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1 Introduction

These notes cover the content of the lecture I gave during the sec-
ond edition of the GABY summer school, which took place in Milan
on June 2022. They provide a self-contained introduction to the world
of p-modular representations of p-adic groups, aimed at newcomers
in the domain. No specific knowledge is required beyond the stan-
dard level of classical Master courses in algebra and number theory.

The focus is made on the groups GL2(F) and SL2(F) for F a fi-
nite extension of Qp on purpose. These two groups are indeed quite

* I warmly thank the organizers of the GABY 2022 summer school for the nurturing
and careful environment they built during the workshop. The author’s research
is partially funded by the ANR grant COLOSS (Projet ANR 19-CE40-0015).
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easy to manipulate as p-adic groups, but their p-modular represen-
tation theory is already much different from the corresponding com-
plex representation theory, which is well-known (see for instance [12]
for a comprehensive and self-contained study of the GL2 case), and
mysterious enough to give a good idea of what is (not) happening
in more general settings. Going beyond these cases would require
more technicalities and background than expected from a newcomer.
The reader interested in knowing more about the general case will
enjoy the last section of these notes, which provides a short survey of
what is (not) known so far about p-modular representations of p-adic
groups, as well as useful references to go further.

From now, we fix a prime integer p. A p-modular representation of
a group is an action of this group on a vector space defined over a
field of characteristic p. In other words, it is a linear representation
of the group whose coefficients live in a field of characteristic p. Such
representations appear very naturally in number theory: one can for
instance consider the action of the absolute Galois group of Q on
the p-torsion points of an elliptic curve defined over Q. Note that
this simple example is actually at the core of one of the most famous
proofs in contemporary number theory, namely Andrew Wiles’ proof
of Fermat’s Last Theorem [35]. Let us also point out that this exam-
ple is closely related to the representations we will study in these
lecture notes, via the so-called p-modular Langlands correspondences

(for GL2(Qp) in this case): we will say something about this in the
last section.

Regarding p-modular representations of p-adic groups, i.e. of
groups of the form G = G(F) with G being a connected reductive
group defined over a finite extension F of the field Qp of p-adic
numbers*, the story starts in the mid-nineties, with the seminal work
of Laure Barthel and Ron Livné [7, 8] on p-modular representations
of GL2(F). This series of two papers opened a wide range of ques-
tions that mostly remain unanswered 30 years later. The goal of these
notes is to understand what are these questions and what answers
have been given so far, then to give an overview of what remains
unsolved and how it inspired further questions.

More precisely, we aim to explain what means the following fun-

* If you don’t know what a connected reductive group is, just pick your favourite
matrix group, as GLn, SLn or Sp

2n
with n > 1, and let the coefficients of the

matrices be in a finite extension of the field Qp. If you don’t know what Qp is,
please refer to Section 2.1.
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damental question, and how much of it has been solved so far.

Question 1.1 Let p be a prime integer, let F be a finite extension of Qp

and let Fp be an algebraic closure of the residue field of F. Can we give an

exhaustive classification of (isomorphism classes of) irreducible smooth ad-

missible representations of G over Fp when G is either GL2(F) or SL2(F)?

2 Crash course on p-adic groups

and related notions

This first section gathers the basic material we need about p-adic
groups, general representation theory and Bruhat–Tits buildings. The
reader already familiar with all these topics (for instance because
they come from the world of classical Langlands correspondences)
can skip this section. For others, let us give some references about
the various topics dealt with in this section.

• The first subsection regards p-adic fields, which are finite ex-
tensions of the field of p-adic numbers. People who are not fa-
miliar with these objects, and more generally with local fields,
can usefully read Section 7 of James Milne’s lecture notes [25]
or Section 4 of Helmut Koch’s book [21]. A nice account on
the group structure of GL2(F) is given in Section 7 of the book
by Colin Bushnell and Guy Henniart [12]. For further results on
algebraic groups and their inner structure, a standard reference
is Armand Borel’s book on linear algebraic groups [9].

• The second subsection is a reminder about basic notions of rep-
resentation theory. It does not require any further material than
these notes. Nevertheless, readers interested in strengthening
their background can usefully use [17, 29], which focus on the
finite groups representation theory, or [19, Part II] for more in-
formation on the general reductive case.

• The third subsection gathers basic definitions and facts from
the world of Bruhat–Tits buildings. Besides [9] aforementioned,
the fifth section of the second paper coming from the seminal
work of François Bruhat and Jacques Tits [11] can be useful to
anyone willing to understand the general setting of buildings
and parahoric subgroups.
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Let us set some notations. Given any power q of the prime p we
fixed, we denote by Fq the field with q elements. When needed, `
will always denote a prime different from p.

2.1 Local fields: arithmetical and topological properties

Let vp denote the standard p-adic valuation, which maps a non-zero
integer n to the biggest power of p that divides n, and 0 to 1, as well
as its extension to Q given by the formula

vp
⇣a
b

⌘
= vp(a)- vp(b).

The function that maps a rational number x 2 Q to p-vp(x) defines
a norm on Q called the (standard) p-adic norm and denoted by ||.||p.
The completion of Q for ||.||p is denoted by Qp and called the field
of p-adic numbers.

The unit ball of
�
Qp, ||.||p

�
is denoted by Zp and an element of

this ball is called a p-adic integer. Note that Zp is a discrete valuation
ring for vp, hence it is a local ring with maximal ideal pZp and its
residue field Zp/pZp is isomorphic to Fp. Also notice that its field
of fractions is exactly Qp.

Following [14, Chapter VI], we assume more generally that F is a
non-Archimedean local field with residue characteristic equal to p.
This means that F is a field endowed with a discrete valuation v for
which it is complete, and whose residue field is isomorphic to Fq for
some power q = pf of p. Such a field is actually not very mysterious,
thanks to the following result proven in 1916 by Alexander Ostrow-
ski [27].

Theorem 2.1 Any non-Archimedean local field with residue character-

istic equal to p is either a finite extension of Qp, or a field of Laurent

series F
pf((t)) for some integer f > 1.

Let us now give some topological properties of F. As F is complete
with respect to a discrete valuation v, the ring OF of elements in F
having nonnegative valuation is a local ring whose maximal ideal pF
is generated by any element of minimal positive valuation. Such an
element is called a uniformizing element, or uniformizer, and it exists
since v is discrete.

From now on, we fix a uniformizing element $F and we choose to
normalize v so that v($F) = 1. Then, for any integer n, the (fractional)
ideal pn

F
= $n

F
OF is an open subgroup of F, and

�
pn
F

, n 2 Z⇤+
 

is a
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fundamental system of open neighbourhoods of 0 in F. Note that
these neighbourhoods are moreover compact subgroups of F: indeed,
first notice that each quotient OF/p

n

F
is finite, and that the canonical

map
OF ! lim

 �
OF/p

n

F

is actually an isomorphism of topological groups. This implies in
particular that OF is a compact group, and since pn

F
= $n

F
OF is topo-

logically isomorphic to OF, we proved the claim. To summarize, we
obtain the following statement (recall that a topological group is lo-

cally profinite when any open neighbourhood of the unit contains an
open compact subgroup).
Proposition 2.2 The group (F,+) is locally profinite.

Similarly, we see that (F⇥,⇥) is a locally profite group as the con-
gruence subgroups

�
1+ pn

F
, n 2 Z⇤+

 
provide a fundamental system

of open compact neighbourhoods of 1 in F⇥.
Remark 2.3 For future use, we recall that locally profinite groups
are in particular locally compact and totally disconnected, that closed

subgroups of locally profinite groups are still locally profinite groups,
and that the quotient of a locally profinite group by a closed normal
subgroup is again a locally profinite group.

2.2 Topological properties of p-adic groups

Writing F as the additive group M1(F) of 1⇥ 1 matrices with coeffi-
cients in F, and F⇥ as the multiplicative group GL1(F) of invertible
matrices in M1(F), one can wonder how the topological properties
above transfer to matrices of arbitrary size d > 1. Given a positive
integer d > 2, the group Md(F) is naturally isomorphic to Fd

2 , hence
it is naturally endowed with a structure of locally profinite group
inherited from the product topology of Fd2 . Note that in this setting,
the matrix multiplication is a continuous map.

Now consider GLd(F): it is an open subspace of Md(F), hence it
also gets a structure of topological group (since inverting matrices is
a continuous map). As in the d = 1 case, it is also a locally profinite
group since the set of congruence subgroups

�
K(n) := Id +$n

F
Md(F), n 2 Z⇤+

 
,

where Id denotes the identity matrix, provides a fundamental sys-
tem of open compact neighbourhoods of GLd(F). Let us point out
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that these subgroups are moreover pro-p-groups, as this will be of
importance in the sequel. Furthermore, K := GLd(OF) is a maximal
open compact subgroup of GLd(F), and any maximal open compact
subgroup of GLd(F) is actually conjugated to K.

Remark 2.4 The latter property is really specific to GLd(F)! Con-
sider for instance the special linear group SLd(F) = det-1

�
{1}

�
. It is

a closed subgroup of GLd(F), so Remark 2.3 ensures that it is a locally
profinite group (one can also check directly that it is a topological
group and that a fundamental system of open compact neighbour-
hoods of 1 in SLd(F) is given by

�
K(n)\ SLd(F), n 2 Z⇤+

 
), but it is

straightforward (and a good exercise for the newcomer) to see that it
contains d distinct conjugacy classes of maximal open compact sub-
groups. One can object that these groups are conjugated in GLd(F),
hence are not so different from each other: in this case, an even
more striking example is given by the conjugacy classes of the p-adic
group G defined by the F-points of the p-adic unitary group U(2, 1).
Then G can be seen as a closed subgroup of GL3(E) for E/F a suitable
quadratic extension. One can check as in [1, Annexe 7.2] that G has
two distinct conjugacy classes of maximal open compact subgroups
that are not conjugate in GL3(E).

2.3 Basic representation theory for beginners

Given a group G and a ring R, a representation of G over R is just a
group action of G on an R-module. In this lecture notes, we only
consider the case of a field R, so G acts on R-vector spaces, but rep-
resentations over R-modules for more general rings are also of great
interest. For instance, considering representations over OF leads to
some connections (via reduction modulo a uniformizing element) be-
tween p-adic (integral) representations (namely representations
over F or OF) and p-modular representations (namely representations
over an algebraic closure of kF). The interested reader could refer for
instance to [4, 16] for more information on this topic.

A representation of G over a field R is denoted by a pair (⇡,V),
where V is an R-vector space and ⇡ : G ! AutR(V) is the group ho-
momorphism defining the action of G on V . In this case, the dimen-
sion of the R-vector space V is called the dimension of the representa-

tion (⇡,V), and one-dimensional representations are called characters

of G. We will be interested in representations of G up to isomor-
phism: recall that two representations (⇡,V) and (�,W) of G over R
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are isomorphic if there exists an isomorphism of R-vector spaces

' : V
'�! W

that is compatible with the action of G, i.e. such that ' � ⇡ = � �'.
From now on, we assume that G is a locally profinite group, as for

example GLd(F) or SLd(F), and that C is a field. The topological
nature of G makes it natural to focus on continuous representations.
To take into account the locally profinite nature of G, we will consider
the following notion of continuity.

Definition 2.5 Let (⇡,V) be a representation of G over C. We say
that (⇡,V) is smooth when every vector of V has open stabilizer in G.
We denote by Rep1

C
(G) the category of smooth representations of G

over C.

Note that G being locally profinite ensures that it is equivalent to
require that the stabilizer of any vector of V under the action of G
contains an open compact subgroup of G. Also note that smooth-
ness is really a continuity assumption, as one can check that (⇡,V) is
smooth if, and only if, the corresponding map

(g, v) 2 G⇥ V 7! ⇡(g)(v) 2 V

is continuous when V is endowed with the discrete topology.
Another natural condition on the representations we consider

comes from number theory and arithmetic. It basically claims that
these representations are locally finite.

Definition 2.6 A smooth representation (⇡,V) of G over C is admis-

sible when, given any open compact subgroup H of G, the space

VH := {v 2 V | H ⇢ StabG(v)}

of H-invariant vectors in V is finite-dimensional as vector space over C.

Remark 2.7 We impose smoothness in the definition of admissibil-
ity, though it does not seem a priori necessary. Nevertheless, we
will see in the sequel that these two notions are strongly related,
and that the relevant representations on a number-theoretic or arith-
metic point of view (e.g. for Langlands correspondences) are always
smooth, so this is not an important restriction.
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We end up this subsection by recalling a fundamental notion that
defines the elementary pieces on which to build all representations
of a given group. Let us already point out that the way to recover
all representations from the irreducible ones heavily depends on the
field C on which they are defined.

Definition 2.8 A representation (⇡,V) of G over C is irreducible

when V contains exactly two subspaces that are stable under the ac-
tion of G (namely {0} and V).

Remark 2.9 By definition, irreducible representations of G are
non-zero.

2.4 Parahoric and parabolic subgroups

via Bruhat–Tits theory

Recall that the groups we are interested in are of the form G(F) for
some connected reductive group G defined over F (if you don’t know
what this means, stick to your favorite matrix group example, as GLd

or SLd). For simplicity, and because the examples we study here fit
in this framework, we assume that G is split over F, which means that
its maximal torii * are split over F.

Definition 2.10 A parabolic subgroup of G is a Zariski-closed sub-
group P such that G/P is a projective variety. A Borel subgroup of G is
a parabolic subgroup B that is minimal among parabolic subgroups
of G.

Remark 2.11 As classically done in the litterature, we abusively call
a parabolic (resp. Borel) subgroup of G any group of the form P(F) for P
some parabolic (resp. Borel) subgroup of G. The same will be done
for torii of G, defined as the groups of F-rational points of torii of G.

Example 2.12 When G = GLd, parabolic subgroups are (up to con-
jugacy) block-upper triangular matrices of the following form:

0

BBB@

GLn1
? ? ?

0 GLn2
? ?

0 0
. . . ?

0 0 0 GLnr

1

CCCA

* A torus is just a subgroup of G isomorphic to some power of the multiplicative
group Gm.
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with r 2 Z⇤+ and n1, . . . ,nr 2 Z⇤+ satisfying
P

r

i=1
ni = d. They are

minimal (i.e. provide Borel subgroups) iff r = d, which means that
all ni’s are equal to 1.

From now on, G will either be GL2 or SL2. Let us fix a first set of
notations that will be constantly used in the sequel.

• B denotes the Borel subgroup of upper triangular matrices in G.

• U denotes the unipotent radical of B, which consists in up-
per triangular matrices in G whose diagonal coefficients are all
equal to 1.

• T denotes the maximal (split) torus of diagonal matrices in G.

• B = B(F), U = U(F) and T = T(F).

Let us point out that B has a semi-direct product decomposition of
the form B = TU, where T acts on U by conjugation. This is a special
case of Levi decomposition, which allows to write any parabolic sub-
group as a semi-direct product involving its unipotent radical. Such
decompositions are of importance to initiate the study of irreducible
smooth representations of G. Precise definitions in the general case
can be found in [9, Section 11] or in [19, II.1].

We end up this section by introducing parahoric subgroups by the
mean of the Bruhat–Tits building of G. We will use the very nice
lattice construction given by Jean-Pierre Serre in [30], which can be
extended to some other groups (see for instance the case of the quasi-
split group U(2, 1) explained by Jacques Tits in [31] and fully detailed
in [1, Chapter 4]) but does unfortunately not hold for arbitrary G.

We let X denote the graph defined as follows:

• the vertices of X correspond to the homothety classes [L] of OF-
lattices L in the two-dimensional F-vector space F� F;

• two vertices [L0] and [L1] are connected by an edge iff there exist
representatives L0 and L1 of the associated homothety classes
that satisfy $FL1 ⇢ L0 ⇢ L1 (recall that $F is a fixed uniformiz-
ing element of F).

It is a good exercise to check that X is actually a tree and that G
acts on X via its natural action on OF-lattices. Note that this action is
transitive on vertices when G = GL2(F), but has two distinct orbits
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when G = SL2(F). One can easily check that the stabilizer of the stan-
dard vertex [O2

F
] is K := G(OF) and that (the set of vertices of) X is

endowed with a natural distance defined as the minimal number of
edges required to connect two vertices of X. Another subgroup of G
that will matter in the sequel is the pointwise stabilizer of the edge
that connects [O2

F
] to [OF � pF]. It is called an Iwahori subgroup of G

and is equal to

I =

�
M 2 K | M ⌘

✓
? ?
0 ?

◆
mod $F

�
.

Its pro-p-radical is the set of matrices whose reduction modulo $F

has diagonal coefficients equal to 1: it is called a pro-p-Iwahori sub-

group of G.

Remark 2.13 The groups K and I are instances of parahoric subgroups

of G, defined as (pointwise) stabilizers of facets of the (affine) Bru-
hat–Tits building of Gad. To know more about the general setting,
please refer to [11]. As an exercise, one can try to define the same
data for the unitary group U(2, 1), following for instance [1, Chap-
ter 4] or [31].

3 Non-supercuspidal representations

of p-adic groups

The goal of this section is to initiate the classification of irreducible
smooth (admissible) representations of G over an algebraically closed
field C of characteristic p. This consists in the study of parabolically
induced representations, which play here the same role as Eisenstein
series do in the theory of modular forms: they provide the first ex-
amples to consider and to understand quite easily, but they are not
the most exciting objects of the theory.

Remark 3.1 Since we choose to focus on GL2 and SL2, we do not
give the most general possible setting for parabolically induced rep-
resentations. The reader interested in understanding parabolic induc-
tion for arbitrary groups can refer for instance to [1, Section 2.2.1] or
to [33, I.5.7]. Let us nevertheless mention that extending the results of
this section to other p-adic groups is not so difficult, and essentially
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requires technical arrangements (see [34] or [1, Chapter 5]). This will
not be the case for Section 4.

3.1 Parabolically induced representations

Let us first define what are parabolically induced representations
of G. Recall that B denotes the parabolic subgroup of G made of
upper-triangular matrices and that T denotes the subgroup of diago-
nal matrices in G. Since B = TU with U being a locally pro-p-group,
irreducible smooth representations of B actually come (by inflation)
from irreducible smooth representations of T . In our setting, T is
either isomorphic to

�
F⇥

�2 or to F⇥ (depending on whether G is ei-
ther GL2 or SL2), thus its irreducible smooth representations are one-
dimensional, defined as follows by a pair (�1,�2) of smooth C-valued
characters of F⇥ (resp. by one smooth character � : F⇥ ! C):

8 g =

✓
a b
0 c

◆
2 B, (�1 ⌦ �2)(g) := �1(a)�2(c)

�
resp. �(g) := �(a)

�
(3.1)

For the sake of clarity, we let C1(G) be the set of functions f : G ! C
such that there exists an open compact subgroup Kf of G satisfy-
ing f(gx) = f(g) for any pair (g, x) 2 G⇥ Kf. Note that C1(G) is nat-
urally endowed with an action of G by left-translations (said otherly,
this action is given by

⇡1(x)(f) :=
⇥
g 7! f(gx)

⇤

for all (g, x) 2 G⇥G), which defines (by construction) a smooth rep-
resentation

�
⇡1,C1(G)

�
of G over C. Parabolically induced represen-

tations of G are defined as certain subrepresentations of
�
⇡1,C1(G)

�

made of B-equivariant functions, as follows.

Definition 3.2 Let � denote an irreducible smooth representation
of T over C, as well as its inflation to an irreducible admissible repre-
sentation of B.

We set

IndG

B (�) :=
�
f 2 C1(G) | 8(b, g) 2 B⇥G, f(bg) = �(b) · f(g)

 

Then IndG

B (�) defines a (smooth) subrepresentation of
�
⇡1,C1(G)

�

over C, called parabolically induced from (B,�).
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More generally, a smooth representation of G is called paraboli-

cally induced if it is isomorphic to
�
⇡1, IndG

B (�)
�

for some irreducible
smooth representation � of T over C.

This construction actually defines a functor

IndG

B : Rep1C (T) ! Rep1C (G)

that is a right-adjoint to the natural restriction functor, as stated by
the next proposition.

Proposition 3.3 (Smooth Frobenius reciprocity) Let � be an irreducible

smooth representation of T over C and ⇡ be a smooth representation of G
over C. Then the evaluation at I2 induces an isomorphism of C-vector spaces

HomG

⇣
⇡, IndG

B (�)
⌘
'�! HomB (⇡|B,�)

that is functorial in both ⇡ 2 Rep1C (G) and � 2 Rep1C (T).

This strong connection is a key tool to prove the following result,
which fully characterizes the representation IndG

B (�). It is due to Lau-
re Barthel and Ron Livné [7, 8] for GL2 and to Ramla Abdellatif [2]
for SL2.

Theorem 3.4 Let � and ⌘ be irreducible smooth representations of T
over C.

1) The representation IndG
B (�) is irreducible iff � cannot be extended to

a smooth representation of G.

2) Letting 1 denote the trivial representation, IndG
B (1) is a length 2 rep-

resentation of G that fits into the following non-split short exact se-

quence:

0 �! 1 �! IndG
B (1) �! StG �! 0 ,

where StG is called the Steinberg representation.

3) We have: IndG
B (�) ' IndG

B (⌘) iff � ' ⌘.

We postpone the proof of this theorem to the next subsection, and
rather make now some remarks on its contents. First, let us explicit in
a more concrete way the condition given on � in the first point of the
theorem — we kept the general formulation of [1, Théorème 5.1.2],
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since this theorem actually holds for arbitrary (quasi-split) groups
of semi-simple rank 1. We saw previously (see (3.1)) that irreducible
smooth representations of T are characters, so saying that � extends
to a smooth representation of G means that � is the restriction to T
of a smooth character of G. Since the derived group of G is SL2, any
smooth character of G factors through the determinant map

det : G ! F⇥.

Thus we obtain the following reformulation of our irreducibility con-
dition on IndG

B (�):

• if G = SL2(F), then IndG
B (�) is irreducible iff � is not the trivial

character 1;

• if G = GL2(F), then IndG
B (�) is irreducible iff � is not of the

form � � det for some smooth character � : F⇥ ! C. With the
notations of (3.1), this is equivalent to say that �1 6= �2.

When � = � � det with � : F⇥ ! C is a smooth character, it is straight-
forward to check that IndG

B (�) is isomorphic to (� � det)⌦ IndG
B (1),

thus the second assertion of Theorem 3.4 takes care of any reducible
parabolically induced representation of G.

Remark 3.5 Theorem 3.4 is clearly wrong when C is not of charac-
teristic p. Indeed:

• over the field C of complex numbers, there exists a smooth
character of G whose restriction to T induces an irreducible
representation of G, hence our irreducibility criterion becomes
wrong. Moreover, the Steinberg representation can occur as sub-
representation of some parabolically induced representation
of G over C, what does not happen for p-modular represen-
tations (as appears from the second assertion of the theorem).
More details on these phenomena are given in [12, page 65];

• over a field of prime characteristic ` 6= p, parabolically induced
representations can be of length strictly greater than 2, unlike
what claims the second assertion of our theorem. For instance,
when p = 3 and ` = 3, then IndG

B (1) is of length 3, as explained
in [33, page 99].



18 R. Abdellatif

3.2 Proving Theorem 3.4

Since parabolically induced representations are by construction de-
fined from representations of B, a natural idea to initiate their study
is to consider their restrictions as representations of B and see what
happens. Since the elements of the underlying vector spaces are func-
tions over G that are B-equivariant, they can be seen as functions over
the quotient B\G.

Now recall that Bruhat decomposition states that G = B t Bw0U,
where

w0 =

✓
0 -1
1 0

◆
2 K

is a representative of a generating element of the Weyl group

W ' Z/2Z

of G. All this ensures that, given an irreducible smooth representa-
tion � of T over C, the map that sends an element of IndG

B (�) to
its value at I2 is a surjective linear map IndG

B (�) ! C that is com-
patible with the action of B on both sides when C is endowed with
the action defined by �. In other words, it provides a morphism '�

of Rep1C (B) from IndG
B (�) to �. It is straightforward to check that its

kernel ker'� is the subspace of elements of IndG
B (�) whose support

lies in Bw0U. The keystone of the proof of Theorem 3.4 lies in the
following proposition.

Proposition 3.6 The representation of B carried by ker'� is irreducible.

To prove this result, we first note that any element of V� := ker'�

is a smooth function, hence has support in a double coset of the
form Bw0Uf, where Uf is an open compact subgroup of U (that de-
pends of course of the function). This said, it implies that, as a rep-
resentation of B, V� is isomorphic to

�
⇡�,C1c (U)

�
, where C1c (U) de-

notes the space of compactly supported smooth functions from U
to C, and ⇡� is the action of B on C1c (U) defined as follows:
8b = tu2B = TU, 8f 2 C1c (U), 8v 2 U,

�
⇡�(f)

�
(v) := �

�
w0tw

-1

0

�
f
�
t-1vtu

�
. (3.2)

One can make this formula very explicit as G is a subgroup of GL2(F),
but this is not very enlightening so we choose to avoid this.
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We are hence reduced to show that
�
⇡�,C1c (U)

�
is an irreducible

representation of B. This relies on the following proposition and
lemma, left as an exercise to the reader (as well as extensively proven
in [1, Chapters 3 and 5] for the proposition, and [1, Lemma 2.1.9] for
the lemma, in case the reader does not have the time or the will
to try solving this exercise). Note that the lemma will also play a
crucial role in the study of supercuspidal p-modular representations
of G (see Section 4).

Proposition 3.7 1) U admits an exhaustive increasing filtration by

open compact pro-p-subgroups.

2) Any open compact subgroup of U provides (by conjugation by pow-

ers of a well-chosen t0 2 T ) a decreasing sequence of open compact

neighbourhoods of I2 in U.*

3) For any open compact subgroup U0 of U, the space C1c (U0)
U0

of U0-invariant elements of C1c (U) supported in U0 is a 1-dimension-

al C-vector space (that is generated by the characteristic function 1U0

of U0).

Lemma 3.8 Any non-zero smooth representation of a pro-p-group over C
has non-zero fixed vectors.

Indeed, assume that W is a non-zero B-subrepresentation of ⇡�

and pick a non-zero element f in W. By the first point of Proposi-
tion 3.7, there exists an open compact pro-p-subgroup U0 that con-
tains the support of f. Lemma 3.8 and the third point of Proposi-
tion 3.7 then imply that the characteristic function of U0 belongs to
the U0-subrepresentation of ⇡� generated by f. A fortiori, this proves
that 1U0

belongs to W, and one can easily check (using the two first
statements of Proposition 3.7) that the B-subrepresentation of ⇡� gen-
erated by 1U0

is actually ⇡�, so we have W = ⇡� by double inclusion.
This proves Proposition 3.6, which ensures that the B-representa-

tion IndG
B (�)|B is of length 2 and fits into the following short exact

sequence:
0 �! V� �! IndG

B (�)|B �! � �! 0 . (3.3)

Using Proposition 3.7, one can prove (as in [2, Proposition 2.6] for SL2

and in [1, Proposition 5.3.9] for a more general framework that con-
tains GL2 and SL2) the following statement.

* For G = SL2(F), we have for instance t0 =

✓
$-1

F
0

0 $F

◆
.
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Proposition 3.9 The short exact sequence (3.3) splits if, and only if, �
extends to a smooth character of G.

We can now finish the proof of Theorem 3.4. If IndG
B (�) is a re-

ducible representation of G, then it must be of length 2 (since its
restriction to B is) and have a subquotient V of dimension 1 (whose
restriction to B is given by �), so � extends to a smooth representa-
tion V of G. The converse holds thanks to Proposition 3.9, thus the
two first assertions of Theorem 3.4 follow. The third point follows
directly from (3.3) by smooth Frobenius reciprocity (Proposition 3.3)
and is left as an exercise to the reader (see also [1, Chapter 5]).
 At this stage, we have built all irreducible smooth representa-

tions of G that come as subquotients of a parabolically induced rep-
resentations. As proven in a uniform way in [1, Sections 5.4 and 5.5],
there is no non-trivial isomorphism among them, which means that
we have proven the following classification result.

Theorem 3.10 Any irreducible subquotient of a parabolically induced rep-

resentation is isomorphic to exactly one of the following representations:

1) a smooth character of G;

2) a parabolically induced representation IndG
B (�), where � is a smooth

character of T that does not extend to a smooth character of G;

3) a twist StG ⌦� of the Steinberg representation by a smooth character �
of G.

Note that the only finite-dimensional representations in this list
are the smooth characters of G. In analogy with the complex setting,
the representations of the second point are sometimes called princi-

pal series representations, while those of the third point may be called
special series representations.

Now that we are done with parabolic induction, we are left with
the following question: are there other irreducible smooth represen-
tations of G? If so, can we classify them all? Before trying to solve
these problems in the next section, let us introduce some useful vo-
cabulary.

Definition 3.11 A supercuspidal representation of G over C is an ir-
reducible admissible (hence smooth by definition) representation ⇡
of G for which there is no pair (P,�), where P = MU is a proper
parabolic subgroup of G with unipotent radical U and Levi factor M,
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and � is an irreducible admissible representation of M over C, such
that ⇡ is isomorphic to a subquotient of IndG

P (�).

Remark 3.12 The admissibility assumption is crucial here on both
sides.

• Regarding G since, unlike the complex case (see below), there
exists irreducible smooth representations of GL2(F) that are
NOT admissible. For instance, Daniel Lê proved in [24] that
this happens when F is an unramified cubic extension of Qp.

• Regarding M, because one can actually prove that any irre-
ducible representation of G is a subquotient of IndG

B (�) for
some representation � of G, see [6, VI.1]

This is clearly different from the classical setting of complex represen-
tations, where it is well known [12, Page 73] that irreducible smooth
representations are automatically admissible. This automatic admissi-
bility also holds for `-modular representations (with ` 6= p) of GLn(F),
see [33, Page 102].

4 From supercuspidality to supersingularity

The goal now is to classify all supercuspidal representations of G,
as defined above (Definition 3.11). Note that we are not looking
after an empty set, as proven by Florian Herzig, Karol Kozioł
and Marie-France Vignéras in [18]. The title of the latter reference
suggests that the actual property we study for p-modular representa-
tions is not supercuspidality, but supersingularity. Following the pio-
neering work of Laure Barthel and Ron Livné, itself inspired from the
ideas developed by Colin Bushnell and Phil Kutzko in their seminal
work for complex representations [13], we will define supersingular-
ity for representations of our group G and see that, for irreducible
admissible representations, it is equivalent to supercuspidality.

4.1 From parabolic to parahoric: motivation

The upshot is that instead of working with parabolic induction, we
consider parahoric induction, which means that we will induce rep-
resentations of K or I, instead of B, and see what happens. From this
idea originated the theory of types, which allowed Colin Bushnell
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and Phil Kutzko to classify all irreducible smooth (hence admissible)
complex representations of GLN(F) and to draw a road-map for ar-
bitrary G that still motivates many current trends in representation
theory.

In the p-modular setting, this idea makes sense without referring
to the complex case. Indeed, recall that Lemma 3.8 ensures in particu-
lar that there exists no non-trivial irreducible smooth representation
for pro-p-groups. As a consequence, any irreducible smooth repre-
sentation of K (resp. of I) must be trivial on its pro-p-radical (i.e. its
largest normal pro-p-subgroup), hence factors through an irreducible
representation of K/K(1) (resp. of I/I(1)). Good news is that this quo-
tient is a finite group, respectively given by G(kF) or T(kF) in our
case, for which we know very well the irreducible representations
over C.

• Letting q = pf denote the cardinality of kF, any irreducible rep-
resentation of G(kF) is isomorphic to Sym~r(C2)⌦ (� � det) for
some f-tuple ~r of nonnegative integers strictly smaller than p
and some character � of k⇥

F
; see [1] or [20] for an explicit defi-

nition of Sym~r(C2).

• Since T(kF)'
�
k⇥
F

�a with a=1 (resp. 2) and G=SL2 (resp. GL2),
irreducible representations of T(kF) are just given by an a-tuple
of characters of k⇥

F
, the latter matching with (q- 1)th roots of

unity in C as k⇥
F

is a cyclic group.

Remark 4.1 For once, things are easier in the p-modular setting
than in the complex one! Indeed, irreducible smooth complex repre-
sentations of K are much harder to classify than what we did above:
see for instance [12, §6] for the group GL2, which already covers 4
full pages.

4.2 Compact induction: when our world collapses

Parahoric induction is a special instance of compact induction. We
will define right now for an arbitrary open subgroup H of G that is
compact mod center, i.e. such that H/Z is compact (where Z denotes
the center of G).

Definition 4.2 Let (�,V) be a smooth representation of H over C.
We let indG

H(�) denote the space of functions f : G ! V satisfying the
two following conditions:
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• the support of f in G is compact mod center;

• there exists an open compact subgroup Kf of G such that

f(hgk) = �(h)
�
f(g)

�

for any triple (h, g, k) 2 H⇥G⇥Kf.

This space is naturally endowed with a smooth action of G by right
translations. The resulting representation of G is said to be compactly

induced from (H,�).

As their parabolic counterpart, compactly induced representations
satisfy an adjunction property with respect to the restriction functor.

Proposition 4.3 (Compact Frobenius reciprocity) Let � be an irre-

ducible smooth representation of H over C and ⇡ be a smooth representation

of G over C. Then the evaluation at I2 induces an isomorphism of C-vector

spaces

HomG

⇣
indG

H(�),⇡)
⌘
'�! HomH (�,⇡|H)

that is functorial in both ⇡ 2 Rep1C (G) and � 2 Rep1C (H).

When working with complex representations, compactly induced
representations give the missing pieces of the classification. We do
not explain this in detail here, since this is very nicely done for GL2(F)
in the first fifteen sections of [12]. We only want to stress out the
main tools used to get there, and explain how they dramatically fail
for p-modular representations. First, we already saw that irreducible
smooth complex representations are always admissible, and that this
is false for p-modular representations. Another key result is the fol-
lowing, which comes from [12, Theorem 11.4] for GL2(F) and will
later be proven false for p-modular representations.

Theorem 4.4 Let � be an irreducible smooth representation of KZ such

that:

8 g 2 G,
�
HomG

Kg\K(�
g,�) 6= {0}

�
() (g 2 K) .

Then indG
K(�) is irreducible and (super)cuspidal.

Regarding the tools rather than the results, the existence of Haar
measures (defined from non-linear S-valued functionals on C1c (G)
for representations over S, see [12, page 26] for more precise state-
ments) is crucial in the study of complex representations to
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define Hecke algebras and to use the theory of matrix coefficients.
It is not difficult to see that index p subgroups of G would lead to a
terrible non-sense such as 0 = 1 if C-valued Haar measures were to
exist.

Finally, another key tool in the classical theory of types is given
by the level of an irreducible smooth representation, defined as the
smallest nonnegative integer n for which non-zero K(n+ 1)-fixed vec-
tors exist. In particular, level 0 representations (also called unramified

representations) are crucial, but what matters more is the existence of
representations of positive level. For p-modular representations, this
obviously fails because of Lemma 3.8, which explicitly states that
there is no positive level representation.

Now that we stated what we cannot do, let us see what we can do.

4.3 Spherical Hecke algebras and cokernel representations

The big step towards the development of p-modular representa-
tion theory took place in the mid-nineties, when Laure Barthel
and Ron Livné [7, 8] used parahoric induction to characterize super-
cuspidal representations by their eigenvalues under certain spheri-
cal Hecke actions. Let us first define the Hecke algebras involved in
this context.

Definition 4.5 Let H be an open compact mod center subgroup of G
and � be a smooth representation of H. The Hecke algebra attached

to (H,�) is the endomorphism algebra

H(G,H,�) := EndC[G]

�
indG

H(�)
�
.

We know from compact Frobenius reciprocity (Proposition 4.3) that,
given a smooth representation ⇡ of G, its space

⇡H ' HomH(1,⇡)

of H-invariant vectors is isomorphic (as a C-vector space) to

HomG

�
indG

H(1),⇡
�
,

thus is naturally endowed with a structure of right H(G,H, 1)-mod-
ule. In particular, if H is the pro-p-radical of a parahoric sub-
group (as K or I), it follows from Lemma 3.8 that ⇡H is a non-zero
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right H(G,H, 1)-module, and the structure of this module can actu-
ally provide interesting information on the representation ⇡. This is
for instance the case when:

• H = K(1) is the pro-p-radical of K, with H
�
G,K(1), 1

�
being

closely related to H(G,K,�) for � some irreducible smooth rep-
resentation of K (the latter being called spherical Hecke algebras);

• H = I(1) is the pro-p-radical of I, with H
�
G, I(1), 1

�
being closely

related to H(G, I,�) for � some semi-simple smooth representa-
tion of I (the latter being called Iwahori-Hecke algebras).

By lack of space and time, we will not address the second case in
these notes. Let us only mention that it has been the source of many
interesting results that help to understand how different the the-
ory of p-modular representations is from its complex and `-modular
counterparts, and that it is currently a motivation to several fruit-
ful researches led in the domain. Let us also point out that, when G
is GL2, we actually consider the Hecke algebra attached to KZ,
where Z ' F⇥ denotes the center of G, with � being extended (by the
choice of any smooth character of Z that extends the central character
of �) to a smooth representation of KZ. To keep uniform notations,
we will denote by K the group K (resp. KZ) when G is SL2 (resp. GL2)
and still write � for the corresponding representation of K.

From now on, we focus on the spherical Hecke case, meaning that
we look at right H(G,K,�)-modules for � an irreducible smooth rep-
resentation of K over C. The next proposition, proven in [7, Propo-
sition 8] for GL2 and in [2, Corollaire 3.9] for SL2, shows how nice
these algebras are. As can be seen in the aforementioned references,
the proof is basically based on Cartan decomposition of G with re-
spect to K and on explicit matrix calculations.

Proposition 4.6 Let � be an irreducible smooth representation of K, ex-

tended to an irreducible smooth representation of KZ when G is GL2(F).
Then there exists an operator T� 2 H(G,K,�) such that the spherical Hecke

algebra H(G,K,�) is exactly the polynomial algebra C[T�].

Note that the action of T� on elements of indG

K(�) is explicit and
can be very nicely described, at least regarding the support of the
functions involved in the game, on the Bruhat–Tits tree of G. These
descriptions are given in [7, Section 5] for GL2 and [2, Section 3.2.3]
for SL2.
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The great idea of Laure Barthel and Ron Livné has been to intro-
duce the following cokernel representations as replacement for the
usual compactly induced representations.

Definition 4.7 For � an irreducible smooth representation of K
and � 2 C, we define ⇡(�, �) as the smooth representation of G given
by

⇡(�, �) := Coker (T� - �) =
indG

K(�)

(T� - � id)
�

indG

K(�)
� .

The next theorem, due to Laure Barthel and Ron Livné for GL2(F)
and to Ramla Abdellatif for SL2(F) (see respectively [7, Theorem 33]
and [2, Théorèmes 3.18 and 3.36]), shows how important the under-
standing of these cokernel representations is to classify p-modular
representations of G. Also note that it proves the reducibility
of indG

K(�) in general, even under the assumptions of Theorem 4.4.
Once more, we see how far from each other are complex and p-mo-
dular representation theories for p-adic groups.

Theorem 4.8

1) Any irreducible admissible representation of G over C is a quotient

of ⇡(�, �) for some pair (�, �) as in Definition 4.7.

2) If � is non-zero, then any subquotient of ⇡(�, �) is non supercuspidal.

The second statement of this theorem can actually be made more
precise, since ⇡(�, �) can be fully described as soon as � is non-zero.
As proven in [7, Theorem 33] and [2, Théorème 3.18], it is generically
a parabolically induced representation, and it provides a non-trivial
extension of a smooth character of G by the corresponding twist of
the Steinberg representation in the remaining cases. We hence obtain
that supercuspidal representations will appear as quotients of ⇡(�, 0)
for � covering all irreducible smooth representations of K. This leads
to the following notion of supersingularity.

Definition 4.9 An irreducible admissible representation of G is su-

persingular when it is isomorphic to a quotient of ⇡(�, 0) for some
irreducible smooth representation � of K.

Said differently, supersingular representations of G are those on
which a suitable spherical Hecke algebra acts as trivially as possi-
ble (since its generator T� acts by 0 on ⇡(�, 0)), which is consistent
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with other notions of supersingularity that appear in number theory.
What we noticed after stating Theorem 4.8 can therefore be rephrased
as follows: supercuspidality implies supersingularity. The converse is ac-
tually true, but it is a highly non-trivial result (see [2, Corollaire 3.41]
and [7, Corollary 36]).

Theorem 4.10 For irreducible admissible representations of G, being su-

percuspidal is equivalent to begin supersingular.

Remark 4.11 The notion of supersingularity depends a priori on
the choice of a maximal open compact subgroup K of G. For the
groups considered in these notes (namely GL2 and SL2), it is not too
difficult to check (independently from Theorem 4.10, which provides
another proof of this claim) that this choice does not impact our re-
sults, meaning that we recover exactly the same representations for
any choice of K. For other groups, this question is more subtle to
solve and requires much more work to prove that the notion of su-
persingularity (extended to arbitrary groups in the colossal work [6]
of Noriyuki Abe, Guy Henniart, Florian Herzig and Marie-France Vi-
gnéras) is actually independent of the choice of K when one consider
irreducible admissible representations of G, and is also equivalent to
supercuspidality.

4.4 When F = Qp: some classification results

As it will clearly appear in Section 5.1 below, there is a huge gap
between what happens when F = Qp, which is now well understood,
and what happens for other values of F, which remains very myste-
rious. The main breakthrough has been provided in 2001 by Chris-
tophe Breuil, who proved the following result [10, Théorème 1.1]
for GL2(Qp).

Theorem 4.12 For any irreducible smooth representation � of GL2(Zp),
the cokernel representation ⇡(�, 0) is an irreducible admissible representa-

tion of GL2(Qp).

In particular, this result states that supercuspidal representations
of GL2(Qp) are exactly the supersingular cokernel representations.
Breuil also studied the existence of non-trivial isomorphisms between
such representations [10, Théorème 1.3] and managed to get a com-
plete classification of isomorphism classes of irreducible admissible
representations of GL2(Qp). This allowed him to state the first p-mo-
dular semi-simple local Langlands correspondence ever [10, Défi-
nition 4.2.4].
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In 2010, Ramla Abdellatif proved [2, Théorème 3.26 and Corol-
laire 4.8] the counterpart of this statement for SL2(Qp). As can be
noticed below, there is already a huge difference in the behaviour of
the cokernel representations, which are not irreducible at all, even
when F = Qp.

Theorem 4.13 Let � be an irreducible smooth representation of SL2(Zp)
over C.

1) The cokernel representation ⇡(�, 0) fits into a non-split short exact

sequence of representations of SL2(Qp) of the following form:

0 �! ⇡↵

� �! ⇡(�, 0) �! ⇡� �! 0 ,

where ↵ =

✓
p 0
0 1

◆
is an element of GL2(Qp) that conjugates the

two classes of maximal open compact subgroups in SL2(Qp).

2) The representation ⇡� is irreducible admissible, and ⇡↵
� is isomorphic

to ⇡�↵ .

Proving this theorem allowed her to provide a full classification of
irreducible smooth (admissible, see [2, Section 3.7.5] on how to drop
this assumption) representations of SL2(Qp) and to formulate the
first p-modular semisimple local Langlands correspondence involv-
ing actual L-packets of representations [2, Définition 4.13]. For the
sake of completeness, let us mention that Chuangxun Cheng proved
independently some of these results [15].

5 What comes next? Some open questions

Let us finish these notes by some interesting facts and open questions
that remain very mysterious, even for GL2 and SL2. This list is cer-
tainly not exhaustive, but these simple questions may already fully
convince the reader of how wildly surprising and badly understood
remain p-modular representations of p-adic groups.

5.1 Regarding GL2 and SL2

The classification results we gave above when F = Qp are very spe-
cific to this case. Indeed, when F is a non-trivial extension of Qp,
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many results have been proven to deny what was expected to hold,
based on the observations done in the F = Qp case. For instance:

• we already mentioned Daniel Lê’s work about the existence of
non-admissible irreducible smooth representations of GL2(F)
for F being an unramified cubic extension of Qp, what is in
contrast with what we saw for GL2(Qp) (see Theorem 4.12).

• Benjamin Schraen [28] proved that, when F is a quadratic exten-
sion of Qp, then the cokernel representations ⇡(�, 0) of GL2(F)
are not of finite presentation. This result has been later ex-
tended to the case of arbitrary finite extensions of Qp by his
student Zhixiang Wu [36]. Note that the compatibility between
representations of GL2(F) and SL2(F) given by the natural re-
striction map (proven by Ramla Abdellatif in [2, Corollaires 3.19
and 3.26]) ensures that the same statements hold for cokernel
representations of SL2(F).

Let us also emphasize once again the difference with the complex
setting by a striking example. It directly follows from Maschke’s the-
orem that smooth representations of K over C are semisimple, i.e.
are isomorphic to a direct sum of irreducible smooth representations
of K. This statement is totally false for p-modular representations
of G, even when F = Qp, as proven by Stefano Morra for GL2(Qp)
and by him and Ramla Abdellatif for SL2(Qp) (see respectively [26]
and [5]).

Finally, let us note that most of the current work done in this set-
ting regards the case where F is of characteristic 0 (i.e. a finite exten-
sion of Qp), but the original setting is about F being a non-Archime-
dean local field of residue characteristic p. Actually, beyond the re-
sults of [2, 7, 8], nothing is known about the equal characteristic case,
even when F = Fp((t)). Understanding how supercuspidal repre-
sentations of GL2

�
Fp(t)

�
and SL2

�
Fp(t)

�
behave is for instance a

question that remains wide open for now.

5.2 Regarding other groups

Going beyond the cases of GL2 and SL2 remains a very hazardous
task that produced very little results so far. Some results have been
proven for groups of F-semisimple rank 1: the most general state-
ments are due to Ramla Abdellatif [1, Chapter 5] and to her and Ju-
lien Hauseux [3], while some special cases of unramified unitary
groups have been studied by Ramla Abdellatif [1, Chapter 4] and
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by Karol Kozioł alone [22] or with Peng Xu [23]. For the sake of
completeness, let us also mention that Xu reproved in his PhD thesis
some of the results of [1, Chapter 4]. In any case, the main question
remains unanswered so far: we have no clue about how to classify su-
percuspidal (or, equivalently, supersingular) representations of such
groups, even when F = Qp. The most promising step in this direction
comes from [3], which suggests a new idea to construct supersingular
representations, namely starting from irreducible smooth representa-
tions of minimal parabolic subgroups (as studied for instance in Mat-
thieu Vienney’s PhD thesis on representations of the Borel subgroup
of GL2(F), see [32]).

To conclude in direction of most ambitious people willing to know
what happens for arbitrary reductive groups, or more humbly
for GLn(F) when n is bigger than 2, let us say that the only re-
sult that is actually known is that for G being a connected reductive
group over F, irreducible admissible representations of G are classi-
fied up to supersingular representations of Levi factors of parabolic
subgroups of G (see [6]). This basically means that we are reduced
to study supersingular representations, but as can be guessed from
above, getting a complete classification seems for now out of reach.
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