every finite
set of generators S for G and, conversely, if G has either polynomial
or intermediate growth, then �S = 0 for every finite set of genera-
tors S for G.

Remark 2.15 Let G be a finitely generated group and let S be a
finite set of generators for G.

(i) It is straightforward to prove that G has exponential growth
if and only if �S > 0. In particular, if G has not exponential
growth, then equivalently �S = 0, that is, G has subexponential
growth.

(ii) On the other hand, it is non-trivial to see that in case G has not
polynomial growth, then G has superpolynomial growth. Any-
way this is true and can be deduced from [34, Corollary 8.6].

(iii) In particular, we get that in case G has neither polynomial
growth nor exponential growth, necessarily G has intermediate
growth.

2.3 Main classical results

Milnor [41] posed its celebrated problem on group growth:

Problem 2.16 (Milnor) Let G be a finitely generated group and let S be
a finite set of generators for G.

(i) Is �S necessarily equivalent either to nd for some d 2 N or to en?

(ii) In particular, is the growth exponent limn!1
log�S(n)

logn
always either

a well defined integer or infinity? For which groups is it finite?

Part (i) was solved by Grigorchuk [32] by constructing his famous
examples of finitely generated groups of intermediate growth.

With respect to part (ii), Wolf [55] showed that every nilpotent
finitely generated group has polynomial growth. Then Bass [2]
and Guivarc’h [36] independently proved the following result. We
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denote by rk(A) the free rank of an abelian group A. Moreover, the
lower central series of a group G is defined inductively by �1(G) := G
and �n+1(G) := [�n(G),G] for every n 2 N+; the group G is nilpo-
tent if and only if �c+1(G) = 1 for some c 2 N, and the minimum
such c is the nilpotency class of G.

Theorem 2.17 (Bass–Guivarc’h) Let G be a nilpotent finitely generated
group with nilpotency class c and let S be a finite set of generators for G.
Then �S ⇠ nd, where d =

P
c

i=1
rk
�
�i(G)/�i+1(G)

�
.

In particular, given a nilpotent finitely generated group G with
finite set of generators S, not only it has polynomial growth, but
more precisely there exists d 2 N with �S ⇠ nd.

Recall that a group G is virtually nilpotent if it contains a nilpo-
tent subgroup H having finite index. When G is a virtually nilpo-
tent finitely generated group and H a nilpotent finite index subgroup
of G, then H is finitely generated and G and H have the same growth
type; more precisely, if S is a finite set of generators for G and S 0 is
a finite set of generators for H, then �S ⇠ �S 0 . So, the above results
by Wolf and Bass–Guivarc’h immediately extend to virtually nilpo-
tent finitely generated groups.

Part (ii) of the Milnor Problem was completely solved by Gro-
mov [35], by proving what was already conjectured by Milnor [41].

Theorem 2.18 (Gromov) A finitely generated group has polynomial
growth if and only if it is virtually nilpotent.

Before the work of Gromov, Milnor [40] proved that a solvable
finitely generated group of subexponential growth is polycyclic,
while Wolf [55] showed that a polycyclic finitely generated group
of subexponential growth is virtually nilpotent, so it has polynomial
growth. As customary, we call Milnor–Wolf Theorem the following
result, which we call also a Dichotomy Theorem.

Theorem 2.19 (Milnor–Wolf) A solvable finitely generated group has
either polynomial or exponential growth.

The class of elementary amenable groups was introduced
by Day [10] as the smallest class of groups containing the finite
groups and the abelian groups which is closed under taking sub-
groups, quotients, group extensions and direct limits. Later Chou [9]
showed that this class can be constructed from finite groups and
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abelian groups by applying only group extensions and direct lim-
its. Moreover, he extended the Milnor–Wolf Theorem to elementary
amenable groups.

Theorem 2.20 (Chou) An elementary amenable finitely generated group
has either polynomial or exponential growth.

3 Growth and algebraic entropy of

group endomorphisms

In this section we extend to group endomorphisms the notions of
growth type and growth rate.

3.1 Growth of group endomorphisms

For a group G, denote by F(G) the family of all finite non-empty
subsets of G. For F 2 F(G), we let T0(�, F) := {eG} and for n 2 N+,

Tn(�, F) := F�(F) . . .�n-1(F)

is the n-th �-trajectory of F. When eG 2 F, we get

Tn(�, F) ✓ Tn+1(�, F) for every n 2 N. (3.1)

Remark 3.1 Compare the definition of Tn(�, F) with (2.1) and (3.1)
with (2.2): if G is finitely generated and S is a finite set of generators
for G, with F = BS(1) = S[ S-1 [

�
eG

 
we get

BS(n) = Tn
�
idG, F

�
for every n 2 N,

where we denote by idG : G ! G the identity automorphism.

Definition 3.2 Let G be a group and let � : G ! G be an endomor-
phism. The growth function of � with respect to F 2 F(G) is

��,F : N ! N, n 7! |Tn(�, F)|.

For every F 2 F(G), we have |F| 6 ��,F(n) 6 |F|n for every n 2 N+,
hence the growth of ��,F is always at most exponential. From (3.1),
in case eG 2 F, we get that ��,F(n) 6 ��,F(n+ 1) for every n 2 N.
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Remark 3.3 From Remark 3.1 and the comparison of Definition 3.2
with Definition 2.7, we get that in case G is a finitely generated group
and S is a finite set of generators for G, letting F = S [ S-1 [ {eG},
then �idG,F = �S.

The following problem remains open, even for automorphisms of
finitely generated groups.

Problem 3.4 Let G be a finitely generated group and let � : G ! G
be an endomorphism. For S, S 0 finite sets of generators for G, is it true
that ��,S ⇠ ��,S 0?

This has positive solution for � = idG as stated in Section 2.2, but
it is open in general. In Section 3.4 we give some partial (positive)
answer for automorphisms (see Theorem 3.17) and discuss what is
still open (see Problem 3.18).

Anyway, we give the following definition, which extends the clas-
sical one recalled in Definition 2.9 in view of Remarks 3.1 and 3.3.

Definition 3.5 ([14, 15]) Let G be a group and let � : G ! G be an
endomorphism. Then:

(a) � has polynomial growth if ��,F is polynomial for every F 2 F(G);

(b) � has exponential growth if there exists F0 2 F(G) such that ��,F0

is exponential;

(c) � has intermediate growth if ��,F is not exponential for eve-
ry F 2 F(G) and there exists F0 2 F(G) such that ��,F0

is in-
termediate.

Several examples are given below.

3.2 Growth of groups

In this subsection, as a first example and application of the notions in
the previous section, we recall the results from [27, Page 5]. In view
of Definition 3.5, one can extend the concept of growth to any group
(not necessarily finitely generated):

Definition 3.6 A group G has polynomial (respectively, intermediate,
exponential) growth if idG has polynomial (respectively, intermediate,
exponential) growth.
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By applying the Gromov Theorem (Theorem 2.18) and the Mil-
nor–Wolf Theorem (Theorem 2.19) respectively, one can extend them
to every group as follows. Recall that a group G is locally virtually
nilpotent (respectively, locally virtually solvable) if every finitely gen-
erated subgroup of G is virtually nilpotent (respectively, virtually
solvable).

Theorem 3.7 ([27]) Let G be a group. Then:

(1) G has polynomial growth if and only if G is locally virtually nilpotent;

(2) if G is locally virtually solvable, then G has either polynomial or
exponential growth.

3.3 Algebraic entropy

The following notion in particular extends that of growth rate re-
called in Definition 2.14.

Definition 3.8 Let G be a group and let � : G ! G be an endomor-
phism. The algebraic entropy of � with respect to F 2 F(G) is

H(�, F) := lim
n!1

log��,F(n)

n
.

This limit exists because the sequence
�

log��,F(n)
 
n2N

is subad-
ditive, and hence Fekete Lemma [23] applies.

Remark 3.9 Let G be a finitely generated group and let S be a
finite set of generators for G. With F = BS(1) = S [ S-1 [

�
eG

 
,

since �S = �idG,F as noted in Remark 3.3, we get that �S = H
�
idG, F

�
.

Definition 3.10 Let G be a group and let � : G ! G be an endomor-
phism. The algebraic entropy of � is

h(�) := sup
F2F(G)

H(�, F).

Remark 3.11 If F, F 0 2 F(G) are such that F ✓ F 0, then

H(�, F) 6 H(�, F 0).

This is useful because it implies that for the computation of h(�) one
can consider a suitable cofinal subfamily F of F(G), with respect to
the order ✓ given by inclusion, and get h(�) = sup

F2F H
�
�, F

�
. For

example, one can take F =
�
F 2 F(G) : eG 2 F

 
.
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It was proved in [15, Proposition 5.4.2] that

H(�, F) > 0 if and only if ��,F is exponential, (3.2)

and so

h(�) > 0 if and only if � has exponential growth. (3.3)

Moreover, it is clear that if � has either polynomial growth or inter-
mediate growth, then h(�) = 0.

Remark 3.12 The equivalence in (3.2) should be compared with Re-
mark 2.15. In fact, (3.2) implies that if ��,F is not exponential then it
is subexponential.

On the other hand, we do not know in general whether ��,F not
polynomial implies ��,F superpolynomial. It is true in case � is in-
jective.

Next we list few examples, more are given later on. Moreover, Sec-
tion 5 is dedicated to the algebraic entropy, starting from its basic
properties.

Example 3.13 (see [18], Example 3.1 (a)) For the abelian group Z,
we have that idZ has polynomial growth and h

�
idZ

�
= 0.

An endomorphism of Z is of the form µk : Z ! Z, x 7! kx,
with k 2 Z. The case k = 0 is trivial. If k = 1, then we find the already
discussed case µk = idZ, and if k = -1, that is, µk = -idZ, analo-
gously one shows that -idZ has polynomial growth and h

�
- idZ

�
=0.

If |k| > 1, then h
�
µk

�
= log |k| and µk has exponential growth. In par-

ticular, no endomorphism of Z has intermediate growth.

Example 3.14 (1) (see [18, Example 2.5]) If G is an abelian group,
then idG has always polynomial growth, so h

�
idG

�
= 0.

(2) If G is a finitely generated group with exponential growth,
then idG has exponential growth, so h

�
idG

�
> 0 by (3.3), and

hence h
�
idG

�
= 1 by the Logarithmic Law (see Lemma 5.3).

We conclude this section with a description of the growth and the
algebraic entropy of the inner automorphisms.

Example 3.15 (see [27], Theorem 3.2) Let G be a group, let g 2 G
and denote by 'g : G ! G, x 7! g-1xg, the inner automorphism of G
induced by g. Then:
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(1) 'g has the same growth type of G (i.e., of idG);

(2) h
�
'g

�
= h

�
idG

�
.

3.4 When G is finitely generated and � is an automorphism

The most interesting case for the purpose of this paper and for the
growth of group endomorphisms is when G is finitely generated
and � is an automorphism of G. Under these assumptions, one can
consider the subgroup hG,�i of the holomorph G o Aut(G) gener-
ated by G and �. Clearly, hG,�i is finitely generated.

The proof of the following result is based on [33, Theorems 1 and 2]
concerning the growth of cancellative finitely generated semigroups.

Theorem 3.16 ([28], Proposition 5.2) Let G be a finitely generated group
and let � : G ! G be an automorphism. Then � has polynomial growth if
and only if hG,�i has polynomial growth.

More precisely, one can see that, given a finite set S of genera-
tors for G with eG 2 S, ��,S ⇠ �

S�-1 , where S�-1 is a finite set
of generators for hG,�i. So, one can deduce the following important
properties by applying also the Gromov Theorem (Theorem 2.18) and
the Bass–Guivarc’h Formula (Theorem 2.17); note that in [28, Theo-
rem 1.5] the hypothesis on the group to be elementary amenable can
be removed.

Corollary 3.17 Let G be a finitely generated group and let � : G ! G be
an automorphism of polynomial growth. Then there exists d 2 N such that,
for every finite set S of generators for G with eG 2 S, ��,S ⇠ nd.

In particular, for every pair S, S 0 of finite sets of generators for G contain-
ing eG, ��,S ⇠ ��,S 0 .

The following problem remains open in general.

Problem 3.18 Let G be a finitely generated group, let � : G ! G be an
automorphism and let S, S 0 be finite sets of generators for G containing eG.
Is it always true that ��,S ⇠ ��,S 0?

In particular, the validity of the following conjecture would give
interesting consequences.

Conjecture 3.19 ([28], Conjecture 5.4) Let G be a finitely generated
group and let � : G ! G be an automorphism. Then � has exponential
growth if and only if hG,�i has exponential growth.

See also [56, Conjecture 1.9 and Conjecture 1.11].
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4 The Dichotomy Theorem

In this section we discuss the following problem posed in [27, Prob-
lem 1.1] and [28, Problem 1.4].

Problem 4.1 Characterize the groups admitting only endomorphisms ei-
ther of polynomial growth or of exponential growth.

In view of (3.3), the strategy in the proofs of the instances of
the Dichotomy Theorem described below is to show that, in each
of the special cases, the endomorphisms with zero algebraic entropy
necessarily have polynomial growth.

4.1 Locally finite groups

Let G be a group and let � : G ! G be an endomorphism. For F2F(G)
and n 2 N, we let

Vn(�, F) :=
⌦
�i(F) : i 2 {0, . . . ,n}

↵
and V(�, F) :=

⌦
�n(F) : n 2 N

↵
.

Observe that V(�, F) =
S

n2N
Vn(�, F) is the smallest �-invariant

subgroup of G containing F.
Moreover, V0(�, F) = hFi and Tn+1(�, F) ✓ Vn(�, F) for every n2N,

and if eG 2 F, then Vn+1(�, F) =
⌦
Tn+1(�, F)

↵
.

Lemma 4.2 ([27], Lemmas 4.1 and 4.2) Let G be a group and � : G ! G
an endomorphism. Then:

(1) V(�, F) is finitely generated if and only if V(�, F) = Vn(�, F) for
some n 2 N;

(2) if g2G and V
�
�, {g}

�
is not finitely generated, then H(�, {eG, g})>0.

Corollary 4.3 ([27], Corollary 4.4) Let G be a group and let � : G ! G
be an endomorphism. If h(�) = 0, then V(�, F) is finitely generated for
every F 2 F(G).

The converse implication of Lemma 4.2 does not hold true; indeed,
it may occur that each V(�, g) is finitely generated while h(�) > 0:
consider a group G of exponential growth; in this case, V

�
idG, F

�
=hFi

is finitely generated for every F 2 F(G), while h
�
idG

�
= 1 by Exam-

ple 3.14 (2).
On the other hand, the converse implication of Lemma 4.2 holds

true assuming that G is locally finite [27, Proposition 4.5], and as a
consequence we find a complete solution to [15, Problem 5.2.3].
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Theorem 4.4 ([27], Theorem 4.6) Let G be a locally finite group and
let � : G ! G be an endomorphism. Then the following conditions are
equivalent:

(a) � has polynomial growth;

(b) h(�) = 0;

(c) V(�, F) is finite for every F 2 F(G).

Theorem 4.4 shows in particular that, if � is an endomorphism of
a locally finite group G and � has zero algebraic entropy, then G is a
direct limit of finite �-invariant subgroups.

As a consequence of Theorem 4.4 and (3.3), we get that locally
finite groups satisfy the condition of Problem 4.1.

Corollary 4.5 ([27], Corollary 4.7) Let G be a locally finite group and
let � : G ! G be an endomorphism. Then � has either polynomial or expo-
nential growth.

This solves also [15, Problem 5.4.5] for locally finite groups.

4.2 The Pinsker subgroup

The Dichotomy Theorem for abelian groups was proved in [14] as a
consequence of deeper results.

Inspired by the concept of Pinsker algebra for the measure entropy,
the Pinsker factor for the topological entropy was introduced by Blan-
chard and Lacroix [4]; its counterpart for the algebraic entropy was
introduced in [14]: the Pinsker subgroup P(G,�) for a group G and
an endomorphism � : G ! G is the greatest �-invariant subgroup
of G such that h

�
� �P(G,�)

�
= 0. For abelian groups this subgroup

exists.
In [14] we saw that the Pinsker subgroup P(G,�) coincides with

the greatest �-invariant subgroup Pol(G,�) of G such that � �Pol(G,�)
has polynomial growth:

Theorem 4.6 ([14], Main Theorem) Let G be an abelian group and
let � : G ! G be an endomorphism. Then P(G,�) = Pol(G,�).

From this result we deduce the above mentioned dichotomy, which
is formally stronger.

Theorem 4.7 ([14], Dichotomy Theorem) Let G be an abelian group
and let � : G ! G be an endomorphism. Then � has either polynomial or
exponential growth.
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Indeed, this means that for every F 2 F(G), H(�, F) = 0 if and only
if ��,F has polynomial growth.

4.3 Elementary amenable groups

The main result of [28] is the following Dichotomy Theorem for el-
ementary amenable groups, covering both Corollary 4.5 and Theo-
rem 4.7.

Theorem 4.8 ([28], Theorem 1.2) Let G be an elementary amenable
group and let � : G ! G be an endomorphism. Then � has either poly-
nomial or exponential growth.

The most interesting case is when G is finitely generated and �
is an automorphism. Under these assumptions, something stronger
and more precise can be proved by applying Theorem 3.16:

Corollary 4.9 ([28], Theorem 1.3) Let G be an elementary amenable
finitely generated group and let � : G ! G an automorphism. Then either �
has exponential growth or hG,�i is virtually nilpotent; in the latter case, �
has polynomial growth.

The proof of Theorem 4.8 follows in some sense the proof of the
classical result by Chou (see Theorem 2.20), but clearly in many steps
it needs original ideas due to the dynamical setting (i.e., the presence
of an endomorphism). In [28], first we reduce to automorphisms
and moreover the case when G is finitely generated is crucial. Un-
der these assumptions, the Algebraic Yuzvinski Formula (see Theo-
rem 5.10) for the algebraic entropy applies to get one of the main
ingredients in the proof of Theorem 4.8.

5 The (non-)additivity of the algebraic entropy

In this section we recall the basic properties of the algebraic entropy,
its connection with number theory by means of the Algebraic Yuzvin-
ski Formula, and pay special attention to its additivity with respect
to short exact sequences (the so-called Addition Theorem) recalling
what it is known in the non-abelian case.

In entropy theory the Addition Theorem is always a fundamental
property; in particular, Yuzvinski [58] proved it (indeed, it is alter-
natively called Yuzvinski’s addition formula) for the topological en-
tropy of continuous endomorphisms of compact metrizable groups,
and it was recently extended to all compact groups in [22].
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5.1 Basic properties of the algebraic entropy

We list here most of the basic properties of the algebraic entropy, for
which we refer to [15, Section 5] (see [18, Section 2] in the abelian
case).

First we see that the algebraic entropy is an invariant for groups
and group endomorphisms:

Lemma 5.1 (Invariance under conjugation) Let G,H be groups and
let � : G ! G, ⌘ : H ! H be endomorphisms. If � and ⌘ are conjugated
(i.e., there exists an isomorphism ⇠ : G ! H such that ⌘ = ⇠ � � � ⇠-1),
then h(�) = h(⌘).

Next we recall the properties of monotonicity with respect to sub-
groups and quotients:

Lemma 5.2 (Monotonicity) Let G be a group, let � : G ! G be an
endomorphism and let H be a �-invariant subgroup of G. Then:

(1) h(�) > h
�
� �H

�
;

(2) if H is also normal, h(�) > h
�
�G/H

�
.

The following property is another typical property of entropy func-
tions.

Lemma 5.3 (Logarithmic Law) Let G be a group and let � : G ! G
be an endomorphism. For every k 2 N+, h

�
�k

�
= kh(�). If � is an

automorphism, then h
�
�k

�
= |k|h(�) for every k 2 Z \ {0}.

Corollary 5.4 Let G be a group and let � : G ! G be an endomorphism.

(1) h(�) = 0 if and only if h
�
�k

�
= 0 for some k 2 N+;

(2) h(�) = 1 if and only if h
�
�k

�
= 1 for some k 2 N+.

Moreover, in case � = �k for some k 2 Z, |k| > 1 (e.g., for � = idG),
either h(�) = 0 or h(�) = 1.

Lemma 5.5 (Continuity) Let G be a group and let � : G ! G be an
endomorphism. If G is a direct limit of �-invariant subgroups

�
Gi : i 2 I

 
,

then h(�) = sup
i2I

h
�
� �Gi

�
.

The following is a first instance of the Addition Theorem in a spe-
cial case.
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Lemma 5.6 (Weak Addition Theorem) Let G be a group and � : G ! G
an endomorphism. If G = G1 ⇥G2, � = �1 ⇥�2 with �i : Gi ! Gi an
endomorphism, i = 1, 2, then h

�
�1 ⇥�2

�
= h

�
�1

�
+ h

�
�2

�
.

The following example is the main one in entropy theory, that is,
the Bernoulli shift.

Example 5.7 ([15], Example 5.2.1) Let K be a group and G =
L

N
K.

The right Bernoulli shift �K : G ! G is defined by

(x0, x1, x2 . . .) 7! (eG, x0, x1, . . .).

Then
h
�
�K

�
= log |K|,

with the usual convention that log |K| = 1, if |K| is infinite.

5.2 The abelian case

For abelian groups it is known that the Addition Theorem holds.

Theorem 5.8 ([18], Theorem 1.1) If G is an abelian group, then AT(G)
holds.

The following fundamental property of the algebraic entropy in the
abelian context was used in the proof of the above Addition Theorem
and also in the proof of Theorem 4.8.

Proposition 5.9 ([18], Proposition 3.7) Let G be an abelian group and
let � : G ! G be an endomorphism. Denote by D(G) the divisible hull of G
and by e� : D(G) ! D(G) the extension of � to D(G). Then h(�) = h(e�).

In fact, the Addition Theorem in the torsion case was proved in [21]
and then one can restrict to the torsion free case by using the fact
that the torsion part t(G) of an abelian group G is fully invariant and
the quotient G/t(G) is torsion free. Another reduction is to the case
of torsion free abelian groups of finite free rank. At this point the
divisible hull of such a group G is isomorphic to Q

n with n = rk(G),
and Proposition 5.9 applies.

At this stage, the relevant part of the proof of the Addition The-
orem is based on the so-called Algebraic Yuzvinski Formula (The-
orem 5.10), directly proved in [30]. To state the Algebraic Yuzvin-
ski Formula, we need to recall the notion of Mahler measure, playing
an important role in number theory and arithmetic geometry.
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For a primitive polynomial with integer coefficients

f(t) = a0 + a1t+ . . .+ akt
k 2 Z[t],

let ↵1, . . . ,↵k 2 C be the roots of f(t) taken with their multiplicity.
The Mahler measure of f(t) is

m(f(t)) := log |ak|+
X

|↵i|>1

log |↵i|.

For g(t) 2 Q[t] the characteristic polynomial of �, there exists a small-
est s 2 N+ such that sg(t) 2 Z[t] (so sg(t) is primitive); the Mahler
measure of � is m(�) := m

�
sg(t)

�
.

Theorem 5.10 (Algebraic Yuzvinski Formula) Let n 2 N+ and let
� : Q

n ! Q
n be an endomorphism. Then h(�) = m(�).

This equality is the counterpart of the same result for the topolog-
ical entropy proved by Yuzvinski [59].

The Algebraic Yuzvinski Formula establishes a connection between
the algebraic entropy and the Mahler measure, so that the celebrat-
ed Lehmer Problem in number theory can be stated in terms of the
values of the algebraic entropy.

Problem 5.11 Is L := inf
�
{h(�) : � 2 End(G),G abelian group} \ {0}

�

equal to 0?

By [18, Theorem 1.5], L = inf
�
{h(�) : � 2 Aut(Qn),n 2 N+} \ {0}

�
.

For more properties and a deeper discussion on this topic, see [18]
and [15, Section 5.5]. In particular, a positive answer to Problem 5.11
would imply that

�
h(�) : � 2 End(G),G abelian group

 
= R>0 [ {1},

that is, each real number could be realized as the algebraic entropy
of some group endomorphism. On the other hand, [18, Theorem 1.7]
shows that L > 0 precisely when for every abelian group G and every
endomorphism � : G ! G with h(�) finite, there exists F 2 F(G) such
that h(�) = H(�, F).

We conclude this part by recalling the so called Uniqueness Theo-
rem, showing that the algebraic entropy is a so natural invariant that
it is the unique possible one with the properties listed above. For
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an abelian group G, we denote by End(G) the ring of its endomor-
phisms.

Theorem 5.12 ([18], Theorem 1.3) The algebraic entropy h is the unique
collection h =

�
hG : G abelian group

 
of functions

hG : End(G) ! R>0 [ {1}

such that:

(1) if � 2 End(G) and ⌘ 2 End(H) are conjugated, then hG(�)=hH(⌘)
(i.e., h is invariant under conjugation);

(2) if G is an abelian group, � 2 End(G) and G is a direct limit of �-in-
variant subgroups

�
Gi : i 2 I

 
, then hG(�)=sup

i2I
hGi

�
� �Gi

�
;

(3) for every abelian group G, AT(G) holds;

(4) hL
N
K

�
�K

�
= log |K| for any finite abelian group K;

(5) hQn(�) = m(�) for every n 2 N+ and every � 2 End
�
Q

n
�
.

This is the counterpart of the Uniqueness Theorem proved by Stoy-
anov [50] for the topological entropy of continuous endomorphisms
of compact groups.

5.3 The Addition Theorem in the non-abelian case

The next example shows that the Addition Theorem does not hold in
general, even for metabelian (and so solvable) groups.

Example 5.13 ([27], Example 2.7) Consider G =
L

Z
Z2 oZ the lamp-

lighter group and H =
L

Z
Z2. It is known that G has exponential growth,

and so h
�
idG

�
= 1 by Example 3.14 (2). On the other hand, H

and G/H ' Z are abelian groups, hence h(idH) = 0 and h(idG/H) = 0,
as recalled in Example 3.14 (1). In particular, AT(G) does not hold.

This example answers [15, Question 5.2.12(b)], and so it also an-
swers [15, Problem 5.2.10]. Anyway, we believe in the validity of the
following conjecture.

Conjecture 5.14 If G is a locally virtually nilpotent group, then AT(G)
holds.

In particular, we conjecture that if G is a locally finite group,
then AT(G) holds. This case was studied in several papers under ad-
ditional assumptions, as we describe below.
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Remark 5.15 In the class of locally finite groups the computation of
the algebraic entropy becomes more comfortable. Indeed, denoting
by

Fs(G) := {F 6 G : F is finite} ✓ F(G)

the family of all finite subgroups of a group G, we have that G is
locally finite precisely when Fs(G) is cofinal in F(G) with respect to
the order given by the inclusion. So, for a locally finite group G and
an endomorphism � : G ! G, we have

h(�) = sup
�
H(�, F) : F 2 Fs(G)

 

(see Remark 3.11).

In [25], the Addition Theorem was proved in the special case of
locally finite groups that are finitely quasi-hamiltonian (see Defini-
tion 5.16 and Theorem 5.19). Indeed, it is convenient that not
only F 2 F(G) is a subgroup, but also that each Tn(�, F) is a subgroup
of G for every F in a cofinal subfamily of Fs(G). For a group G, let

FC(G) :=
�
F 2 Fs(G) : FE = EF for all E 2 Fs(G)

 
✓ Fs(G).

Definition 5.16 A group G is finitely quasihamiltonian if FC(G) is
cofinal in Fs(G).

Remark 5.17 Recall that a group G is quasihamiltonian if all its sub-
groups are permutable; the quasihamiltonian groups are called
also Iwasawa groups because the structure of those groups was de-
scribed by Iwasawa [37] (some gaps in the proof were filled by Na-
politani [42]). Clearly, if G is quasihamiltonian, then FC(G)=Fs(G);
hence, every quasihamiltonian group is finitely quasihamiltonian. Every
torsion finitely quasihamiltonian group is locally finite.

Another class of groups with this property is that of FC-groups, that
is, groups in which each element has only finitely many conjugates.
Indeed, by [46, Theorem 14.5.8], a group G is a torsion FC-group if
and only if G is locally finite and normal, that is, every finite subset
of G is contained in a normal finite subgroup of G: in other words,
the family of all finite normal subgroups of a group G, which is con-
tained in FC(G), is cofinal in F(G). Therefore, every torsion FC-group
is finitely quasihamiltonian. We refer to [25, Example 2.1] for examples
witnessing in particular that the above two implications cannot be re-
versed in general, and that there are locally finite groups that are not
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finitely quasihamiltonian (e.g., the group Sfin(N+) of permutations
of N+ with finite support).

For a quasihamiltonian locally finite group G, we have seen
that FC(G) is cofinal in F(G), so Remark 3.11 and [25, Lemma 2.4]
give the following result.

Proposition 5.18 Let G be a quasihamiltonian locally finite group and
let � : G ! G be an endomorphism. Then

h(�) = sup
�
H(�, F) : F 2 FC(G)

 
,

where, for every F 2 FC(G), each Tn(�, F) is a subgroup of G.

This property is one of the main ingredients in the proof of the
following Addition Theorem.

Theorem 5.19 ([25], Theorem 1.4) If G is a finitely quasihamiltonian
locally finite group, then AT(G) holds.

This result extends a consequence of [26, Corollary 7.2] for tor-
sion FC-groups and one of the main results from [57], namely,
that AT(G) holds for every locally finite group G which is a quasi-
hamiltonian FC-group. The proof of Theorem 5.19 is inspired by
ideas in [12]. Moreover, it is shorter than that in [21] and it follows a
different path. The proofs of the mentioned results from [26] and [57]
use a third different approach inspired by that in [6, 7, 31, 48].

Recently Shlossberg [49] proved the following instance of the Ad-
dition Theorem for another class of locally finite groups.

Theorem 5.20 ([49], Theorem 4.6) If G is a torsion nilpotent group of
nilpotency class 2, then AT(G) holds.

The proof of this result follows partially the one of Theorem 5.19,
but it is based also on the following interesting reduction, answer-
ing [15, Question 5.2.11(c) and Question 5.2.12(c)]. For a group G,
an endomorphism � : G ! G and a �-invariant normal subgroup H
of G, we write AT(G,�,H) in case h(�) = h

�
� �H

�
+ h

�
�G/H

�
.

Theorem 5.21 ([49], Theorem 4.6) Let X be a class of solvable groups
closed under taking subgroups and quotients.

(1) AT(G) holds for every G 2 X, in case for every G 2 X and every
endomorphism � : G ! G, AT

�
G,�,G 0� holds;
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(2) if AT
�
G,�,Z(G)

�
holds for every nilpotent group G 2 X and every

automorphism � : G ! G, then AT(G,�,H) holds for every nilpotent
group G 2 X, every automorphism � : G ! G and every �-stable
normal subgroup H of G.

Finally, the following result shows in particular that the Addi-
tion Theorem holds for the group Sfin

�
N+

�
, which is not covered

by Theorem 5.19 as it is locally finite but not finitely quasihamilto-
nian.

Theorem 5.22 ([49], Corollary 5.3) If G is a locally finite group admit-
ting a fully characteristic finite index simple subgroup, then AT(G) holds.
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[59] S.A. Yuzvinskiĭ: “Calculation of the entropy of a group endo-
morphism”, Sibirsk. Mat. Ž. 8 (1967), 230–239.

Anna Giordano Bruno
Department of Mathematics, Computer Science and Physics
University of Udine
Via delle Scienze, 206
Udine (Italy)
e-mail: anna.giordanobruno@uniud.it

Marco Trombetti

Marco Trombetti
A. Giordano Bruno


	I. Castellano — V. Grazian — A. Ioppolo: Preface
	I. Castellano — V. Grazian — A. Ioppolo: Introduction
	R. Abdellatif: An introduction to p-modular representations of p-adic groups
	A. Giordano Bruno: Growth of groups and of group endomorphisms
	D. Spriano: Introduction to hyperbolic groups

