Automorphisms of Zappa-Szép Products

Ratan Lal - Vipul Kakkar *

(Received Dec. 30, 2021; Accepted Mar. 15, 2022 - Comm. by A. Ballester-Bolinches)

Abstract

In this paper, we have found the automorphism group of the Zappa-Szép product of two groups. Also, we have computed the automorphism group of the Zappa-Szép product of a cyclic group of order m and a cyclic group of order p^{2}, where p is a prime.

Mathematics Subject Classification (2020): 20D45
Keywords: Zappa-Szép product; automorphism group

1 Introduction

A group G is the internal Zappa-Szép product of its two subgroups H and K if $\mathrm{G}=\mathrm{HK}$ and $\mathrm{H} \cap \mathrm{K}=\{1\}$. The Zappa-Szép product is a natural generalization of the semidirect product of two groups in which neither of the factor is required to be normal. If G is the internal Zappa-Szép product of H and K, then K appears as a right transversal to H in G . Let $\mathrm{h} \in \mathrm{H}$ and $\mathrm{k} \in \mathrm{K}$. Then $\mathrm{kh}=\sigma(\mathrm{k}, \mathrm{h}) \tau(\mathrm{k}, \mathrm{h})$, where $\sigma(k, h) \in H$ and $\tau(k, h) \in K$. This determines the maps

$$
\sigma: \mathrm{K} \times \mathrm{H} \rightarrow \mathrm{H} \text { and } \tau: \mathrm{K} \times \mathrm{H} \rightarrow \mathrm{~K} .
$$

These maps are the matched pair of groups. We denote $\sigma(k, h)=k \cdot h$ and $\tau(k, h)=k^{h}$. These maps satisfy the following conditions (see [3])

[^0](C1) $1 \cdot h=h$ and $k^{1}=k$,
(C2) $k \cdot 1=1=1^{h}$,
(C3) $\mathrm{kk}^{\prime} \cdot \mathrm{h}=\mathrm{k} \cdot\left(\mathrm{k}^{\prime} \cdot \mathrm{h}\right)$,

(C5) $k \cdot\left(h^{\prime}\right)=(k \cdot h)\left(k^{h} \cdot h^{\prime}\right)$,
(C6) $k^{h h^{\prime}}=\left(k^{h}\right)^{h^{\prime}}$,
for all $h, h^{\prime} \in H$ and $k, k^{\prime} \in K$.
On the other hand, let H and K be two groups. Let
$$
\sigma: \mathrm{K} \times \mathrm{H} \rightarrow \mathrm{H} \quad \text { and } \quad \tau: \mathrm{K} \times \mathrm{H} \rightarrow \mathrm{~K}
$$
be two maps defined by $\sigma(k, h)=k \cdot h$ and $\tau(k, h)=k^{h}$ satisfying the above conditions. Then, the external Zappa-Szép product $\mathrm{G}=\mathrm{H} \bowtie \mathrm{K}$ of H and K is the group defined on the set $\mathrm{H} \times \mathrm{K}$ with the binary operation defined by
$$
(h, k)\left(h^{\prime}, k^{\prime}\right)=\left(h\left(k \cdot h^{\prime}\right), k^{h^{\prime}} k^{\prime}\right) .
$$

The internal Zappa-Szép product is isomorphic to the external Zap-pa-Szép product (see [3, Proposition 2.4, p. 4]). We will identify the external Zappa-Szép product with the internal Zappa-Szép product.

The Zappa-Szép product of two groups was introduced by G. Zappa in [13]. J. Szép studied such type of products in a series of papers (few of them are [7],[8],[9],[10]). From the QR decomposition of matrices, one concludes that the general linear group $\operatorname{GL}(n, \mathbb{C})$ is a Zappa-Szép product of the unitary group and the group of upper triangular matrices. Z. Arad and E. Fisman in [1] studied the finite simple groups as a Zappa-Szép product of two groups H and K with the order of H and K coprime. In the same paper, they studied the finite simple groups as a Zappa-Szép product of two groups H and K with one of H or K is p -group, where p is a prime. From the main result of [4], one observes that a finite group G is solvable if and only if G is a Zappa-Szép product of a Sylow p-subgroup and a Sylow p-complement.

Note that, if either of the actions $k \cdot h$ or k^{h} is a group homomorphism, then the Zappa-Szép product reduces to the semidirect prod-
uct of groups. M.J. Curran [2] and N.C. Hsu [5] studied the automorphisms of the semidirect product of two groups as the 2×2 matrices of maps satisfying some certain conditions. In this paper (with the same terminology as in [2] and [5]), we have found the automorphism group of the Zappa-Szép product of two groups as the 2×2 matrices of maps satisfying some certain conditions. As an application, we have found the automorphism group of the Zappa-Szép product of two cyclic groups in which one is of order p^{2} and other is of order m, where p is a prime. Throughout the paper, \mathbb{Z}_{n} denotes the cyclic group of order n and $U(n)$ denotes the group of units of n. Also, $\operatorname{Aut}(\mathrm{G})$ denotes the group of all automorphisms of a group G. Let U and V be groups. Then CrossHom(U, V) denotes the group of all crossed homomorphisms from U to V . Also, if U acts on V , then $\operatorname{Stab}_{\mathrm{u}}(\mathrm{V})$ denotes the stabilizer of V in U .

2 Structure of the automorphism group

Let

$$
\mathrm{G}=\mathrm{H} \bowtie \mathrm{~K}
$$

be the Zappa-Szép product of two groups H and K . Let $\mathrm{U}, \mathrm{V}, \mathrm{W}$ be groups, and $\operatorname{Map}(\mathrm{U}, \mathrm{V})$ denote the set of all maps between U and V . If $\phi, \psi \in \operatorname{Map}(U, V)$ and $\eta \in \operatorname{Map}(V, W)$, then $\phi+\psi \in \operatorname{Map}(U, V)$ is defined by

$$
(\phi+\psi)(u)=\phi(u) \psi(u)
$$

$\eta \phi \in \operatorname{Map}(U, W)$ is defined by

$$
\eta \phi(\mathfrak{u})=\eta(\phi(\mathfrak{u})),
$$

$\phi \cdot \psi \in \operatorname{Map}(\mathrm{U}, \mathrm{V})$ is defined by

$$
(\phi \cdot \psi)(\mathfrak{u})=\phi(\mathfrak{u}) \cdot \psi(\mathfrak{u})
$$

and $\phi^{\psi} \in \operatorname{Map}(\mathrm{U}, \mathrm{V})$ is defined by

$$
\phi^{\psi}(\mathfrak{u})=\phi(\mathfrak{u})^{\psi(u)},
$$

for all $u \in U$.

Let \mathcal{A} be the set of all matrices of the form

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right),
$$

with $\alpha \in \operatorname{Map}(\mathrm{H}, \mathrm{H}), \beta \in \operatorname{Map}(\mathrm{K}, \mathrm{H}), \gamma \in \operatorname{Map}(\mathrm{H}, \mathrm{K})$, and $\delta \in \operatorname{Map}(\mathrm{K}, \mathrm{K})$ satisfying the following conditions for all $h, h^{\prime} \in H$ and $k, k^{\prime} \in K$:
(A1) $\alpha\left(h^{\prime}\right)=\alpha(h)\left(\gamma(h) \cdot \alpha\left(h^{\prime}\right)\right)$;
(A2) $\gamma\left(h h^{\prime}\right)=\gamma(h)^{\alpha\left(h^{\prime}\right)} \gamma\left(h^{\prime}\right)$;
(A_{3}) $\beta\left(k k^{\prime}\right)=\beta(k)\left(\delta(k) \cdot \beta\left(k^{\prime}\right)\right)$;
(A4) $\delta\left(k k^{\prime}\right)=\delta(k)^{\beta\left(k^{\prime}\right)} \delta\left(k^{\prime}\right)$;
$\left(\mathrm{A}_{5}\right) \beta(\mathrm{k})(\delta(\mathrm{k}) \cdot \alpha(\mathrm{h}))=\alpha(\mathrm{k} \cdot \mathrm{h})\left(\gamma(\mathrm{k} \cdot \mathrm{h}) \cdot \beta\left(\mathrm{k}^{\mathrm{h}}\right)\right)$;
(A6) $\delta(k)^{\alpha(h)} \gamma(h)=\gamma(k \cdot h)^{\beta\left(k^{h}\right)} \delta\left(k^{h}\right)$;
(A7) for any $h^{\prime} k^{\prime} \in G$, there exists a unique $h \in H$ and $k \in K$ such that $h^{\prime}=\alpha(h)(\gamma(h) \cdot \beta(k))$ and $k^{\prime}=\gamma(h)^{\beta(k)} \delta(k)$.

Then, the set \mathcal{A} forms a group with the binary operation defined by

$$
\left(\begin{array}{ll}
\alpha^{\prime} & \beta^{\prime} \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{ll}
\alpha^{\prime} \alpha+\gamma^{\prime} \alpha \cdot \beta^{\prime} \gamma & \alpha^{\prime} \beta+\gamma^{\prime} \beta \cdot \beta^{\prime} \delta \\
\left(\gamma^{\prime} \alpha\right)^{\beta^{\prime} \gamma}+\delta^{\prime} \gamma & \left(\gamma^{\prime} \beta\right)^{\beta^{\prime} \delta}+\delta^{\prime} \delta
\end{array}\right) .
$$

The identity element is $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and the inverse of $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathcal{A}$, which is obtained using the factorization

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & \widehat{\beta} \\
\gamma & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & \delta
\end{array}\right),
$$

is given by

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)^{-1}=\left(\begin{array}{cc}
(1-\widehat{\beta} \gamma)^{-1} \alpha^{-1} & -(1-\widehat{\beta} \gamma)^{-1} \widehat{\beta} \\
\delta^{-1}(-\gamma)(1-\widehat{\beta} \gamma)^{-1} & \delta^{-1}(-\gamma)\left(-(1-\widehat{\beta} \gamma)^{-1} \widehat{\beta}\right)+\delta^{-1}
\end{array}\right),
$$

where $\widehat{\beta}=\alpha^{-1} \beta \delta^{-1}$.
Proposition 2.1 Let $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathcal{A}$. Then $\alpha(1)=1=\beta(1)=\gamma(1)=\delta(1)$.

Proof - Let $h \in H$ be any element. Then, using (A1),

$$
\alpha(h)=\alpha(h 1)=\alpha(h)(\gamma(h) \cdot \alpha(1))
$$

which implies that $\gamma(\mathrm{h}) \cdot \alpha(1)=1=\gamma(\mathrm{h}) \cdot 1$ by (C2). Thus

$$
\gamma(h)^{-1} \cdot(\gamma(h) \cdot \alpha(1))=\gamma(h)^{-1} \cdot(\gamma(h) \cdot 1) .
$$

Hence, using (C 1), $\alpha(1)=1$.
Using (A2), $\gamma(\mathrm{h})=\gamma(\mathrm{h} 1)=\gamma(\mathrm{h})^{\alpha(1)} \gamma(1)$. Using (C1), $\gamma(1)=1$. Using a similar argument, we get $\beta(1)=1$ and $\delta(1)=1$.

Let us define the kernel of the map $\alpha \in \operatorname{Map}(\mathrm{H}, \mathrm{H})$ as usual for groups, that is, $\operatorname{ker}(\alpha)=\{h \in H \mid \alpha(h)=1\}$. Here, we should remember that the map α need not to be a homomorphism. $\operatorname{ker}(\beta), \operatorname{ker}(\gamma)$ and $\operatorname{ker}(\delta)$ are defined in the same sense.

Lemma 2.2 The following holds:
(i) $\operatorname{ker}(\alpha) \leqslant \mathrm{H}$,
(ii) $\operatorname{ker}(\beta) \leqslant K$,
(iii) $\operatorname{ker}(\gamma) \leqslant \mathrm{H}$,
(iv) $\operatorname{ker}(\delta) \leqslant K$,
(v) $\operatorname{ker}(\alpha) \cap \operatorname{ker}(\gamma)=\{1\}$,
(vi) $\operatorname{ker}(\beta) \cap \operatorname{ker}(\delta)=\{1\}$.

Proof - (i) Let $h, h^{\prime} \in \operatorname{ker}(\alpha)$. Then using (A1) and (C2),

$$
\alpha\left(\mathrm{hh}^{\prime}\right)=\alpha(\mathrm{h})\left(\gamma(\mathrm{h}) \cdot \alpha\left(\mathrm{h}^{\prime}\right)\right)=\gamma(\mathrm{h}) \cdot 1=1 .
$$

Also, $1=\alpha(1)=\alpha\left(h^{-1} h\right)=\alpha\left(h^{-1}\right)\left(\gamma\left(h^{-1}\right) \cdot 1\right)$. Thus, $\alpha\left(h^{-1}\right)=1$. Hence, $h h^{\prime}, h^{-1} \in \operatorname{ker}(\alpha)$ and so $\operatorname{ker}(\alpha) \leqslant H$.
(ii) One can easily prove it using a similar argument as in (i).
(iii) Let $h, h^{\prime} \in \operatorname{ker}(\gamma)$. Then using (A2) and (C2),

$$
\gamma\left(h h^{\prime}\right)=\gamma(h)^{\alpha\left(h^{\prime}\right)} \gamma\left(h^{\prime}\right)=1^{\alpha\left(h^{\prime}\right)}=1 .
$$

Also, $1=\gamma(1)=\gamma\left(\mathrm{hh}^{-1}\right)=\gamma(\mathrm{h})^{\alpha\left(\mathrm{h}^{-1}\right)} \gamma\left(\mathrm{h}^{-1}\right)$. Then, $\gamma\left(\mathrm{h}^{-1}\right)=1$ and so, $\mathrm{hh}^{\prime}, \mathrm{h}^{-1} \in \operatorname{ker}(\mathrm{H})$. Hence, $\operatorname{ker}(\gamma) \leqslant \mathrm{H}$.
(iv) One can easily prove it using a similar argument as in (iii).
(v) Let $\mathrm{h} \in \operatorname{ker}(\alpha) \cap \operatorname{ker}(\gamma)$. Then $\alpha(\mathrm{h})=1=\gamma(\mathrm{h})$. Therefore,

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\binom{h}{1}=\binom{\alpha(h)}{\gamma(h)}=\binom{1}{1} .
$$

Since $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathcal{A}$ is a bijection, $h=1$. Hence, (v) holds.
(vi) One can easily prove it using a similar argument as in (v).

Theorem 2.3 Let $\mathrm{G}=\mathrm{H} \bowtie \mathrm{K}$ be the Zappa-Szép product of two groups H and K , and \mathcal{A} be as above. Then there is an isomorphism of groups between $\operatorname{Aut}(\mathrm{G})$ and \mathcal{A} given by

$$
\theta \longleftrightarrow\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right),
$$

where $\theta(\mathrm{h})=\alpha(\mathrm{h}) \gamma(\mathrm{h})$ and $\theta(\mathrm{k})=\beta(\mathrm{k}) \delta(\mathrm{k})$, for all $\mathrm{h} \in \mathrm{H}$ and $\mathrm{k} \in \mathrm{K}$.
Proof - Given $\theta \in \operatorname{Aut}(G)$, we define α, β, γ and δ by means of $\theta(h)=\alpha(h) \gamma(h)$ and $\theta(k)=\beta(k) \delta(k)$, for all $h \in H$ and $k \in K$. Now, for all $h, h^{\prime} \in H$,

$$
\begin{aligned}
& \theta\left(h h^{\prime}\right)=\theta(h) \theta\left(h^{\prime}\right)=\alpha(h) \gamma(h) \alpha\left(h^{\prime}\right) \gamma\left(h^{\prime}\right) \\
& \quad=\alpha(h)\left(\gamma(h) \cdot \alpha\left(h^{\prime}\right)\right) \gamma(h)^{\alpha\left(h^{\prime}\right)} \gamma\left(h^{\prime}\right) .
\end{aligned}
$$

Thus, $\alpha\left(h^{\prime}\right) \gamma\left(h^{\prime}\right)=\left(\alpha(h)\left(\gamma(h) \cdot \alpha\left(h^{\prime}\right)\right)\right)\left(\gamma(h)^{\alpha\left(h^{\prime}\right)} \gamma\left(h^{\prime}\right)\right)$. Therefore, by uniqueness of representation, we have (A1) and (A2). Using a similar argument, we get $\left(\mathrm{A}_{3}\right)$ and $\left(\mathrm{A}_{4}\right)$.

Now,

$$
\begin{gathered}
\theta(k h)=\theta\left((k \cdot h)\left(k^{h}\right)\right)=\theta(k \cdot h) \theta\left(k^{h}\right)=\alpha(k \cdot h) \gamma(k \cdot h) \beta\left(k^{h}\right) \delta\left(k^{h}\right) \\
=\alpha(k \cdot h)\left(\gamma(k \cdot h) \cdot \beta\left(k^{h}\right)\right) \gamma(k \cdot h)^{\beta\left(k^{h}\right)} \delta\left(k^{h}\right) .
\end{gathered}
$$

Also,

$$
\begin{aligned}
& \theta(k h)=\theta(k) \theta(h)=\beta(k) \delta(k) \alpha(h) \gamma(h) \\
& =\beta(k)(\delta(k) \cdot \alpha(h)) \delta(k)^{\alpha(h)} \gamma(h)
\end{aligned}
$$

Therefore, by the uniqueness of representation,

$$
\beta(k)(\delta(k) \cdot \alpha(h))=\alpha(k \cdot h)\left(\gamma(k \cdot h) \cdot \beta\left(k^{h}\right)\right)
$$

and

$$
\delta(k)^{\alpha(h)} \gamma(h)=\gamma(k \cdot h)^{\beta\left(k^{h}\right)} \delta\left(k^{h}\right)
$$

which proves (A_{5}) and (A6). Finally, (A_{7}) holds because θ is onto. Thus, to every $\theta \in \operatorname{Aut}(G)$ we can associate the matrix

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \mathcal{A} .
$$

This defines a map

$$
\mathrm{T}: \operatorname{Aut}(\mathrm{G}) \longrightarrow \mathcal{A}
$$

given by

$$
\theta \longmapsto\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

Now, if $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathcal{A}$ satisfying the conditions (A1)-(A7), then we associate to it, the map

$$
\theta: G \longrightarrow \mathrm{G}
$$

defined by

$$
\theta(h)=\alpha(h) \gamma(h) \quad \text { and } \quad \theta(k)=\beta(k) \delta(k)
$$

for all $h \in H$ and $k \in K$. Using (A1)-(A6), one can check that θ is an endomorphism of G. Also, by (A7), the map θ is onto. Now, let $h k \in \operatorname{ker}(\theta)$. Then $\theta(h k)=1$. Therefore,

$$
\alpha(h)(\gamma(h) \cdot \beta(k)) \gamma(h)^{\beta(k)} \delta(k)=1
$$

and so, by the uniqueness of representation

$$
\alpha(h)(\gamma(h) \cdot \beta(k))=1 \quad \text { and } \quad \gamma(h)^{\beta(k)} \delta(k)=1 .
$$

Again, by the uniqueness of representation and using (C_{1}), (C_{2}), (C_{3}) and (C6), we get

$$
\alpha(h)=1=\gamma(h) \quad \text { and } \quad \beta(k)=1=\delta(k) .
$$

Therefore, by Lemma 2.2 (v) and (vi), $h=1=k$ and so, $\operatorname{ker}(\theta)=\{1\}$. Thus, θ is one-one and hence, $\theta \in \operatorname{Aut}(\mathrm{G})$. Thus, T is a bijection. Let α, β, γ and δ be the maps associated with θ and $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ and δ^{\prime}
be the maps associated with θ^{\prime}. Now, for all $h \in H$ and $k \in K$, we have

$$
\begin{gathered}
\theta^{\prime} \theta(\mathrm{h})=\theta^{\prime}(\alpha(\mathrm{h}) \gamma(\mathrm{h})) \\
=\alpha^{\prime}(\alpha(\mathrm{h})) \gamma^{\prime}(\alpha(\mathrm{h})) \beta^{\prime}(\gamma(\mathrm{h})) \delta^{\prime}(\gamma(\mathrm{h})) \\
=\alpha^{\prime}(\alpha(\mathrm{h}))\left(\gamma^{\prime}(\alpha(\mathrm{h})) \cdot \beta^{\prime}(\gamma(\mathrm{h}))\right) \gamma^{\prime}(\alpha(\mathrm{h}))^{\beta^{\prime}(\gamma(\mathrm{h}))} \delta^{\prime}(\gamma(\mathrm{h})) \\
=\left(\alpha^{\prime} \alpha+\left(\gamma^{\prime} \alpha \cdot \beta^{\prime} \gamma\right)\right)(\mathrm{h})\left(\left(\gamma^{\prime} \alpha\right)^{\beta^{\prime} \gamma}+\delta^{\prime} \gamma\right)(\mathrm{h}) .
\end{gathered}
$$

Therefore, if we write $h k$ as $\binom{h}{k}$ and the map θ as $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$, then

$$
\begin{gathered}
\theta(h k)=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\binom{h}{k}=\binom{\alpha(h)(\gamma(h) \cdot \beta(k))}{\gamma(h)^{\beta(k)} \delta(k)}, \\
\theta^{\prime} \theta(h)=\left(\begin{array}{ll}
\alpha^{\prime} & \beta^{\prime} \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right)\binom{\alpha(h)}{\gamma(h)}=\binom{\alpha^{\prime} \alpha(h)\left(\gamma^{\prime} \alpha(h) \cdot \beta^{\prime} \gamma(h)\right)}{\left(\gamma^{\prime} \alpha(h)\right)^{\beta^{\prime} \gamma(h)} \delta^{\prime} \gamma(h)}
\end{gathered}
$$

and

$$
\theta^{\prime} \theta(k)=\left(\begin{array}{cc}
\alpha^{\prime} & \beta^{\prime} \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right)\binom{\beta(k)}{\delta(k)}=\binom{\alpha^{\prime} \beta(k)+\gamma^{\prime} \beta(k) \cdot \beta^{\prime} \delta(k)}{\left(\gamma^{\prime} \beta(k)\right)^{\beta^{\prime} \delta(k)}+\delta^{\prime} \delta(k)} .
$$

Thus, using a similar argument,

$$
\theta^{\prime} \theta(h k)=\left(\begin{array}{cc}
\alpha^{\prime} \alpha+\left(\gamma^{\prime} \alpha \cdot \beta^{\prime} \gamma\right) & \alpha^{\prime} \beta+\left(\gamma^{\prime} \beta \cdot \beta^{\prime} \delta\right) \\
\left(\gamma^{\prime} \alpha\right)^{\beta^{\prime} \gamma}+\delta^{\prime} \gamma & \left(\gamma^{\prime} \beta\right)^{\beta^{\prime} \delta}+\delta^{\prime} \delta
\end{array}\right)\binom{h}{k},
$$

for all $h \in H$ and $k \in K$. Therefore,

$$
\mathrm{T}\left(\theta^{\prime} \theta\right)=\left(\begin{array}{cc}
\alpha^{\prime} \alpha+\left(\gamma^{\prime} \alpha \cdot \beta^{\prime} \gamma\right) & \alpha^{\prime} \beta+\left(\gamma^{\prime} \beta \cdot \beta^{\prime} \delta\right) \\
\left(\gamma^{\prime} \alpha\right)^{\beta^{\prime} \gamma}+\delta^{\prime} \gamma & \left(\gamma^{\prime} \beta\right)^{\beta^{\prime} \delta}+\delta^{\prime} \delta
\end{array}\right)=\mathrm{T}(\theta) \mathrm{T}\left(\theta^{\prime}\right) .
$$

Hence, T is an isomorphism of groups.
From here on, we will identify the automorphisms of G with the matrices in \mathcal{A}. Let

$$
\begin{gathered}
P=\{\alpha \in \operatorname{Aut}(\mathrm{H}) \mid \\
\mid k \cdot \alpha(\mathrm{~h})=\alpha(\mathrm{k} \cdot \mathrm{~h}) \text { and } \mathrm{k}^{\alpha(\mathrm{h})}=\mathrm{k}^{\mathrm{h}}, \\
\forall \mathrm{~h} \in \mathrm{H}, \mathrm{k} \in \mathrm{~K}\},
\end{gathered}
$$

$$
\begin{aligned}
& Q=\left\{\beta \in \operatorname{Map}(\mathrm{K}, \mathrm{H}) \mid \beta\left(\mathrm{kk}^{\prime}\right)=\beta(\mathrm{k})\left(\mathrm{k} \cdot \beta\left(\mathrm{k}^{\prime}\right)\right), \mathrm{k}=\mathrm{k}^{\beta\left(\mathrm{k}^{\prime}\right),}\right. \\
& \left.\beta(k)=\beta\left(k^{h}\right), \forall h \in H, k \in K\right\}, \\
& \mathrm{R}=\left\{\gamma \in \operatorname{Map}(\mathrm{H}, \mathrm{~K}) \mid \gamma\left(\mathrm{hh}^{\prime}\right)=\gamma(\mathrm{h})^{\mathrm{h}^{\prime}} \gamma\left(\mathrm{h}^{\prime}\right), \mathrm{h}^{\prime}=\gamma(\mathrm{h}) \cdot \mathrm{h}^{\prime},\right. \\
& \gamma(\mathrm{k} \cdot \mathrm{~h})=\gamma(\mathrm{h}), \forall \mathrm{h} \in \mathrm{H}, \mathrm{k} \in \mathrm{~K}\}, \\
& S=\left\{\delta \in \operatorname{Aut}(K) \mid \delta(k) \cdot h=k \cdot h, \delta(k)^{h}=\delta\left(k^{h}\right), \forall h \in H, k \in K\right\}, \\
& X=\left\{(\alpha, \gamma, \delta) \in \operatorname{Map}(H, H) \times \operatorname{Map}(H, K) \times \operatorname{Aut}(K) \mid \alpha\left(h h^{\prime}\right)=\alpha(h)\right. \\
& \left(\gamma(h) \cdot \alpha\left(h^{\prime}\right)\right), \gamma\left(h^{\prime}\right)=\gamma(h)^{\alpha\left(h^{\prime}\right)} \gamma\left(h^{\prime}\right), \delta(k) \cdot \alpha(h)=\alpha(k \cdot h), \\
& \left.\delta(k)^{\alpha(h)} \gamma(h)=\gamma(k \cdot h) \delta\left(k^{h}\right), \forall h \in H, k \in K\right\}, \\
& Y=\left\{(\alpha, \beta, \delta) \in \operatorname{Aut}(H) \times \operatorname{Map}(K, H) \times \operatorname{Map}(K, K) \mid \beta\left(k^{\prime}\right)=\beta(k)\right. \\
& \left(\delta(k) \cdot \beta\left(k^{\prime}\right)\right), \delta\left(k k^{\prime}\right)=\delta(k)^{\beta\left(k^{\prime}\right)} \delta\left(k^{\prime}\right), \beta(k)(\delta(k) \cdot \alpha(h))=\alpha(k \cdot h) \\
& \left.\beta\left(k^{h}\right), \delta(k)^{\alpha(h)}=\delta\left(k^{h}\right), \forall h \in H, k \in K\right\} \text {, } \\
& Z=\{(\alpha, \delta) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K) \mid \delta(k) \cdot \alpha(h)=\alpha(k \cdot h), \\
& \left.\delta(\mathrm{k})^{\alpha(\mathrm{h})}=\delta\left(\mathrm{k}^{\mathrm{h}}\right), \forall \mathrm{h} \in \mathrm{H}, \mathrm{k} \in \mathrm{~K}\right\} \text {. }
\end{aligned}
$$

Then one can easily check that $\mathrm{P}, \mathrm{S}, \mathrm{X}, \mathrm{Y}$ and Z are all subgroups of the group $\operatorname{Aut}(G)$. But Q and R need not be subgroups of the group $\operatorname{Aut}(\mathrm{G})$. However, if H and K are abelian groups, then Q and R are subgroups of $\operatorname{Aut}(\mathrm{G})$. Let

$$
\begin{array}{cc}
A=\left\{\left.\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right) \right\rvert\, \alpha \in P\right\}, \quad B=\left\{\left.\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right) \right\rvert\, \beta \in Q\right\}, \\
C=\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
\gamma & 1
\end{array}\right) \right\rvert\, \gamma \in R\right\}, \quad D=\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
0 & \delta
\end{array}\right) \right\rvert\, \delta \in S\right\} \\
E=\left\{\left.\left(\begin{array}{ll}
\alpha & 0 \\
\gamma & \delta
\end{array}\right) \right\rvert\,(\alpha, \gamma, \delta) \in X\right\}, \quad F=\left\{\left.\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right) \right\rvert\,(\alpha, \beta, \delta) \in Y\right\}, \\
M & =\left\{\left.\left(\begin{array}{ll}
\alpha & 0 \\
0 & \delta
\end{array}\right) \right\rvert\,(\alpha, \delta) \in Z\right\} .
\end{array}
$$

be the corresponding subsets of \mathcal{A}. Then one can easily check that A, D, E, F and M are subgroups of \mathcal{A}, and if H and K are abelian groups, then B and C are also subgroups of \mathcal{A}. Note that A and D normalizes B and C .

Theorem 2.4 Let $\mathrm{G}=\mathrm{H} \bowtie \mathrm{K}$ be the Zappa-Szép product of two abelian groups H and K . Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D be defined as above. Then, if $1-\beta \gamma \in \mathrm{P}$, for all maps β and γ, then $\mathrm{ABCD}=\mathcal{A}$ and $\operatorname{Aut}(\mathrm{G}) \simeq A B C D$.

Proof - Let $\alpha \in \mathrm{P}, \beta \in \mathrm{Q}, \gamma \in \mathrm{R}$ and $\delta \in \mathrm{S}$. Then note that, $\alpha \beta \delta \in \mathrm{Q}$
and $\left(\begin{array}{ll}1 & \beta \\ \gamma & 1\end{array}\right) \in \mathcal{A}$. Assume that $1-\beta \gamma \in \mathrm{P}$. Now, if $\widehat{\beta}=\alpha^{-1} \beta \delta^{-1}$, then

$$
\left(\begin{array}{ll}
1 & \widehat{\beta} \\
\gamma & 1
\end{array}\right)=\left(\begin{array}{cc}
1-\widehat{\beta} \gamma & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & (1-\widehat{\beta} \gamma)^{-1} \widehat{\beta} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
\gamma & 1
\end{array}\right) \in A B C .
$$

Thus, if $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathcal{A}$, then

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & \widehat{\beta} \\
\gamma & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & \delta
\end{array}\right) \in A(A B C) D=A B C D .
$$

Therefore, $\mathcal{A} \subseteq A B C D$. Clearly, $A B C D \subseteq \mathcal{A}$. Hence, $A B C D=\mathcal{A}$ and so, $A u t(G) \simeq A B C D$.

3 Automorphisms of Zappa-Szép products of groups \mathbb{Z}_{4} and \mathbb{Z}_{m}

In [11], Yacoub classified the groups which are Zappa-Szép products of cyclic groups of order 4 and order m. He found that these are of the following type (see [11, Conclusion, p. 126]):

$$
\begin{aligned}
& \mathrm{L}_{1}=\left\langle\mathrm{a}, \mathrm{~b} \mid \mathrm{a}^{\mathrm{m}}=1=\mathrm{b}^{4}, \mathrm{ab}=\mathrm{ba}^{\mathrm{r}}, \mathrm{r}^{4} \equiv 1(\bmod m)\right\rangle, \\
& \mathrm{L}_{2}=\left\langle\mathrm{a}, \mathrm{~b} \mid \mathrm{a}^{\mathrm{m}}=1=\mathrm{b}^{4}, \mathrm{ab}=\mathrm{b}^{3} \mathrm{a}^{2 \mathrm{t}+1}, \mathrm{a}^{2} \mathrm{~b}=\mathrm{ba}^{2 s}\right\rangle,
\end{aligned}
$$

where in L_{2}, m is even. These are not non-isomorphic classes. The group L_{1} may be isomorphic to the group L_{2} depending on the values of m, r and t (see [11, Theorem $5, p .126]$). Clearly, L_{1} is a semidirect product. Throughout this section G will denote the group L_{2} and we will be only concerned about groups L_{2} which are Zap-pa-Szép products but not a semidirect product. Note that $\mathrm{G}=\mathrm{H} \bowtie \mathrm{K}$, where $\mathrm{H}=\langle\mathrm{b}\rangle$ and $\mathrm{K}=\langle\mathrm{a}\rangle$. For the group G , the mutual actions of H and K are defined by $a \cdot b=b^{3}, a^{b}=a^{2 t+1}$ along with $a^{2} \cdot b=b$ and $\left(a^{2}\right)^{b}=a^{2 s}$, where t and s are the integers satisfying the conditions
(Gi) $2 \mathrm{~s}^{2} \equiv 2(\bmod m)$,
(G2) $4 \mathrm{t}(\mathrm{s}+1) \equiv 0(\bmod m)$,
(G3) $2(t+1)(s-1) \equiv 0(\bmod m)$,
(G4) $\operatorname{gcd}\left(s, \frac{\mathrm{~m}}{2}\right)=1$.
Lemma 3.1

$$
\left(a^{l}\right)^{b}=\left\{\begin{array}{ll}
a^{2 t+1+(l-1) s,}, & \text { if } l \text { is odd } \\
a^{l s}, & \text { if } l \text { is even }
\end{array} .\right.
$$

Lemma 3.2 Let $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathcal{A}$. Then
(i) $\operatorname{Im}(\delta) \subseteq\left\langle\mathrm{a}^{r}\right\rangle$, where r is odd,
(ii) $\beta\left(a^{l}\right)=\left\{\begin{array}{ll}\beta(a), & \text { if } \mathrm{l} \text { is odd } \\ 1, & \text { if } \mathrm{l} \text { is even }\end{array}\right.$,
(iii) $\operatorname{Im}(\gamma) \subseteq\left\langle\mathrm{a}^{2}\right\rangle$,
(iv) $\alpha \in \operatorname{Aut}(\mathrm{H})$,
(v) $\beta \gamma=0$, where 0 is the trivial group homomorphism,
(vi) $\gamma(h) \cdot \beta(k)=\beta(k)$, for all $h \in H$ and $k \in K$,
(vii) If either $s=1$ or $\operatorname{Im}(\beta) \subseteq\left\langle\mathrm{b}^{2}\right\rangle$, then $\gamma(\mathrm{h})^{\beta(\mathrm{k})}=\gamma(\mathrm{h})$, for all $\mathrm{h} \in \mathrm{H}$ and $\mathrm{k} \in \mathrm{K}$.

Proof - (i) If possible, let $\delta(a)=a^{r}$, where r is even. Then, using (A_{3}) and $a^{2} \cdot b^{j}=b^{j}$, it follows that β is a homomorphism. Also, using $\left(a^{2}\right)^{b}=a^{2 s},\left(C_{4}\right)$ and $\left(A_{4}\right)$, if $\beta(a)=1$ or b^{2}, then δ is defined by $\delta\left(a^{l}\right)=a^{r l}$, for all l. Similarly, if $\beta(a)=b$ or b^{3}, then δ is defined by

$$
\delta\left(a^{l}\right)=\left\{\begin{array}{ll}
a^{\frac{l+1}{2} r+\frac{l-1}{2} r s}, & \text { if } l \text { is odd } \\
a^{\frac{1}{2} r(s+1)}, & \text { if } l \text { is even }
\end{array} .\right.
$$

One can easily observe that δ is neither one-one nor onto. But this is a contradiction by (A7). Hence, $\operatorname{Im}(\delta) \subseteq\left\langle a^{r}\right\rangle$, where r is odd.
(ii) If v is odd, using $\left(C_{3}\right)$ and $a \cdot b=b^{-1}$, we have $a^{v} \cdot b^{j}=b^{-j}$, for all j . Thus using (A_{3}), (C2) and part (i),

$$
\beta\left(a^{2}\right)=\beta(a)(\delta(a) \cdot \beta(a))=\beta(a)(\beta(a))^{-1}=1
$$

and

$$
\beta\left(a^{3}\right)=\beta(a)\left(\delta(a) \cdot \beta\left(a^{2}\right)\right)=\beta(a)(\delta(a) \cdot 1)=\beta(a) .
$$

Inductively, we get the required result.
(iii) Suppose that $\gamma(\mathrm{b})=\mathrm{a}^{\lambda}$, where λ is odd. Then using (A1),

$$
\alpha(b)=b^{i}=\alpha\left(b^{3}\right) \quad \text { and } \quad \alpha\left(b^{2}\right)=1=\alpha(1),
$$

where $0 \leqslant i \leqslant 3$. Thus the map α is neither one-one nor onto, but by (A7), the map α is a bijection. This is a contradiction. Therefore λ is even. Now, using (A2), for different choices of $\alpha(b)$ we find that $\gamma\left(b^{2}\right) \in\left\{a^{2 \lambda}, a^{\lambda(s+1)}\right\}$. Since λ is even, $\gamma\left(b^{2}\right) \in\left\langle a^{2}\right\rangle$. Similarly, $\gamma\left(b^{3}\right) \in\left\{a^{3 \lambda}, a^{\lambda(s+2)}\right\}$ and so, $\gamma\left(b^{3}\right) \in\left\langle a^{2}\right\rangle$. Hence, (iii) holds.
(iv) Using (iii) and (A1), one observes that α is an endomorphism of H . Also, by (A_{7}), α is a bijection. Thus, α is an automorphism of H . Hence, (iv) holds.
(v) Using parts (ii) and (iii), $\beta \gamma(\mathrm{h})=1$, for all $h \in \mathrm{H}$. Thus, $\beta \gamma=0$.
(vi) Using relation $\mathrm{a}^{2} \cdot \mathrm{~b}=\mathrm{b}$ and part (iii), (vi) holds.
(vii) Using (C4) and (G1), we get

$$
\left(a^{2 l}\right)^{b^{j}}= \begin{cases}a^{2 l s}, & \text { if } j \text { is odd } \tag{3.1}\\ a^{2 l}, & \text { if } j \text { is even }\end{cases}
$$

Thus, if either $s=1$ or $\operatorname{Im}(\beta) \subseteq\left\langle\mathrm{b}^{2}\right\rangle$, then using part (iii) and Equation (3.1), (vii) holds.

By Lemma 3.2 (ii), observe that, $\beta\left(k^{h}\right)=\beta(k)$, for all $k \in K$ and $h \in H$.
Lemma 3.3 Let $\beta \in \mathrm{Q}$. Then

$$
\beta \in \operatorname{Hom}(\mathrm{K}, \mathrm{H}) \text { and } \operatorname{Im}(\beta) \leqslant\left\langle\mathrm{b}^{2}\right\rangle .
$$

Moreover, $\operatorname{Im}(\beta)=\left\langle b^{2}\right\rangle$ if and only if $2 \mathrm{t}(1+\mathrm{s}) \equiv 0(\bmod \mathrm{~m})$, where $\operatorname{gcd}\left(s+1, \frac{m}{2}\right) \neq 1$.

Proof - Let $\beta(a)=b^{i}$. Using Lemma 3.2 (ii), we have $\beta\left(a^{2 j}\right)=1$ and $\beta\left(a^{2 j+1}\right)=b^{i}$, for all \mathfrak{j}. So, it is sufficient to study only $\beta(a)$ in the following,

$$
\begin{equation*}
a=a^{\beta(a)}=a^{b^{i}} . \tag{3.2}
\end{equation*}
$$

Clearly, Equation (3.2) holds trivially for $\mathfrak{i}=0$. If $\mathfrak{i}=1$, then by Equation (3.2), $a=a^{2 t+1}$ which implies that $2 t \equiv 0(\bmod m)$. Therefore, in the defining relations of the group $G, a b=b^{3} a$ which shows that G is a semidirect product of the groups H and K . For $\mathrm{i}=3$,

$$
a=a^{b^{3}}=a^{4 t+2 t s+1},
$$

which gives that

$$
4 t+2 t s \equiv 0(\bmod m) .
$$

So, using $\left(\mathrm{G}_{2}\right)$ and $\left(\mathrm{G}_{4}\right), 2 \mathrm{ts} \equiv 0(\bmod \mathrm{~m})$ giving $\mathrm{t} \equiv 0\left(\bmod \frac{\mathrm{~m}}{2}\right)$. Thus, G is again a semidirect product of H and K . Now, for $i=2$, using (C6) and Lemma 3.1,

$$
\mathrm{a}^{\mathrm{b}^{2}}=\left(\mathrm{a}^{2 \mathrm{t}+1}\right)^{\mathrm{b}}=\mathrm{a}^{2 \mathrm{t}+1+2 \mathrm{ts}} .
$$

Then, $a^{b^{2}}=a$ if and only if $2 t(1+s) \equiv 0(\bmod m)$.
Now, if $\operatorname{gcd}\left(s+1, \frac{\mathfrak{m}}{2}\right)=1$, then $\mathrm{t} \equiv 0\left(\bmod \frac{\mathfrak{m}}{2}\right)$ and hence G is a semidirect product of the groups H and K . On the other hand, if $\operatorname{gcd}\left(s+1, \frac{\mathfrak{m}}{2}\right) \neq 1$, then $t \not \equiv 0\left(\bmod \frac{\mathfrak{m}}{2}\right)$. Thus, G is a Zappa-Szép product of H and K . It follows that $\operatorname{Im}(\beta)=\left\langle\mathrm{b}^{2}\right\rangle$ if and only if $2 t(1+s) \equiv 0(\bmod \mathfrak{m})$ and $\operatorname{gcd}\left(s+1, \frac{\mathfrak{m}}{2}\right) \neq 1$. Since $\operatorname{Im}(\beta) \subseteq\left\langle b^{2}\right\rangle$, using Lemma 3.2 (ii), one can easily observe that $\beta \in \operatorname{Hom}(\mathrm{K}, \mathrm{H})$. Hence, the result holds.

Now, one can easily observe that for the given group G, we have that

$$
\begin{gathered}
k \cdot \alpha(h)=\alpha(k \cdot h), \beta(k)=\beta\left(k^{h}\right), h^{\prime}=\gamma(h) \cdot h^{\prime}, \\
\delta(k) \cdot h=k \cdot h, \delta(k) \cdot \alpha(h)=\alpha(k \cdot h), \\
\beta(k)(\delta(k) \cdot \alpha(h))=\alpha(k \cdot h) \beta\left(k^{h}\right)
\end{gathered}
$$

always holds for all $h \in H, k \in K, \alpha \in P, \beta \in Q, \gamma \in R, \delta \in S$, $(\alpha, \gamma, \delta) \in X,(\alpha, \delta) \in Z$ and $(\alpha, \beta, \delta) \in Y$, respectively. Thus the subgroups P, Q, R, S, X, Y and Z reduce to the following,

$$
\begin{gathered}
P=\left\{\alpha \in \operatorname{Aut}(H) \mid k^{\alpha(h)}=k^{h}, \forall h \in H, k \in K\right\}, \\
Q=\left\{\beta \in \operatorname{Hom}(K, H) \mid k=k^{\beta\left(k^{\prime}\right)}, \forall k \in K\right\}=\operatorname{Hom}\left(K, \operatorname{Stab}_{H}(K)\right), \\
R=\left\{\gamma \in \operatorname{CrossHom}\left(H, \operatorname{Stab}_{K}(H)\right) \mid \gamma(k \cdot h)=\gamma(h), \forall h \in H, k \in K\right\}, \\
S=\left\{\delta \in \operatorname{Aut}(K) \mid \delta(k)^{h}=\delta\left(k^{h}\right), \forall h \in H, k \in K\right\},
\end{gathered}
$$

$$
\begin{aligned}
& X=\{(\alpha, \gamma, \delta) \in \operatorname{Aut}(H) \times \operatorname{Map}(H, K) \times \operatorname{Aut}(K) \mid \\
& \left.\gamma\left(h h^{\prime}\right)=\gamma(h)^{\alpha\left(h^{\prime}\right)} \gamma\left(h^{\prime}\right), \delta(k)^{\alpha(h)} \gamma(h)=\gamma(k \cdot h) \delta\left(k^{h}\right), \forall h \in H, k \in K\right\}, \\
& Y=\left\{(\alpha, \beta, \delta) \in \operatorname{Aut}(H) \times \operatorname{Map}(K, H) \times \operatorname{Map}(K, K) \mid \beta\left(k k^{\prime}\right)=\beta(k)\right. \\
& \left.\left(\delta(k) \cdot \beta\left(k^{\prime}\right)\right), \delta\left(k k^{\prime}\right)=\delta(k)^{\beta\left(k^{\prime}\right)} \delta\left(k^{\prime}\right), \delta(k)^{\alpha(h)}=\delta\left(k^{h}\right), \forall h \in H, k \in K\right\} \text {, } \\
& Z=\left\{(\alpha, \delta) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K) \mid \delta(k)^{\alpha(h)}=\delta\left(k^{h}\right), \forall h \in H, k \in K\right\} .
\end{aligned}
$$

Theorem 3.4 Let A, B, C, D be defined as above. Then Aut (G) = ABCD.
Proof - Using Lemma 3.2 (v), we have that $\beta \gamma=0$, so $1-\beta \gamma \in P$. Therefore, by Theorem 2.4, we have $\operatorname{Aut}(\mathrm{G})=A B C D$.

Theorem 3.5 Let

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \mathcal{A} .
$$

Then, if $\beta \in Q$ and $(\alpha, \gamma, \delta) \in X$, then $\operatorname{Aut}(G) \simeq E \rtimes B \simeq(C \rtimes M) \rtimes B$.
Proof - Let $\beta \in Q$. Using Lemma 3.3, $\operatorname{Im}(\beta) \leqslant\left\langle b^{2}\right\rangle$. Let $k, k^{\prime} \in K$ such that $\beta(k)=b^{2 i}$ and $\beta\left(k^{\prime}\right)=b^{2 j}$, for all i, j. Then

$$
\begin{gathered}
\gamma \beta\left(k k^{\prime}\right)=\gamma\left(\beta(k)\left(k \cdot \beta\left(k^{\prime}\right)\right)\right)=\gamma(\beta(k))^{\alpha\left(k \cdot \beta\left(k^{\prime}\right)\right)} \gamma\left(k \cdot \beta\left(k^{\prime}\right)\right) \\
=\gamma\left(b^{2 i}\right)^{\alpha\left(k \cdot b^{2 j}\right)} \gamma\left(\beta\left(k^{\prime}\right)\right)=\left(a^{i \lambda(s+1)}\right)^{\alpha\left(b^{2 j}\right)} \gamma\left(\beta\left(k^{\prime}\right)\right) \\
=\left(a^{i \lambda(s+1)}\right)^{b^{2 j}} \gamma\left(\beta\left(k^{\prime}\right)\right)=a^{i \lambda(s+1) s^{2 j}} \gamma\left(\beta\left(k^{\prime}\right)\right) \\
=a^{i \lambda(s+1)} \gamma\left(\beta\left(k^{\prime}\right)\right)=\gamma\left(b^{2 i}\right) \gamma\left(\beta\left(k^{\prime}\right)\right)=\gamma \beta(k) \gamma \beta\left(k^{\prime}\right) .
\end{gathered}
$$

Thus $\gamma \beta \in \operatorname{Hom}(K, K)$, so $\gamma \beta+\delta \in \operatorname{Hom}(K, K)$. Now, let $\beta(a)=b^{2 j}$ and $\delta(a)=a^{r}$, where $j \in\{0,1\}$ and $r \in U(m)$. Then, using Lemma 3.2, we have

$$
(\gamma \beta+\delta)\left(a^{l}\right)= \begin{cases}a^{l r}, & \text { if } l \text { is even } \\ a^{\lambda j(s+1)+l r}, & \text { if } l \text { is odd }\end{cases}
$$

One can easily observe that $\gamma \beta+\delta$ defined as above is a bijection. Thus $\gamma \beta+\delta \in \operatorname{Aut}(K)$.

Now, using (C3), (C4) and Lemma 3.2 (iii), we have

$$
\begin{gathered}
(\gamma \beta+\delta)(a) \cdot \alpha(b)=\gamma \beta(a) \delta(a) \cdot \alpha(b) \\
=\gamma \beta(a) \cdot(\delta(a) \cdot \alpha(b))=\gamma \beta(a) \cdot \alpha(a \cdot b)=\alpha(a \cdot b)
\end{gathered}
$$

and

$$
\begin{gathered}
(\gamma \beta+\delta)(a)^{\alpha(b)} \gamma(b)=(\gamma \beta(a) \delta(a))^{\alpha(b)} \gamma(b) \\
=(\delta(a) \gamma \beta(a))^{\alpha(b)} \gamma(b)=\delta(a)^{\gamma(\beta(a)) \cdot \alpha(b)} \gamma(\beta(a))^{\alpha(b)} \gamma(b) \\
=\delta(a)^{\alpha(b)} \gamma\left(b^{2 i}\right)^{\alpha(b)} \gamma(b)=\delta(a)^{\alpha(b)} \gamma(b)\left(a^{i \lambda(s+1)}\right)^{\alpha(b)} \\
=\gamma(a \cdot b) \delta\left(a^{b}\right) a^{i \lambda(s+1)}=\gamma(a \cdot b) \delta\left(a^{b}\right) \gamma\left(b^{2 i}\right) \\
=\gamma(a \cdot b) \gamma(\beta(a)) \delta\left(a^{b}\right)=\gamma(a \cdot b) \gamma\left(\beta\left(a^{2 t+1}\right)\right) \delta\left(a^{b}\right) \\
=\gamma(a \cdot b) \gamma\left(\beta\left(a^{b}\right)\right) \delta\left(a^{b}\right)=\gamma(a \cdot b)(\gamma \beta+\delta)\left(a^{b}\right) .
\end{gathered}
$$

Thus, $(\alpha, \gamma, \gamma \beta+\delta) \in X$.
Using Lemma 3.2 (v), we have

$$
\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\alpha & 0 \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\alpha & (\alpha+\beta \gamma)(-\beta)+\beta \delta \\
\gamma & \gamma \beta+\delta
\end{array}\right)
$$

Now, using Lemma 3.2 (ii), we have

$$
\begin{gathered}
((\alpha+\beta \gamma)(-\beta)+\beta \delta)(a)=(\alpha+\beta \gamma)(-\beta(a)) \beta(\delta(a)) \\
=(\alpha+\beta \gamma)\left(b^{-2 j}\right) \beta\left(a^{r}\right)=\alpha\left(b^{2 j}\right) \beta\left(\gamma\left(b^{2 j}\right)\right) b^{2 j} \\
=b^{2 i j} b^{2 j}=b^{2 j(i+1)}=1
\end{gathered}
$$

Thus,

$$
(\alpha+\beta \gamma)(-\beta)+\beta \delta=0
$$

Therefore, by Equation (3.3),

$$
\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\alpha & 0 \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{cc}
1 & \beta \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\alpha & 0 \\
\gamma & \gamma \beta+\delta
\end{array}\right) \in E
$$

So, $\mathrm{E} \triangleleft \mathcal{A}$. Now, if $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathcal{A}$, then

$$
\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{cc}
\alpha & 0 \\
\gamma & -\gamma \alpha^{-1} \beta+\delta
\end{array}\right)\left(\begin{array}{cc}
1 & \alpha^{-1} \beta \\
0 & 1
\end{array}\right) \in \mathrm{EB} .
$$

Clearly, $\mathrm{E} \cap \mathrm{B}=\{1\}$. Thus, $\mathcal{A}=\mathrm{E} \rtimes \mathrm{B}$. Hence, $\operatorname{Aut}(\mathrm{G}) \simeq \mathrm{E} \rtimes \mathrm{B}$.

Let $\left(\begin{array}{ll}\alpha & 0 \\ \gamma & \delta\end{array}\right) \in E$. Then

$$
\left(\begin{array}{ll}
\alpha & 0 \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{ll}
\alpha & 0 \\
0 & \delta
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\delta^{-1} \gamma & 1
\end{array}\right) \in M C .
$$

Clearly, $M \cap C=\{1\}$. Since $A \times D$ normalizes C, we have that C is normal in E. Therefore, $E=C \rtimes M$. Hence, $X \simeq C \rtimes M$ and so, $A u t(G) \simeq(C \rtimes M) \rtimes B$.

Now, we will find the structure and the order of the automorphism group $\operatorname{Aut}(\mathrm{G})$. For this, we will proceed by first taking t to be such that $\operatorname{gcd}(\mathrm{t}, \mathrm{m})=1$ and then by taking t to be such that $\operatorname{gcd}(\mathrm{t}, \mathrm{m})=\mathrm{d}$, where $\mathrm{d}>1$.

Theorem 3.6 Let 4 divide m and t be odd such that $\operatorname{gcd}(\mathrm{t}, \mathrm{m})=1$. Then

$$
\operatorname{Aut}(G) \simeq \begin{cases}\left(\mathbb{Z}_{\frac{\mathfrak{m}}{2}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{~m})\right)\right) \rtimes \mathbb{Z}_{2}, & \text { if } s \in\left\{\frac{\mathfrak{m}}{2}-1, \mathfrak{m}-1\right\} \\ \mathbb{Z}_{\frac{\mathfrak{m}}{2}}^{\frac{1}{2}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathfrak{m})\right), & \text { if } s \in\left\{\frac{\mathfrak{m}}{4}-1, \frac{3 m}{4}-1\right\}\end{cases}
$$

Proof - Let $\operatorname{gcd}(\mathrm{t}, \mathrm{m})=1$. Then, using $(\mathrm{G} 2)$, we get $s \equiv-1\left(\bmod \frac{\mathfrak{m}}{4}\right)$ which implies that $s \in\left\{\frac{m}{4}-1, \frac{m}{2}-1, \frac{3 m}{4}-1, m-1\right\}$. Now, using (G3), we get $\mathrm{t} \equiv-1\left(\bmod \frac{\mathfrak{m}}{4}\right)$. Then $\mathrm{t} \in\left\{\frac{\mathfrak{m}}{4}-1, \frac{\mathfrak{m}}{2}-1, \frac{3 \mathfrak{m}}{4}-1, \mathfrak{m}-1\right\}$.

Let $(\alpha, \gamma, \delta) \in X$ be such that $\alpha(b)=b^{i}, \gamma(b)=a^{\lambda}$ and $\delta(a)=a^{r}$, where $i \in\{1,3\}, \lambda$ is even, $0 \leqslant \lambda \leqslant m-1$, and $r \in U(m)$. Using

$$
\gamma\left(\mathrm{hh}^{\prime}\right)=\gamma(\mathrm{h})^{\alpha\left(\mathrm{h}^{\prime}\right)} \gamma\left(\mathrm{h}^{\prime}\right),
$$

we get $\gamma\left(\mathrm{b}^{2}\right)=\mathrm{a}^{\lambda(\mathrm{s}+1)}, \gamma\left(\mathrm{b}^{3}\right)=\mathrm{a}^{\lambda(\mathrm{s}+2)}$ and $\gamma\left(\mathrm{b}^{4}\right)=1$. We consider two cases based on the image of the map α.

Case (i): $\alpha(b)=b$.
Using $\gamma(a \cdot b) \delta\left(a^{b}\right)=\delta(a)^{b} \gamma(b)$, we get

$$
\begin{gathered}
a^{\lambda(s+2)+(2 t+1) r}=\gamma(a \cdot b) \delta\left(a^{b}\right)=\delta(a)^{b} \gamma(b) \\
=\left(a^{r}\right)^{b} a^{\lambda}=a^{2 t+1+(r-1) s+\lambda}
\end{gathered}
$$

which implies that

$$
\begin{equation*}
\lambda(s+1) \equiv(r-1)(s-2 t-1)(\bmod m) . \tag{3.4}
\end{equation*}
$$

If $s \in\left\{\frac{m}{2}-1, m-1\right\}$, then Equation (3.4) holds for all values of t, λ and r. Now, if $(s, t) \in\left\{\left(\frac{\mathfrak{m}}{4}-1, \frac{\mathfrak{m}}{2}-1\right),\left(\frac{\mathfrak{m}}{4}-1, m-1\right)\right\}$, then by Equation $(3 \cdot 4), r \equiv 1+\lambda(\bmod 4)$. Since λ is even, $r \equiv 1$ or $3(\bmod 4)$. Again, if $(s, t) \in\left\{\left(\frac{\mathfrak{m}}{4}-1, \frac{m}{4}-1\right),\left(\frac{m}{4}-1, \frac{3 m}{4}-1\right)\right\}$, then by Equation (3.4), $\mathrm{r} \equiv 1-\lambda(\bmod 4)$. Since λ is even, $r \equiv 1$ or $3(\bmod 4)$. Using a similar argument, we get the same results for $s=\frac{3 m}{4}-1$. Thus, in this case, there are $\frac{\mathfrak{m}}{2}$ and $\phi(\mathfrak{m})$ choices for the maps γ and δ respectively and these are $\gamma_{\lambda}(b)=a^{\lambda}$ and $\delta_{r}(a)=a^{r}$, for all $0 \leqslant \lambda \leqslant m-1, \lambda$ is even, and $r \in U(m)$.

Case (ii): $\alpha(b)=b^{3}$.
Then

$$
\begin{gathered}
a^{\lambda(s+2)+(2 t+1) r}=\gamma(a \cdot b) \delta\left(a^{b}\right)=\delta(a)^{\alpha(b)} \gamma(b) \\
=\left(a^{r}\right)^{b^{3}} a^{\lambda}=a^{4 t+2 t s+1+(r-1) s+\lambda}
\end{gathered}
$$

which implies that

$$
\begin{equation*}
\lambda(s+1) \equiv 2 t(s+1)+(r-1)(s-2 t-1)(\bmod m) . \tag{3.5}
\end{equation*}
$$

If $s \in\left\{\frac{m}{2}-1, m-1\right\}$, then Equation (3.5) holds for all values of t, λ and r. Now, if $(s, t) \in\left\{\left(\frac{m}{4}-1, \frac{m}{2}-1\right),\left(\frac{m}{4}-1, m-1\right)\right\}$, then by Equation $(3 \cdot 5), r \equiv 3+\lambda(\bmod 4)$. Since λ is even, $r \equiv 1$ or $3(\bmod 4)$. Again, if $(s, t) \in\left\{\left(\frac{\mathfrak{m}}{4}-1, \frac{\mathfrak{m}}{4}-1\right),\left(\frac{\mathfrak{m}}{4}-1, \frac{3 \mathfrak{m}}{4}-1\right)\right\}$, then by Equation (3.5), we have $r \equiv 1+\lambda(\bmod 4)$. Since λ is even, $r \equiv 1 \operatorname{or} 3(\bmod 4)$. Using a similar argument, we get the same results for $s=\frac{3 m}{4}-1$. Thus, in this case also, there are $\frac{m}{2}$ and $\phi(m)$ choices for the maps γ and δ respectively and these are $\gamma_{\lambda}(b)=a^{\lambda}$ and $\delta_{r}(a)=a^{r}$, for all $0 \leqslant \lambda \leqslant m-1, \lambda$ is even, and $r \in U(m)$.

Thus combining both the cases (i) and (ii), we get for all $\alpha \in \operatorname{Aut}(\mathrm{H})$, the choices for the maps γ and δ are $\gamma_{\lambda}(b)=a^{\lambda}$ and $\delta_{r}(a)=a^{r}$, where $0 \leqslant \lambda \leqslant m-1, \lambda$ is even, and $r \in U(m)$. So, using Theorem 3.5,

$$
\mathrm{X} \simeq \mathbb{Z}_{\frac{\mathfrak{m}}{2}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathfrak{m})\right)
$$

Now, if $s \in\left\{\frac{m}{2}-1, m-1\right\}$, then $2 t(s+1) \equiv 0(\bmod m)$. Therefore, using Lemma 3.3, $\operatorname{Im}(\beta)=\left\{b^{2}\right\}$ and so, $B \simeq \mathbb{Z}_{2}$. If $s \in\left\{\frac{\mathfrak{m}}{4}-1, \frac{3 \mathfrak{m}}{4}-1\right\}$, then $2 \mathfrak{t}(s+1) \not \equiv 0(\bmod m)$. Therefore, using Lemma 3.3, $\operatorname{Im}(\beta)=\{1\}$
and so, B is a trivial group. Hence, by Theorem 3.5,

$$
\operatorname{Aut}(G) \simeq E \rtimes B \simeq \begin{cases}\left(\mathbb{Z}_{\frac{m}{2}} \rtimes\left(\mathbb{Z}_{2} \times U(m)\right)\right) \rtimes \mathbb{Z}_{2}, & \text { if } s \in\left\{\frac{m}{2}-1, m-1\right\} \\ \mathbb{Z}_{\frac{m}{2}}^{2} \rtimes\left(\mathbb{Z}_{2} \times U(m)\right), & \text { if } s \in\left\{\frac{m}{4}-1, \frac{3 m}{4}-1\right\}\end{cases}
$$

The statement is proved.
Theorem 3.7 Let $\mathrm{m}=2 \mathrm{q}$, where $\mathrm{q}>1$ is odd and $\operatorname{gcd}(\mathrm{t}, \mathrm{m})=1$. Then we have $\operatorname{Aut}(\mathrm{G}) \simeq\left(\mathbb{Z}_{\frac{\mathfrak{m}}{2}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathfrak{m})\right)\right) \rtimes \mathbb{Z}_{2}$.

Proof - Using (G1), (G2), and (G3), we get $s, t \in\left\{\frac{m}{2}-1, m-1\right\}$. Then, the result follows on the lines of the proof of Theorem 3.6.

Theorem 3.8 Let $m=2^{n}, n \geqslant 3$. Then
(i) if t is even, then $\operatorname{Aut}(G) \simeq\left(\mathbb{Z}_{4} \rtimes\left(\mathbb{Z}_{2} \times\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}}\right)\right)\right) \rtimes \mathbb{Z}_{2}$,
(ii) if t is odd, then

$$
\operatorname{Aut}(\mathbf{G}) \simeq \begin{cases}\left(\mathbb{Z}_{2^{n-1}} \rtimes\left(\mathbb{Z}_{2} \times\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}}\right)\right)\right) \rtimes \mathbb{Z}_{2}, & \text { if } s \in\left\{\frac{\mathfrak{m}}{2}-1, \mathfrak{m}-1\right\} \\ \mathbb{Z}_{2^{n-1}} \rtimes\left(\mathbb{Z}_{2} \times\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}}\right)\right), & \text { if } s \in\left\{\frac{m}{4}-1, \frac{3 m}{4}-1\right\}\end{cases}
$$

Proof - We will find the automorphism group $\operatorname{Aut}(G)$ in two cases namely, when t is even and when t is odd.
Case (i): t is even.
Then

$$
2(t+1)(s-1) \equiv 0\left(\bmod 2^{n}\right) \Longrightarrow s \equiv 1\left(\bmod 2^{n-1}\right)
$$

Therefore, $s=1,2^{n-1}+1$. Moreover $4 t(s+1) \equiv 0\left(\bmod 2^{n}\right)$ implies that $t \equiv 0\left(\bmod 2^{n-3}\right)$. Therefore,

$$
\mathrm{t} \in\left\{2^{\mathrm{n}-3}, 2^{\mathrm{n}-2}, 3 \cdot 2^{\mathrm{n}-3}, 2^{\mathrm{n}-1}, 5 \cdot 2^{\mathrm{n}-3}, 3 \cdot 2^{\mathrm{n}-2}, 7 \cdot 2^{\mathrm{n}-3}, 2^{\mathrm{n}}\right\}
$$

Note that, for $t=2^{n-1}$ or $t=2^{n}, G$ is the semidirect product of H and K. So, we consider the other values of t.

Let $\gamma \in R$ be such that $\gamma(b)=a^{\lambda}$, where $0 \leqslant \lambda \leqslant m-1$ and λ is even. Then, since $s=1$ and λ is even, by (Az), $\gamma \in \operatorname{Hom}(H, K)$. Now,

$$
1=\gamma\left(b^{4}\right)=a^{4 \lambda}
$$

implies that $\lambda \equiv 0\left(\bmod 2^{n-2}\right)$. Therefore

$$
\lambda \in\left\{2^{n-2}, 2^{n-1}, 3 \cdot 2^{n-2}, 2^{n}\right\} .
$$

Using $\gamma(a \cdot b)=\gamma(b), a^{3 \lambda}=\gamma(a \cdot b)=\gamma(b)=a^{\lambda}$ gives $\lambda \equiv 0\left(\bmod 2^{n-1}\right)$. Thus, $\lambda \in\left\{0,2^{\mathrm{n}-1}\right\}$ and so $\mathrm{C} \simeq \mathbb{Z}_{2}$.

Now, let $(\alpha, \beta, \delta) \in Y$ be such that $\alpha(b)=b^{i}, \beta(a)=b^{j}, \delta(a)=a^{r}$, where $i \in\{1,3\}, 0 \leqslant j \leqslant 3,0 \leqslant r \leqslant 2^{n}-1$ and r is odd. Using Lemma 3.2 (ii),

$$
\beta\left(k k^{\prime}\right)=\beta(k)\left(\delta(k) \cdot \beta\left(k^{\prime}\right)\right)
$$

holds for all $k, k^{\prime} \in K$. Now, using $\delta\left(k k^{\prime}\right)=\delta(k)^{\beta\left(k^{\prime}\right)} \delta\left(k^{\prime}\right)$, we get

$$
\delta\left(a^{l}\right)= \begin{cases}a^{(l-1)(j t+r)+r}, & \text { if } l \text { is odd } \\ a^{l(j t+r)}, & \text { if } l \text { is even }\end{cases}
$$

Finally, using $\delta\left(k^{h}\right)=\delta(k)^{\alpha(h)}$, we have

$$
a^{2 i t+r}=\left(a^{r}\right)^{b^{i}}=\delta(a)^{\alpha(b)}=\delta\left(a^{b}\right)=\delta\left(a^{2 t+1}\right)=a^{2 t(j t+r)+r} .
$$

Thus, $2 \mathrm{t}(\mathrm{jt}+\mathrm{r}-\mathrm{i}) \equiv 0\left(\bmod 2^{\mathrm{n}}\right)$ which implies that

$$
\begin{cases}r \equiv i(\bmod 4), & \text { if } t \in\left\{2^{n-3}, 3 \cdot 2^{n-3}, 5 \cdot 2^{n-3}, 7 \cdot 2^{n-3}\right\} \text { and } n \geqslant 5 \\ r \equiv i+2 j(\bmod 4), & \text { if } t \in\left\{2^{n-3}, 3 \cdot 2^{n-3}, 5 \cdot 2^{n-3}, 7 \cdot 2^{n-3}\right\} \text { and } n=4 \\ r \equiv i(\bmod 2), & \text { if } t \in\left\{2^{n-2}, 3 \cdot 2^{n-2}\right\}\end{cases}
$$

Now, if $\mathfrak{j} \in\{0,2\}$, then $r \equiv \mathfrak{i}(\bmod 4)$ and if $\mathfrak{j} \in\{1,3\}$, then $r \equiv \mathfrak{i}$ or $i+2(\bmod 4)$. Thus, for all $\beta \in \operatorname{Cross} \operatorname{Hom}(K, H)$, the choices for the maps α and δ are $\alpha_{i}(b)=b^{i}$ and $\delta_{r}(a)=a^{r}$, where $i \in\{1,3\}$ and $r \in U(m)$. Note that, if

$$
\left(\begin{array}{ll}
\alpha & \beta \\
0 & \delta
\end{array}\right) \in F,
$$

then

$$
\left(\begin{array}{ll}
\alpha & \beta \\
0 & \delta
\end{array}\right)=\left(\begin{array}{ll}
\alpha & 0 \\
0 & \delta
\end{array}\right)\left(\begin{array}{cc}
1 & \alpha^{-1} \beta \\
0 & 1
\end{array}\right) \in M B .
$$

Clearly, $\mathrm{M} \cap \mathrm{B}=\{1\}$ and M normalizes B . So, $\mathrm{B} \triangleleft \mathrm{F}$ and $\mathrm{F}=\mathrm{B} \rtimes \mathrm{M}$. Therefore,

$$
\mathrm{Y} \simeq \mathrm{~B} \rtimes \mathrm{M} \simeq \mathbb{Z}_{4} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{~m})\right) .
$$

Using Lemma 3.2 (v)-(vii),

$$
\left(\begin{array}{ll}
1 & 0 \tag{3.6}\\
\gamma & 1
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
0 & \delta
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
\gamma & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\alpha & \beta \\
\gamma \alpha+(\gamma \beta+\delta)(-\gamma) & \gamma \beta+\delta
\end{array}\right)
$$

Now,

$$
\begin{gathered}
(\gamma \alpha+(\gamma \beta+\delta)(-\gamma))(b)=\gamma \alpha(b)(\gamma \beta+\delta)(-\gamma)(b) \\
=\gamma\left(b^{i}\right)(\gamma \beta+\delta)\left(a^{-\lambda}\right)=a^{i \lambda} \gamma\left(\beta\left(a^{-\lambda}\right)\right) \delta\left(a^{-\lambda}\right) \\
=a^{i \lambda} \gamma(1) a^{-\lambda(j t+r)}=a^{\lambda(i-j t-r)}=1 .
\end{gathered}
$$

Thus, $\gamma \alpha+(\gamma \beta+\delta)(-\gamma)=0$. Also, one can easily observe that

$$
(\alpha, \beta, \gamma \beta+\delta) \in Y
$$

Therefore, by Equation (3.6),

$$
\left(\begin{array}{ll}
1 & 0 \\
\gamma & 1
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
0 & \delta
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
\gamma & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\alpha & \beta \\
0 & \gamma \beta+\delta
\end{array}\right) \in F .
$$

So, $F \triangleleft \mathcal{A}$. Clearly, $F \cap C=\{1\}$. Also, if $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathcal{A}$, then

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{ll}
\alpha & \beta \\
0 & \delta
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\delta^{-1} \gamma & 1
\end{array}\right) \in \mathrm{FC} .
$$

Hence, $\mathcal{A}=\mathrm{F} \rtimes \mathrm{C}$ and so,

$$
\operatorname{Aut}(\mathrm{G}) \simeq \mathrm{F} \rtimes \mathrm{C} \simeq\left(\mathbb{Z}_{4} \rtimes\left(\mathbb{Z}_{2} \times\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}}\right)\right)\right) \rtimes \mathbb{Z}_{2}
$$

Case (ii): t is odd.
Then $\operatorname{gcd}(\mathrm{t}, \mathrm{m})=1$. Hence, the result follows from Theorem 3.6.
Now, we discuss the structure of the automorphism group $\operatorname{Aut}(\mathrm{G})$ in the case when $\operatorname{gcd}(\mathrm{t}, \mathrm{m})>1$.

Theorem 3.9 Let $\mathrm{m}=4 \mathrm{q}$ and $\operatorname{gcd}(\mathrm{t}, \mathrm{m})=2^{\mathrm{i}} \mathrm{d}$, where $\mathrm{q}>1$ is odd, $\mathfrak{i} \in\{0,1,2\}$, and d divides q . Then $\operatorname{Aut}(\mathrm{G}) \simeq\left(\mathbb{Z}_{\frac{m}{2 d}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{m})\right)\right) \rtimes \mathbb{Z}_{2}$. Proof - Let $q=d u$, for some integer u. Then, using (G2), we get $s \equiv-1(\bmod u)$, which implies that $s=l u-1$, where $1 \leqslant l \leqslant 4 d$.

Since $\operatorname{gcd}\left(s, \frac{\mathfrak{m}}{2}\right)=1, s$ is odd and so, l is even. Using (G1) and (G3), we get $l\left(u \frac{l}{2}-1\right) \equiv 0(\bmod d)$ and $t+1 \equiv u \frac{l}{2}(\bmod q)$. Now, one can easily observe that $\operatorname{gcd}(\mathrm{l}, \mathrm{d})=1$, which implies $u \frac{\mathrm{l}}{2}-1 \equiv 0(\bmod d)$. Thus, $2 \mathrm{t}(\mathrm{s}+1) \equiv 2 \mathrm{ttu} \equiv 0(\bmod \mathrm{~m})$ and $\operatorname{gcd}\left(s+1, \frac{\mathfrak{m}}{2}\right) \neq 1$. Therefore, using Lemma 3.3, $\mathrm{B} \simeq \mathbb{Z}_{2}$.

Let $(\alpha, \gamma, \delta) \in X$ be such that $\alpha(b)=b^{i}, \gamma(b)=a^{\lambda}$ and $\delta(a)=a^{r}$, where $i \in\{1,3\}, 0 \leqslant \lambda \leqslant m-1, \lambda$ is even, and $r \in U(m)$. Then, using

$$
\gamma\left(\mathrm{hh}^{\prime}\right)=\gamma(\mathrm{h})^{\alpha\left(\mathrm{h}^{\prime}\right)} \gamma\left(\mathrm{h}^{\prime}\right),
$$

we have

$$
\gamma\left(b^{2}\right)=a^{\lambda(s+1)}, \gamma\left(b^{3}\right)=a^{\lambda(s+2)} \quad \text { and } \quad \gamma\left(b^{4}\right)=1 .
$$

Now, using

$$
\delta(a)^{\alpha(b)} \gamma(b)=\gamma(a \cdot b) \delta\left(a^{b}\right) \quad \text { and } \quad 2 t(s+1) \equiv 0(\bmod m),
$$

we have

$$
\begin{gathered}
a^{\lambda(s+2)+(2 t+1) r}=\gamma\left(b^{3}\right) \delta\left(a^{2 t+1}\right)=\gamma(a \cdot b) \delta\left(a^{b}\right)=\delta(a)^{\alpha(b)} \gamma(b) \\
=\left(a^{r}\right)^{b^{i}} a^{\lambda}=a^{2 t+1+(r-1) s+\lambda+\frac{i-1}{2} 2 t(s+1)}=a^{2 t+1+(r-1) s+\lambda} .
\end{gathered}
$$

Thus

$$
\begin{equation*}
\lambda(s+1) \equiv(r-1)(s-2 t-1)(\bmod m) . \tag{3.7}
\end{equation*}
$$

Since $2 \mathrm{t}(\mathrm{s}+1) \equiv 0(\bmod \mathrm{~m})$, using $\left(\mathrm{G}_{3}\right)$, we get

$$
2(s-2 t-1) \equiv 0(\bmod m) .
$$

Therefore, by Equation (3.7), $\lambda l u \equiv 0(\bmod m)$. Using Lemma 3.2 (iii), we get $\lambda \equiv 0(\bmod 2 d)$. Thus, using Theorem 3.5,

$$
\mathrm{X} \simeq \mathbb{Z}_{\frac{\mathrm{m}}{2 \mathrm{~d}}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{~m})\right) .
$$

Hence, $\operatorname{Aut}(G) \simeq E \rtimes B \simeq\left(\mathbb{Z}_{\frac{m}{2 d}} \rtimes\left(\mathbb{Z}_{2} \times U(m)\right)\right) \rtimes \mathbb{Z}_{2}$.
Theorem 3.10 Let $\mathrm{m}=2 \mathrm{q}$ and $\operatorname{gcd}(\mathrm{t}, \mathrm{m})=2^{\mathrm{i}} \mathrm{d}$, where $\mathrm{q}>1$ is odd, $\mathfrak{i} \in\{0,1\}$, and d divides q . Then $\operatorname{Aut}(\mathrm{G}) \simeq\left(\mathbb{Z}_{\frac{\mathrm{m}}{2 \mathrm{~d}}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{m})\right)\right) \rtimes \mathbb{Z}_{2}$.

Proof - Follows on the lines of the proof of Theorem 3.9.

Theorem 3.11 Let $m=2^{n} q$, t be even and $\operatorname{gcd}(m, t)=2^{i} d$, where $1 \leqslant \mathrm{i} \leqslant \mathrm{n}, \mathrm{n} \geqslant 3, \mathrm{q}>1$ is odd and d divides q . Then
$\operatorname{Aut}(\mathrm{G}) \simeq \begin{cases}\left(\mathbb{Z}_{4} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{m})\right)\right) \rtimes \mathbb{Z}_{2}, & \text { if } \mathrm{d}=\mathrm{q} \\ \mathbb{Z}_{2} \times\left(\mathbb{Z}_{\left.\frac{2 \mathrm{q}}{\mathrm{d}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{m})\right)\right),} \text { if } \mathrm{d} \neq \mathrm{q} \text { and } \mathrm{n}-2 \leqslant \mathrm{i} \leqslant \mathrm{n}\right. \\ \mathbb{Z}_{\frac{4 \mathrm{q}}{\mathrm{d}}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{m})\right), & \text { if } \mathrm{d} \neq \mathrm{q} \text { and } \mathrm{i}=\mathrm{n}-3\end{cases}$
Proof - We consider the following four cases to find the structure of $\operatorname{Aut}(\mathrm{G})$.

Case (i): $d=q$ and $\operatorname{gcd}(t+1, m)=u$.
Since $t+1$ is odd, u is odd and u divides q. Thus, u divides t and so, $u=1$. Therefore, using (G2) and (G3),

$$
s \equiv 1\left(\bmod \frac{\mathfrak{m}}{2}\right) \quad \text { and } \quad t \equiv 0\left(\bmod \frac{\mathfrak{m}}{8}\right)
$$

Using a similar argument used in the proof of Theorem 3.8 (i), we get $\operatorname{Aut}(G) \simeq F \rtimes C \simeq\left(\mathbb{Z}_{4} \rtimes\left(\mathbb{Z}_{2} \times U(m)\right)\right) \rtimes \mathbb{Z}_{2}$.

Case (ii): $n-2 \leqslant i \leqslant n$ and $q=d u$, for some odd integer u.
Using (G2), $s \equiv-1(\bmod u)$ and so, $s=l u-1$, where $0 \leqslant l \leqslant 2^{n} d$. Since $\operatorname{gcd}\left(s, \frac{m}{2}\right)=1, s$ is odd and so, l is even. Now, using (G1),

$$
\frac{l}{2}\left(\frac{l}{2} u-1\right) \equiv 0\left(\bmod 2^{n-3} d\right)
$$

and by (G3),

$$
t \equiv \frac{l}{2} u-1\left(\bmod 2^{n-2} q\right)
$$

Since t is even, $\frac{l}{2}$ is odd and $\operatorname{gcd}\left(\frac{l}{2}, d\right)=1$. Thus,

$$
\frac{l}{2} u \equiv 1\left(\bmod 2^{n-3} d\right) \quad \text { and } \quad t \equiv 2^{i} d\left(\bmod 2^{n-2} q\right)
$$

One can easily observe that $2 t(s+1) \equiv 0(\bmod m)$. Therefore, using a similar argument as in the proof of Theorem 3.6, we get

$$
\operatorname{Aut}(G) \simeq E \rtimes B \simeq\left(\mathbb{Z}_{\frac{2 q}{d}} \rtimes\left(\mathbb{Z}_{2} \times U(m)\right)\right) \rtimes \mathbb{Z}_{2} .
$$

Case (iii): $\mathfrak{i}=\mathrm{n}-3, \mathrm{~d} \neq \mathrm{q}$ and $\mathrm{q}=\mathrm{du}$, for some odd integer u.
Using (G2), $s \equiv-1(\bmod 2 u)$, i.e. $s=2 l u-1$, where $1 \leqslant l \leqslant 2^{n-1} d$.

Now, using (G1) and (G3),
$l(l u-1) \equiv 0\left(\bmod 2^{n-3} d\right) \quad$ and $\quad(t+1)(l u-1) \equiv 0\left(\bmod 2^{n-2} q\right)$.
If l is even, then $\mathrm{t} \equiv \mathrm{lu}-1\left(\bmod 2^{n-2} q\right)$ gives that t is odd, which is a contradiction. Therefore, l is odd. Using

$$
(t+1)(l u-1) \equiv 0\left(\bmod 2^{n-2} q\right),
$$

one can easily observe that $\operatorname{gcd}(l, d)=1$. Then

$$
\mathrm{lu}-1=2^{\mathrm{n}-3} \mathrm{~d} l^{\prime} \quad \text { and } \quad s=2^{n-2} \mathrm{~d}^{\prime}+1,
$$

where $1 \leqslant l^{\prime} \leqslant 8 u$. Clearly, $\operatorname{gcd}\left(l^{\prime}, u\right)=1$. Thus, $(t+1) l^{\prime} \equiv 0(\bmod 2 u)$. If l^{\prime} is odd, then $(t+1) \equiv 0(\bmod 2 u)$ which implies that t is odd. So, l^{\prime} is even and so, $t=u q^{\prime}-1,1 \leqslant q^{\prime}<2^{n-1} d, q^{\prime}$ is odd as t is even. Note that

$$
\begin{aligned}
& s-2 t-1=2^{n-2} d l^{\prime}-2 t=2^{n-2} d\left(l^{\prime}-\frac{t}{2^{n-3} d}\right) \\
& =2^{n-2} d\left(\frac{l u-1}{2^{n-3} d}-\frac{u q^{\prime}-1}{2^{n-3} d}\right)=2^{n-2} d u\left(\frac{l-q^{\prime}}{2^{n-3} d}\right)
\end{aligned}
$$

Let $(\alpha, \gamma, \delta) \in X$ be such that $\alpha(b)=b^{i}, \gamma(b)=a^{\lambda}$ and $\delta(a)=a^{r}$, where $i \in\{1,3\}, 0 \leqslant \lambda \leqslant m-1, \lambda$ is even and $r \in U(m)$. We consider two sub-cases based on the image of the map α.

Sub-Case (i): $\alpha(\mathrm{b})=\mathrm{b}$.
Using $\delta(a)^{\alpha(b)} \gamma(b)=\gamma(a \cdot b) \delta\left(a^{b}\right)$, we have

$$
\begin{gathered}
a^{\lambda(s+2)+(2 t+1) r}=\gamma(a \cdot b) \delta\left(a^{b}\right)=\delta(a)^{b} \gamma(b) \\
=\left(a^{r}\right)^{b} a^{\lambda}=a^{2 t+1+(r-1) s+\lambda}
\end{gathered}
$$

which implies that

$$
\lambda(s+1) \equiv(r-1)(s-2 t-1)(\bmod m) .
$$

Therefore

$$
\lambda(2 l u) \equiv 2^{n-2} d u(r-1)\left(\frac{l-q^{\prime}}{2^{n-3} d}\right)\left(\bmod 2^{n} q\right)
$$

which implies that

$$
\lambda l \equiv 2^{n-3} d(r-1)\left(\frac{l-q^{\prime}}{2^{n-3} d}\right)\left(\bmod 2^{n-1} d\right) .
$$

Now, if $\lambda \equiv 0\left(\bmod 2^{n-2} d\right)$, then $r \equiv 1$ or $3(\bmod 4)$ and vice-versa. Thus, in this sub-case, the choices for the maps γ and δ are $\gamma_{\lambda}(b)=a^{\lambda}$ and $\delta_{r}(a)=a^{r}$, where λ is even and $\lambda \equiv 0\left(\bmod 2^{n-2} d\right)$, and $r \in U(m)$.
Sub-Case (ii): Let $\alpha(b)=b^{3}$.
Using $\delta(a)^{\alpha(b)} \gamma(b)=\gamma(a \cdot b) \delta\left(a^{b}\right)$, we get

$$
\begin{gathered}
a^{\lambda(s+2)+(2 t+1) r}=\gamma(a \cdot b) \delta\left(a^{b}\right)=\delta(a)^{\alpha(b)} \gamma(b) \\
=\left(a^{r}\right)^{b^{3}} a^{\lambda}=a^{4 t+2 t s+1+(r-1) s+\lambda}
\end{gathered}
$$

which implies that

$$
(\lambda-2 t)(s+1) \equiv(r-1)(s-2 t-1)(\bmod m) .
$$

Therefore

$$
2 l u(\lambda-2 t) \equiv 2^{n-2} d u(r-1)\left(\frac{l-q^{\prime}}{2^{n-3} d}\right)\left(\bmod 2^{n} q\right)
$$

which implies that

$$
l(\lambda-2 t) \equiv 2^{n-3} d(r-1)\left(\frac{l-q^{\prime}}{2^{n-3} d}\right)\left(\bmod 2^{n-1} d\right) .
$$

Now, if $\lambda \equiv 0\left(\bmod 2^{n-2} d\right)$, then $r \equiv 1$ or $3(\bmod 4)$ and vice-versa. Thus, in this sub-case, the choices for the maps γ and δ are $\gamma_{\lambda}(b)=a^{\lambda}$ and $\delta_{r}(a)=a^{r}$, where λ is even and $\lambda \equiv 0\left(\bmod 2^{n-2} d\right)$, and $r \in U(m)$.

Combining both sub-cases (i) and (ii), we get for all $\alpha \in \operatorname{Aut}(\mathrm{H})$, the choices for the maps γ and δ are $\gamma_{\lambda}(b)=a^{\lambda}$ and $\delta_{r}(a)=a^{r}$, where λ is even and $\lambda \equiv 0\left(\bmod 2^{n-2} d\right)$, and $r \in U(m)$. Therefore, using Theorem 3.5,

$$
X \simeq \mathbb{Z}_{\frac{q}{d}} \rtimes\left(\mathbb{Z}_{2} \times U(m)\right)
$$

At last, since l is odd, $2 t(s+1) \equiv 4 \mathrm{tlu} \not \equiv 0(\bmod m)$. Therefore, using Lemma $3 \cdot 3, \operatorname{Im}(\beta)=\{1\}$. Thus, B is a trivial group. Hence,
using Theorem 3.5, $\operatorname{Aut}(G) \simeq E \rtimes B \simeq \mathbb{Z}_{\frac{4 q}{d}} \rtimes\left(\mathbb{Z}_{2} \times U(m)\right)$.
Case (iv): Let $1 \leqslant i \leqslant n-4$. and $q=d u$, for some odd integer u.
Using (G 2$), \mathrm{s} \equiv-1\left(\bmod 2^{\mathrm{n}-\mathrm{i}-2} u\right)$, that is, $s=2^{n-i-2} \mathrm{lu}-1$, where $1 \leqslant l \leqslant 2^{i+2}$. Now, using (G1) and (G3),

$$
l\left(2^{n-i-3} l u-1\right) \equiv 0\left(\bmod 2^{i} d\right)
$$

and

$$
(t+1)\left(l u 2^{n-i-3}-1\right) \equiv 0\left(\bmod 2^{n-2} q\right) .
$$

Since $n-\mathfrak{i}-3>0$, $\mathfrak{l u} 2^{n-i-3}-1$ is odd. If l is even, then

$$
\mathrm{t} \equiv \mathrm{lu} 2^{\mathrm{n}-\mathrm{i}-3}-1\left(\bmod 2^{\mathrm{n}-2} \mathrm{q}\right)
$$

gives that t is odd, which is a contradiction. Now, if l is odd, then using $(t+1)(\mathrm{lu}-1) \equiv 0\left(\bmod 2^{\mathrm{n}-2} \mathrm{q}\right)$, one can easily observe that $\operatorname{gcd}(l, d)=1$. Thus,

$$
2^{n-i-3} l u-1 \equiv 0\left(\bmod 2^{i} d\right),
$$

which is absurd. Hence, there is no such l exist and so, no such t and s exist and hence no group G exists as the Zappa-Szép product of H and K .

Theorem 3.12 Let $\mathrm{m}=2^{\mathrm{n}} \mathrm{q}$, t be odd and $\operatorname{gcd}(\mathrm{t}, \mathrm{m})=\mathrm{d}$, where $\mathrm{n} \geqslant 4$ and q is odd. Then
$\operatorname{Aut}(G) \simeq \begin{cases}\left(\mathbb{Z}_{\frac{m}{2 d}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{m})\right)\right) \rtimes \mathbb{Z}_{2}, & \text { if } 2 \mathrm{t}(s+1) \equiv 0(\bmod m) \\ \mathbb{Z}_{\frac{m}{2 d}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathfrak{m})\right), & \text { if } 2 \mathrm{t}(s+1) \not \equiv 0(\bmod m)\end{cases}$
Proof - Let $q=d u$, for some odd integer u. Then using (G2), we have

$$
s \equiv-1\left(\bmod 2^{n-2} u\right)
$$

which implies that $s=2^{n-2} l u-1$, where $1 \leqslant l \leqslant 4 d$. Now, using (G1),

$$
l\left(2^{n-3} u l-1\right) \equiv 0(\bmod d) .
$$

Using (G3), we get

$$
\begin{equation*}
(t+1)\left(l u 2^{n-3}-1\right) \equiv 0\left(\bmod 2^{n-2} q\right) . \tag{3.8}
\end{equation*}
$$

Case (i): l is even.
By Equation (3.8),

$$
\mathrm{t} \equiv \mathrm{l} u 2^{\mathrm{n}-3}-1\left(\bmod 2^{\mathrm{n}-2} \mathrm{q}\right) .
$$

Note that

$$
2 t(s+1) \equiv 2 t\left(2^{n-2} \mathfrak{l u}\right) \equiv 0(\bmod m)
$$

and

$$
\lambda(s+1)=\lambda\left(l u 2^{n-2}\right) .
$$

Thus $\lambda(s+1) \equiv 0(\bmod m)$ if and only if $\lambda l \equiv 0(\bmod 4 d)$, which is true for all $\lambda \equiv 0(\bmod 2 \mathrm{~d})$. Using a similar argument as in the proof of Theorem 3.6, we get

$$
X \simeq \mathbb{Z}_{\frac{m}{2 d}} \rtimes\left(\mathbb{Z}_{2} \times U(\mathfrak{m})\right) \quad \text { and } \quad B \simeq \mathbb{Z}_{2} .
$$

Hence, $\operatorname{Aut}(G) \simeq E \rtimes B \simeq\left(\mathbb{Z}_{\frac{m}{2 d}} \rtimes\left(\mathbb{Z}_{2} \times U(m)\right)\right) \rtimes \mathbb{Z}_{2}$.
Case (ii): l is odd.
Using Equation (3.8), one can easily observe that $\operatorname{gcd}(l, d)=1$ which means that $2^{n-3} l u-1=d l^{\prime}$, where l^{\prime} is odd, $\operatorname{gcd}\left(l^{\prime}, u\right)=1$ and $1 \leqslant l^{\prime} \leqslant 2^{n} u$. Thus, using Equation (3.8),

$$
(t+1) d l^{\prime} \equiv 0\left(\bmod 2^{n-2} q\right) .
$$

Since $\operatorname{gcd}\left(l^{\prime}, u\right)=1, t=2^{n-2} u q^{\prime}-1$, where $1 \leqslant q^{\prime} \leqslant 4 d$. Now,

$$
\begin{gathered}
s-2 t-1=2 d l^{\prime}-2 t=2 d\left(l^{\prime}-\frac{t}{d}\right) \\
=2 d\left(\frac{2^{n-3} u l-2^{n-2} u q^{\prime}}{d}\right)=2^{n-2} d u \frac{l-2 q^{\prime}}{d}
\end{gathered}
$$

Let $(\alpha, \gamma, \delta) \in X$ be such that $\alpha(b)=b^{i}, \gamma(b)=a^{\lambda}$ and $\delta(a)=a^{r}$, where $i \in\{1,3\}, 0 \leqslant \lambda \leqslant m-1, \lambda$ is even and $r \in U(m)$. We consider two sub-cases based on the image of the map α.

Sub-case (i): $\alpha(b)=b$.
Using $\delta(a)^{\alpha(b)} \gamma(b)=\gamma(a \cdot b) \delta\left(a^{b}\right)$, we get

$$
\begin{gathered}
a^{\lambda(s+2)+(2 t+1) r}=\gamma(a \cdot b) \delta\left(a^{b}\right)=\delta(a)^{b} \gamma(b) \\
=\left(a^{r}\right)^{b} a^{\lambda}=a^{2 t+1+(r-1) s+\lambda}
\end{gathered}
$$

which implies that

$$
\lambda(s+1) \equiv(r-1)(s-2 t-1)(\bmod m) .
$$

Therefore

$$
\lambda\left(l u 2^{n-2}\right) \equiv 2^{n-2} q(r-1)\left(\frac{l-2 q^{\prime}}{d}\right)\left(\bmod 2^{n} q\right)
$$

which implies that

$$
\lambda l \equiv d(r-1)\left(\frac{l-2 q^{\prime}}{d}\right)(\bmod 4 d)
$$

Now, if $\lambda \equiv 0(\bmod 2 d)$, then $r \equiv 3(\bmod 4)$. Again, if $\lambda \equiv 0(\bmod 4 d)$, then $r \equiv 1(\bmod 4)$. Thus, in this sub-case, the choices for the maps γ and δ are

$$
\gamma_{\lambda}(b)=a^{\lambda} \quad \text { and } \quad \delta_{r}(a)=a^{r},
$$

where λ is even and $\lambda \equiv 0(\bmod 2 d)$, and $r \in U(m)$.
Sub-case (ii): $\alpha(\mathrm{b})=\mathrm{b}^{3}$.
Using $\delta(a)^{\alpha(b)} \gamma(b)=\gamma(a \cdot b) \delta\left(a^{b}\right)$, we get

$$
\begin{gathered}
a^{\lambda(s+2)+(2 t+1) r}=\gamma(a \cdot b) \delta\left(a^{b}\right)=\delta(a)^{\alpha(b)} \gamma(b) \\
=\left(a^{r}\right)^{b^{3}} a^{\lambda}=a^{4 t+2 t s+1+(r-1) s+\lambda}
\end{gathered}
$$

which implies that

$$
(\lambda-2 t)(s+1) \equiv(r-1)(s-2 t-1)(\bmod m) .
$$

Therefore

$$
l u 2^{n-2}(\lambda-2 t) \equiv 2^{n-2} q(r-1)\left(\frac{l-2 q^{\prime}}{d}\right)\left(\bmod 2^{n} q\right)
$$

which implies that

$$
l(\lambda-2 t) \equiv d(r-1)\left(\frac{l-2 q^{\prime}}{d}\right)(\bmod 4 d)
$$

Now, if $\lambda \equiv 0(\bmod 2 d)$, then $r \equiv 1(\bmod 4)$. Again, if $\lambda \equiv 0(\bmod 4 d)$, then $r \equiv 3(\bmod 4)$. Thus, in this sub-case, the choices for the maps γ
and δ are

$$
\gamma_{\lambda}(b)=a^{\lambda} \quad \text { and } \quad \delta_{r}(a)=a^{r}
$$

where λ is even and $\lambda \equiv 0(\bmod 2 d)$, and $r \in U(m)$.
Combining both the sub-cases (i) and (ii), we get for all $\alpha \in \operatorname{Aut}(H)$, the choices for the maps γ and δ are

$$
\gamma_{\lambda}(b)=a^{\lambda} \quad \text { and } \quad \delta_{r}(a)=a^{r}
$$

where λ is even and $\lambda \equiv 0(\bmod 2 d)$, and $r \in U(m)$. Therefore, using Theorem 3.5,

$$
\mathrm{E} \simeq \mathbb{Z}_{\frac{\mathrm{m}}{2 \mathrm{~d}}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{~m})\right)
$$

Also, since $2 t(s+1) \not \equiv 0(\bmod m)$, using Lemma 3.3, $\operatorname{Im}(\beta)=\{1\}$. Thus, B is a trivial group. Hence, using Theorem 3.5,

$$
\operatorname{Aut}(\mathrm{G}) \simeq \mathrm{E} \rtimes \mathrm{~B} \simeq \mathbb{Z}_{\frac{\mathrm{m}}{2 \mathrm{~d}}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{~m})\right)
$$

The statement is proved.
Theorem 3.13 Let $\mathrm{m}=8 \mathrm{q}$, t be odd, and $\operatorname{gcd}(\mathrm{t}, \mathrm{m})=\mathrm{d}$, where $\mathrm{q}>1$ is odd. Then

$$
\operatorname{Aut}(G) \simeq \begin{cases}\left(\mathbb{Z}_{\frac{m}{2 d}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{~m})\right)\right) \rtimes \mathbb{Z}_{2}, & \text { if } 2 t(s+1) \equiv 0(\bmod m) \\ \mathbb{Z}_{\frac{m}{2 d}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{~m})\right), & \text { if } 2 \mathrm{t}(\mathrm{~s}+1) \not \equiv 0(\bmod m)\end{cases}
$$

Proof - Let $q=d u$, for some odd integer u. Then using (G2), we have $s \equiv-1(\bmod 2 u)$, which implies that $s=2 l u-1$, where $1 \leqslant l \leqslant 4 d$. Now, using (G1), $l(l u-1) \equiv 0(\bmod d)$. Using (G3), we get

$$
\begin{equation*}
(t+1)(l u-1) \equiv 0(\bmod 2 q) \tag{3.9}
\end{equation*}
$$

Case (i): l is even.
Then by Equation (3.9), $t \equiv l u-1(\bmod 2 q)$. Note that

$$
2 t(s+1) \equiv 2 t(2 l u) \equiv 0(\bmod m) \quad \text { and } \quad \lambda(s+1)=\lambda(2 l u)
$$

Thus $\lambda(s+1) \equiv 0(\bmod m)$ if and only if $\lambda l \equiv 0(\bmod 4 d)$ which is true for all $\lambda \equiv 0(\bmod 2 \mathrm{~d})$. Thus, using a similar argument as in the proof of Theorem 3.6, we get $E \simeq \mathbb{Z}_{\frac{m}{2 d}} \rtimes\left(\mathbb{Z}_{2} \times U(m)\right)$ and $B \simeq \mathbb{Z}_{2}$. Hence, by Theorem 3.5, $\operatorname{Aut}(G) \simeq E \rtimes B \simeq\left(\mathbb{Z}_{\frac{m}{2 d}} \rtimes\left(\mathbb{Z}_{2} \times U(m)\right)\right) \rtimes \mathbb{Z}_{2}$.

Case (ii): l is odd.
Then using Equation (3.9), one can easily observe that $\operatorname{gcd}(l, d)=1$ which means that $l u-1=d l^{\prime}$, where $1 \leqslant l^{\prime} \leqslant 8 u$ and $\operatorname{gcd}\left(l^{\prime}, u\right)=1$. Since $l u-1$ is even, l^{\prime} is even. Thus using Equation (3.9), we have that

$$
(t+1) d l^{\prime} \equiv 0(\bmod 2 q)
$$

Since $\operatorname{gcd}\left(l^{\prime}, u\right)=1, t=u q^{\prime}-1$, where $1 \leqslant q^{\prime} \leqslant 8 d$ and q^{\prime} is even, as t is odd. Now,

$$
\begin{gathered}
s-2 t-1=2 d l^{\prime}-2 t=2 d\left(l^{\prime}-\frac{t}{d}\right) \\
=2 d\left(\frac{u l-u q^{\prime}}{d}\right)=2 d u \frac{l-q^{\prime}}{d}
\end{gathered}
$$

Let $(\alpha, \gamma, \delta) \in X$ be such that $\alpha(b)=b^{i}, \gamma(b)=a^{\lambda}$ and $\delta(a)=a^{r}$, where $i \in\{1,3\}, 0 \leqslant \lambda \leqslant m-1, \lambda$ is even and $r \in U(m)$. We consider two sub-cases based on the image of the map α.

Sub-case (i): $\alpha(b)=b$.
Then

$$
\begin{gathered}
a^{\lambda(s+2)+(2 t+1) r}=\gamma(a \cdot b) \delta\left(a^{b}\right)=\delta(a)^{b} \gamma(b) \\
=\left(a^{r}\right)^{b} a^{\lambda}=a^{2 t+1+(r-1) s+\lambda}
\end{gathered}
$$

which implies that

$$
\lambda(s+1) \equiv(r-1)(s-2 t-1)(\bmod m)
$$

Therefore

$$
\lambda(2 l u) \equiv 2 d u(r-1)\left(\frac{l-q^{\prime}}{d}\right)(\bmod 8 q)
$$

which implies that

$$
\lambda(l) \equiv d(r-1)\left(\frac{l-q^{\prime}}{d}\right)(\bmod 4 d)
$$

Now, if $\lambda \equiv 0(\bmod 2 d)$, then $r \equiv 3(\bmod 4)$. Again, if $\lambda \equiv 0(\bmod 4 d)$, then $r \equiv 1(\bmod 4)$. Thus, in this sub-case, the choices for the maps γ and δ are

$$
\gamma_{\lambda}(b)=a^{\lambda} \quad \text { and } \quad \delta_{r}(a)=a^{r}
$$

where λ is even and $\lambda \equiv 0(\bmod 2 d)$, and $r \in U(m)$.

Sub-case (ii): $\alpha(b)=b^{3}$.
Then

$$
\begin{aligned}
a^{\lambda(s+2)+(2 t+1) r} & =\gamma(a \cdot b) \delta\left(a^{b}\right)=\delta(a)^{b^{3}} \gamma(b) \\
=\left(a^{r}\right)^{b^{3}} a^{\lambda} & =a^{4 t+2 t s+1+(r-1) s+\lambda}
\end{aligned}
$$

which implies that

$$
(\lambda-2 t)(s+1) \equiv(r-1)(s-2 t-1)(\bmod m)
$$

Therefore

$$
2 l u(\lambda-2 t) \equiv 2 d u(r-1)\left(\frac{l-q^{\prime}}{d}\right)(\bmod 8 q)
$$

which implies that

$$
l(\lambda-2 t) \equiv d(r-1)\left(\frac{l-q^{\prime}}{d}\right)(\bmod 4 d)
$$

Now, if $\lambda \equiv 0(\bmod 2 d)$, then $r \equiv 1(\bmod 4)$. Again, if $\lambda \equiv 0(\bmod 4 d)$, then $r \equiv 3(\bmod 4)$. Thus, in this sub-case, the choices for the maps γ and δ are

$$
\gamma_{\lambda}(b)=a^{\lambda} \quad \text { and } \quad \delta_{r}(a)=a^{r}
$$

where λ is even and $\lambda \equiv 0(\bmod 2 d)$, and $r \in U(m)$.
Combining both the sub-cases (i) and (ii), we get for all $\alpha \in \operatorname{Aut}(H)$, the choices for the maps γ and δ are $\gamma_{\lambda}(b)=a^{\lambda}$ and $\delta_{r}(a)=a^{r}$, where λ is even and $\lambda \equiv 0(\bmod 2 d)$, and $r \in U(m)$. Therefore, using Theorem 3.5,

$$
X \simeq \mathbb{Z}_{\frac{\mathrm{m}}{2 \mathrm{~d}}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{~m})\right)
$$

Also, since $2 t(s+1) \not \equiv 0(\bmod m)$, using Lemma 3.3, $\operatorname{Im}(\beta)=\{1\}$. Thus, B is a trivial group. Hence, by Theorem 3.5,

$$
\operatorname{Aut}(\mathrm{G}) \simeq \mathrm{E} \rtimes \mathrm{~B} \simeq \mathbb{Z}_{\frac{\mathrm{m}}{2 \mathrm{~d}}} \rtimes\left(\mathbb{Z}_{2} \times \mathrm{U}(\mathrm{~m})\right)
$$

The statement is proved.

4 Automorphisms of Zappa-Szép products of groups $\mathbb{Z}_{\mathfrak{p}^{2}}$ and $\mathbb{Z}_{\mathfrak{m}}, p$ odd prime

In [12], Yacoub classified the groups which are Zappa-Szép products of cyclic groups of order m and order p^{2}, where p is an odd prime. He found that these are of the following type (see [12, Conclusion, p. 38])

$$
\begin{aligned}
& M_{1}=\left\langle a, b \mid a^{m}=1=b^{p^{2}}, a b=b a^{u}, u^{p^{2}} \equiv 1(\bmod m)\right\rangle, \\
& M_{2}=\left\langle a, b \mid a^{m}=1=b^{p^{2}}, a b=b^{t} a, t^{m} \equiv 1\left(\bmod p^{2}\right)\right\rangle, \\
& M_{3}=\left\langle a, b \mid a^{m}=1=b^{p^{2}}, a b=b^{t} a^{p r+1}, a^{p} b=b a^{p(p r+1)}\right\rangle,
\end{aligned}
$$

and in M_{3}, p divides m. These are not non-isomorphic classes. The groups M_{1} and M_{2} may be isomorphic to the group M_{3} depending on the values of m, r and t. Clearly, M_{1} and M_{2} are semidirect products. Throughout this section G will denote the group M_{3} and we will be only concerned about groups M_{3} which are Zap-pa-Szép products but not a semidirect product. Note that $G=H \bowtie K$, where $\mathrm{H}=\langle\mathrm{b}\rangle$ and $\mathrm{K}=\langle\mathrm{a}\rangle$. For the group G , the mutual actions of H and K are defined by

$$
a \cdot b=b^{t}, a^{b}=a^{p r+1}, a^{p} \cdot b=b,\left(a^{p}\right)^{b}=a^{p(p r+1)},
$$

where t and r are integers satisfying the conditions:
(G1) $\operatorname{gcd}\left(t-1, p^{2}\right)=p$, that is, $t=1+\lambda p$, where $\operatorname{gcd}(\lambda, p)=1$,
(G2) $\operatorname{gcd}(r, p)=1$,
(G3) $\mathfrak{p}(\mathrm{pr}+1)^{\mathrm{p}} \equiv \mathrm{p}(\bmod m)$.
Lemma 4.1 $a^{(p r+1)^{i p \lambda}}=a^{i\left((p r+1)^{p \lambda}-1\right)+1}$, for all \mathfrak{i}.
Proof - One can easily prove the result using (G3).
Lemma 4.2 (i) $\mathfrak{a} \cdot b^{\mathfrak{j}}=b^{\mathfrak{j t}}$, for all \mathfrak{j},
(ii) $\mathrm{a}^{\mathrm{l}} \cdot \mathrm{b}=\mathrm{b}^{1+\mathrm{lp} \lambda}$, for all l ,
(iii) $\mathfrak{a}^{\left(b^{j}\right)}=a^{(p r+1)^{j}}$, for all \mathfrak{j},
(iv) $\left(a^{l}\right)^{b}=a^{\frac{l(l-1)}{2}\left((p r+1)^{\lambda p}-1\right)+l(p r+1)}$, for all l,
(v) $\mathrm{a}^{\mathrm{l}} \cdot \mathrm{b}^{\mathfrak{j}}=\mathrm{b}^{\mathfrak{j} \mathrm{t}^{l}}$, for all j and l ,
(vi) $\left(a^{l}\right)^{b^{j}}=a^{\frac{j l(l-1)}{2}\left((p r+1)^{\lambda p}-1\right)+l(p r+1)^{j}}$, for all \mathfrak{j} and l.

Proof - (i) Using (C3) and (C5),

$$
\begin{gathered}
a \cdot b^{2}=(a \cdot b)\left(a^{b} \cdot b\right)=b^{t}\left(a^{p r+1} \cdot b\right)=b^{t}\left(a \cdot\left(a^{p r} \cdot b\right)\right) \\
=b^{t}(a \cdot b)=b^{2 t} .
\end{gathered}
$$

Similarly,

$$
\begin{aligned}
& a \cdot b^{3}=(a \cdot b)\left(a^{b} \cdot b^{2}\right)=b^{t}\left(a^{p r+1} \cdot b^{2}\right) \\
& =b^{t}\left(a \cdot\left(a^{p r} \cdot b^{2}\right)\right)=b^{t}\left(a \cdot b^{2}\right)=b^{3 t} .
\end{aligned}
$$

Inductively, we get $a \cdot b^{j}=b^{j t}$, for all j.
(ii) Using (C_{3}) and part (i),

$$
\begin{gathered}
a^{2} \cdot b=a \cdot(a \cdot b)=a \cdot b^{t} \\
=b^{t^{2}}=b^{1+2 p \lambda} .
\end{gathered}
$$

Similarly,

$$
\begin{aligned}
a^{3} \cdot b & =a \cdot\left(a^{2} \cdot b\right)=a \cdot b^{t^{2}} \\
& =b^{t^{3}}=b^{1+3 p \lambda} .
\end{aligned}
$$

Inductively, we get $a^{l} \cdot b=b^{1+l p \lambda}$, for all l.
(iii) First, note that, using (C4), we have

$$
\left(a^{\mathfrak{l p}}\right)^{b}=a^{\mathfrak{l p}(p r+1)} .
$$

Now, using (C4) and (C6),

$$
\begin{aligned}
a^{\left(b^{2}\right)}= & \left(a^{b}\right)^{b}=\left(a^{p r+1}\right)^{b}=a^{\left(a^{p r} \cdot b\right)}\left(a^{p r}\right)^{b} \\
& =a^{b} a^{p r(p r+1)}=a^{(p r+1)^{2}} .
\end{aligned}
$$

Similarly,

$$
\begin{gathered}
\mathfrak{a}^{\left(b^{3}\right)}=\left(a^{b}\right)^{b^{2}}=\left(a^{p r+1}\right)^{b^{2}}=a^{\left(a^{p r} \cdot b^{2}\right)}\left(a^{p r}\right)^{b^{2}}=a^{b^{2}}\left(\left(a^{p r}\right)^{b}\right)^{b} \\
\left.=a^{(p r+1)^{2}}\left(a^{p r(p r+1)}\right)^{b}=a^{(p r+1)^{2}} a^{p r(p r+1)^{2}}=a^{(p r+1}\right)^{3} .
\end{gathered}
$$

Inductively, we get $a^{\left(b^{j}\right)}=a^{(p r+1)^{j}}$, for all j.
(iv) Using (C4), (G3) and part (iii), we get

$$
\begin{gathered}
\left(a^{2}\right)^{b}=a^{(a \cdot b)} a^{b}=a^{\left(b^{t}\right)} a^{p r+1}=a^{(p r+1)^{(1+\lambda p)}} a^{p r+1} \\
=a^{(p r+1)^{\lambda p}+p r(p r+1)^{\lambda p}+p r+1}=a^{\left((p r+1)^{\lambda p}-1\right)+2(p r+1)} .
\end{gathered}
$$

Using a similar argument, we get

$$
\begin{gathered}
\left(a^{3}\right)^{b}=\left(a^{2}\right)^{(a \cdot b)} a^{b}=\left(a^{2}\right)^{b^{t}} a^{p r+1}=a^{\left(a \cdot b^{t}\right)} a^{\left(b^{t}\right)} a^{p r+1} \\
=a^{\left(b^{1+2 p \lambda)}\right.} a^{\left(b^{1+\lambda p}\right)} a^{p r+1}=a^{(p r+1)^{1+2 p \lambda}+(p r+1)^{1+p \lambda}+p r+1} \\
=a^{(p r+1)^{2 p \lambda}+p r(p r+1)^{2 p \lambda}+(p r+1)^{p \lambda}+p r(p r+1)^{p \lambda}+p r+1} \\
=a^{2\left((p r+1)^{p \lambda}-1\right)+1+p r+(p r+1)^{p \lambda}+p r+p r+1} \quad(\text { using Lemma 4.1) } \\
=a^{3\left((p r+1)^{p \lambda}-1\right)+3(p r+1)} .
\end{gathered}
$$

Inductively, we get (iv).
(v) Follows inductively, using parts (i) and (ii).
(vi) Follows inductively, using parts (iii) and (iv).

Lemma 4.3 If for all $l \neq 0,(\mathrm{pr}+1)^{\mathrm{pl}} \not \equiv 1(\bmod m)$, then
(i) $\operatorname{Im}(\gamma) \subseteq\left\langle a^{p}\right\rangle$,
(ii) $\alpha \in \operatorname{Aut}(\mathrm{H})$.

Proof - (i) Let $\alpha(b)=b^{i}$ and $\gamma(b)=a^{\mu}$. Then using (A1) and Lemma 4.2 (v),

$$
\alpha\left(b^{2}\right)=\alpha(b)(\gamma(b) \cdot \alpha(b))=b^{i}\left(a^{\mu} \cdot b^{i}\right)=b^{\mathfrak{i}\left(1+t^{\mu}\right)}
$$

Inductively, we get

$$
\begin{gathered}
\alpha\left(b^{u}\right)=b^{\mathfrak{i}\left(1+t^{\mu}+t^{2 \mu}+\ldots+t^{(u-1) \mu}\right)} \\
=b^{i(1+(1+p \mu \lambda)+(1+2 p \mu \lambda)+\ldots+(1+(u-1) p \mu \lambda))}=b^{i\left(u+\frac{u(u-1)}{2} p \mu \lambda\right)}
\end{gathered}
$$

for all $0 \leqslant u \leqslant p^{2}-1$. Now, using (A2) and Lemma 4.2 (vi),

$$
\begin{aligned}
& \gamma\left(b^{2}\right)=\gamma(b)^{\alpha(b)} \gamma(b)=\left(a^{\mu}\right)^{b^{i}} a^{\mu} \\
= & a^{\frac{i \mu(\mu-1)}{2}}\left((p r+1)^{p \lambda}-1\right)+\mu(p r+1)^{i}+\mu .
\end{aligned}
$$

Inductively, we get

$$
\gamma\left(b^{u}\right)=a^{\left(i \frac{u(u-1) \mu(\mu-1)}{2}+i \mu^{2} \frac{u(u-1)(u-2)}{6}\right)\left((p r+1)^{p \lambda}-1\right)+\mu \sum_{v=0}^{u-1}(p r+1)^{i v}}
$$

for all $0 \leqslant u \leqslant p^{2}-1$. Now, using (G3),

$$
1=\gamma\left(\mathfrak{b}^{\mathfrak{p}^{2}}\right)=\mathfrak{a}^{\mu \sum_{v=0}^{\mathfrak{p}^{2}-1}(\mathfrak{p r}+1)^{i v}}=a^{\mu\left(\frac{(\mathfrak{p r}+1)^{i^{2}} \mathfrak{p}^{2}-1}{(\mathfrak{p r}+1)^{i}-1}\right)},
$$

which implies that

$$
\begin{equation*}
\mu\left(\frac{(\mathrm{pr}+1)^{\mathfrak{i p}^{2}}-1}{(\mathrm{pr}+1)^{\mathrm{i}}-1}\right) \equiv 0(\bmod \mathfrak{m}) . \tag{4.1}
\end{equation*}
$$

If for all $l \neq 0,(p r+1)^{p l} \equiv 1(\bmod m)$, then by Equation $(4.1), \mu$ can be anything. If for all $l \neq 0,(\mathrm{pr}+1)^{\mathrm{pl}} \not \equiv 1(\bmod m)$, then by Equation (4.1) and $\left(\mathrm{G}_{3}\right), \mu \equiv 0(\bmod p)$. Also, note that, in both the cases, namely

$$
(p r+1)^{p l} \equiv 1(\bmod m) \quad \text { and } \quad(p r+1)^{p l} \not \equiv 1(\bmod m),
$$

we have that

$$
\gamma\left(\mathrm{b}^{\mathrm{u}}\right)=\mathrm{a}^{\mu \sum_{v=0}^{u-1}(\mathrm{pr}+1)^{\mathrm{iv}}} .
$$

Hence, if $(\operatorname{pr}+1)^{p l} \not \equiv 1(\bmod m)$, then $\gamma\left(b^{u}\right)=a^{\mu \sum_{v=0}^{u-1}(p r+1)^{i v}}$ belongs to $\left\langle\mathfrak{a}^{p}\right\rangle$.
(ii) Follows immediately using part (i).

Lemma 4.4 Let $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathcal{A}$. Then, if $\beta \in \mathrm{Q}$, then:
(i) $\beta \in \operatorname{Hom}(\mathrm{K}, \mathrm{H})$ and $\operatorname{Im}(\beta) \leqslant\left\langle\mathrm{b}^{\mathrm{p}}\right\rangle$;
(ii) $l(p r+1)^{j} \equiv l(\bmod m)$, for all l;
(iii) $\gamma(\mathrm{h}) \cdot \beta(\mathrm{k})=\beta(\mathrm{k})$ and $\gamma(\mathrm{h})^{\beta(\mathrm{k})}=\gamma(\mathrm{h})$, for all $\mathrm{h} \in \mathrm{H}$ and $\mathrm{k} \in \mathrm{K}$;
(iv) $\gamma \beta=0$, where 0 is the trivial homomorphism in $\operatorname{Hom}(K, K)$;
(v) $\gamma \beta+\delta \in \operatorname{Aut}(\mathrm{K})$ and $\gamma \beta+\delta \in S$;
(vi) $\beta \gamma \in \operatorname{Hom}(\mathrm{H}, \mathrm{H})$;
(vii) $\alpha+\beta \gamma \in \operatorname{Aut}(\mathrm{H})$ and $\alpha+\beta \gamma \in \mathrm{P}$.

Proof - Let $\beta(a)=b^{j}$. Then using (A3),

$$
\beta\left(a^{2}\right)=\beta(a)(a \cdot \beta(a))=b^{j}\left(a \cdot b^{j}\right)=b^{j+j t}
$$

Inductively, we get

$$
\begin{aligned}
\beta\left(a^{l}\right)=b^{j\left(1+t+t^{2}+\ldots+t^{l-1}\right)} & =b^{j(1+(1+\lambda p)+(1+2 \lambda p)+\ldots+(1+(l-1) \lambda p))} \\
= & b^{j\left(l+\lambda p \frac{l(l-1)}{2}\right)} .
\end{aligned}
$$

(i) Since $\beta \in Q, \beta\left(k^{h}\right)=\beta(k)$. Therefore

$$
b^{j}=\beta(a)=\beta\left(a^{b}\right)=\beta\left(a^{p r+1}\right)=b^{j(p r+1)}
$$

which implies that

$$
j p r+j \equiv j\left(\bmod p^{2}\right)
$$

Since $\operatorname{gcd}(r, p)=1, j \equiv 0(\bmod p)$. Thus, $\beta\left(a^{l}\right)=b^{j l} \in\left\langle b^{p}\right\rangle$, for all l. Hence, One can easily observe that β is a group homomorphism and $\operatorname{Im}(\beta) \leqslant\left\langle b^{p}\right\rangle$.
(ii) Since $\beta \in Q, k^{\beta\left(k^{\prime}\right)}=k$. Therefore, using Lemma 4.2 (vi),

$$
a^{l}=\left(a^{l}\right)^{\beta(a)}=\left(a^{l}\right)^{b^{j}}=a^{\frac{j l(l-1)}{2}\left((p r+1)^{\lambda p}-1\right)+l(p r+1)^{j}}
$$

Now, using part (i) and $\left(G_{3}\right)$, we get $l(p r+1)^{j} \equiv l(\bmod m)$, for all l.
(iii) First, note that $a^{l} \cdot b^{p}=b^{p}$ and using part (ii), ($\left.a^{l}\right)^{b^{p}}=a^{l}$, for all l. Hence, the result follows using part (i).
(iv) Using Lemma 4.3 (i), we have

$$
\gamma\left(b^{u}\right)=a^{\mu \sum_{v=0}^{u-1}(p r+1)^{i v}}
$$

for all u. Then, using part (ii), for all l, we get

$$
\gamma \beta\left(a^{l}\right)=\gamma\left(b^{l j}\right)=a^{\mu \sum_{v=0}^{l j-1}(p r+1)^{i v}}=a^{\mu\left(\frac{(p r+1)^{i j l}-1}{(p r+1)^{i}-1}\right)}=1 .
$$

Thus, $\gamma \beta=0$.
(v) Follows directly using part (iv).
(vi) Using $\beta\left(k^{h}\right)=\beta(k)$ and part (i),

$$
\begin{gathered}
\beta \gamma\left(h h^{\prime}\right)=\beta\left(\gamma(h)^{\alpha\left(h^{\prime}\right)} \gamma\left(h^{\prime}\right)\right) \\
=\beta\left(\gamma(h)^{\alpha\left(h^{\prime}\right)}\right) \beta\left(\gamma\left(h^{\prime}\right)\right)=\beta(\gamma(h)) \beta\left(\gamma\left(h^{\prime}\right)\right) .
\end{gathered}
$$

Hence, $\beta \gamma \in \operatorname{Hom}(K, K)$.
(vii) Using Lemma 4.3 (i), we have $\gamma\left(b^{u}\right)=a^{\mu \sum_{v=0}^{u-1}(p r+1)^{i v}}$, for all u. Also, using part (i), we have $\beta \gamma\left(b^{u}\right)=b^{\mathfrak{u j} \mu}$, for all u. Therefore,

$$
(\alpha+\beta \gamma)\left(b^{u}\right)=b^{u\left(i+j \mu+p \mu \lambda \frac{u-1}{2}\right)}
$$

Now, one can easily observe that $\alpha+\beta \gamma$ is a bijection. Hence, using part (vi), $\alpha+\beta \gamma \in \operatorname{Aut}(\mathrm{H})$.

Now, using part (i), (C_{5}) and (C6),

$$
\begin{gathered}
k \cdot(\alpha+\beta \gamma)(h)=k \cdot \alpha(h) \beta \gamma(h)=(k \cdot \alpha(h))\left(k^{\alpha(h)} \cdot \beta(\gamma(h))\right) \\
=\alpha(k \cdot h) \beta(\gamma(h))=\alpha(k \cdot h) \beta \gamma(k \cdot h)=(\alpha+\beta \gamma)(k \cdot h)
\end{gathered}
$$

and

$$
k^{(\alpha+\beta \gamma)(h)}=k^{\alpha(h) \beta \gamma(h)}=\left(k^{\alpha(h)}\right)^{\beta \gamma(h)}=k^{\alpha(h)}=k^{h} .
$$

Hence, $\alpha+\beta \gamma \in \mathrm{P}$.
Note that, using Lemma 4.4 (iii), multiplication in the group \mathcal{A} reduces to the usual multiplication of matrices.
Theorem 4.5 Let A, B, C, D be defined as above. Then Aut $(G)=A B C D$.
Proof - Using Lemma 4.4 (vii), $\alpha+\beta \gamma \in \mathrm{P}$. In particular, $1-\beta \gamma \in \mathrm{P}$. Therefore, by Theorem 2.4, we have $\operatorname{Aut}(G)=A B C D$.
Theorem 4.6 Let G be as above. Then

$$
\operatorname{Aut}(\mathrm{G}) \simeq \begin{cases}\left(\mathbb{Z}_{\mathfrak{m}} \rtimes\left(\mathbb{Z}_{\mathfrak{p}} \times \widetilde{\mathrm{D}}\right)\right) \rtimes \mathbb{Z}_{\mathrm{p}}, & \text { if }(\mathrm{pr}+1)^{p} \equiv 1(\bmod m) \\ \left(\mathbb{Z}_{\frac{\mathfrak{m}}{}} \rtimes\left(\mathbb{Z}_{\mathfrak{p}} \times \widetilde{\mathrm{D}}\right)\right) \rtimes \mathbb{Z}_{\mathfrak{p}}, & \text { if }(\mathrm{pr}+1)^{p} \not \equiv 1(\bmod m)\end{cases}
$$

where \widetilde{D} is a subgroup of $U(m)$ of order $\frac{\phi(m)}{p-1}$.
Proof - Let $\beta \in Q$. Using Lemma 4.4 (i), we have that $\beta\left(a^{l}\right)=b^{j l}$, where $j \equiv 0(\bmod p)$. Thus, $B \simeq \mathbb{Z}_{p}$. Now, let $(\alpha, \gamma, \delta) \in X$ be such
that

$$
\alpha(b)=b^{i}, \quad \gamma(b)=a^{\mu} \quad \text { and } \quad \delta(a)=a^{s},
$$

where $i \in \mathbb{Z}_{p^{2}}, \operatorname{gcd}\left(i, p^{2}\right)=1,0 \leqslant \mu \leqslant m-1$, and $s \in U(m)$. Then using $\alpha\left(h h^{\prime}\right)=\alpha(h)\left(\gamma(h) \cdot \alpha\left(h^{\prime}\right)\right), \gamma\left(h^{\prime}\right)=\gamma(h)^{\alpha\left(h^{\prime}\right)} \gamma\left(h^{\prime}\right)$ and Lemma 4.3 (i), we have

$$
\begin{equation*}
\alpha\left(b^{u}\right)=b^{\mathfrak{i}\left(u+\frac{u(u-1)}{2} p u \lambda\right)} \text { and } \gamma\left(b^{u}\right)=a^{\mu \sum_{v=0}^{u-1}(p r+1)^{i v}} . \tag{4.2}
\end{equation*}
$$

Now, using $(\alpha, \gamma, \delta) \in X$, we obtain

$$
\delta(k) \cdot \alpha(h)=\alpha(k \cdot h)
$$

and

$$
b^{i t}=\alpha\left(b^{t}\right)=\alpha(a \cdot b)=\delta(a) \cdot \alpha(b)=a^{s} \cdot b^{i}=b^{\mathfrak{i t}^{s}} .
$$

Thus, $\mathrm{it}^{s} \equiv \mathrm{it}\left(\bmod \mathrm{p}^{2}\right)$ which implies that $(1+\mathrm{p} \lambda)^{s-1} \equiv 1\left(\bmod \mathrm{p}^{2}\right)$. Therefore,

$$
s \equiv 1(\bmod p) .
$$

Using $(\alpha, \gamma, \delta) \in X, \delta(k)^{\alpha(h)} \gamma(h)=\gamma(k \cdot h) \delta\left(k^{h}\right),\left(G_{3}\right)$ and the fact that $s \equiv 1(\bmod p)$, we get

$$
\begin{gathered}
a^{\mu \sum_{v=0}^{t-1}(p r+1)^{i v}+s(p r+1)}=\gamma\left(b^{t}\right) \delta\left(a^{p r+1}\right)=\gamma(a \cdot b) \delta\left(a^{b}\right) \\
=\delta(a)^{\alpha(b)} \gamma(b)=\left(a^{s}\right)^{b^{i}} a^{\mu}=a^{\frac{i s(s-1)}{2}\left((p r+1)^{\lambda p}-1\right)+s(p r+1)^{i}} a^{\mu} \\
=a^{s(p r+1)^{i}+\mu} .
\end{gathered}
$$

Thus $\mu \sum_{v=0}^{\mathrm{t}-1}(\mathrm{pr}+1)^{\mathrm{iv}}+\mathrm{s}(\mathrm{pr}+1) \equiv s(\mathrm{pr}+1)^{\mathrm{i}}+\mu(\bmod \mathfrak{m})$. Therefore,

$$
\begin{aligned}
& \mu+s(\mathfrak{p r}+1)^{\mathfrak{i}} \equiv \mu\left(\frac{(\mathrm{pr}+1)^{\mathrm{it}}-1}{(\mathrm{pr}+1)^{\mathrm{i}}-1}\right)+\mathrm{s}(\mathrm{pr}+1)(\bmod \mathfrak{m}) \\
& \equiv \mu\left(\frac{(\mathfrak{p r}+1)^{i(1+p \lambda)}-1}{(\mathfrak{p r}+1)^{i}-1}\right)+\mathrm{s}(\mathfrak{p r}+1)(\bmod \mathfrak{m}) \\
& \equiv \mu\left(\frac{(\mathrm{pr}+1)^{\mathrm{i}}(\mathrm{pr}+1)^{\mathrm{ip} \lambda}-1}{(\mathrm{pr}+1)^{\mathrm{i}}-1}\right)+\mathrm{s}(\mathrm{pr}+1)(\bmod \mathrm{m}) .
\end{aligned}
$$

We consider two cases, namely

$$
(\mathrm{pr}+1)^{\mathrm{p}} \equiv 1(\bmod \mathfrak{m}) \quad \text { and } \quad(\mathrm{pr}+1)^{\mathrm{p}} \not \equiv 1(\bmod m) .
$$

Case $(\mathrm{i}):(\mathrm{pr}+1)^{\mathrm{p}} \equiv 1(\bmod m)$.
Then

$$
\mu+s(p r+1)^{i} \equiv \mu+s(p r+1)(\bmod m)
$$

which implies that $i \equiv 1(\bmod p)$. Thus in this case, the choices for the maps α, γ and δ are

$$
\alpha_{i}(b)=b^{i}, \quad \gamma_{\mu}(b)=a^{\mu}, \quad \text { and } \quad \delta_{s}(a)=a^{s}
$$

where $i \in U\left(p^{2}\right), i \equiv 1(\bmod p), 0 \leqslant \mu \leqslant m-1, s \in U(m)$, and $s \equiv 1(\bmod p)$.

Case (ii): $(\mathrm{pr}+1)^{p} \not \equiv 1(\bmod m)$.
Then using Lemma $4 \cdot 3, \mu \equiv 0(\bmod p)$. Therefore

$$
\mu+s(p r+1)^{i} \equiv \mu+s(p r+1)(\bmod m)
$$

which implies that $i \equiv 1(\bmod p)$. Thus in this case, the choices for the maps α, γ and δ are

$$
\alpha_{i}(b)=b^{i}, \quad \gamma_{\mu}(b)=a^{\mu}, \quad \text { and } \quad \delta_{s}(a)=a^{s}
$$

where $i \in U\left(p^{2}\right), i \equiv 1(\bmod p), 0 \leqslant \mu \leqslant m-1, \mu \equiv 0(\bmod p)$, $s \in U(m)$ and $s \equiv 1(\bmod p)$.

From both the cases (i) and (ii), we observe that for all μ,

$$
\mathfrak{i} \equiv 1(\bmod p) \quad \text { and } \quad s \equiv 1(\bmod p)
$$

Using these conditions, first, we find the structure of Aut(G).
Since $A \times D$ normalizes C, we have that M normalizes C. So, clearly, $C \triangleleft E$ and $M \cap C=\{1\}$. Now, if $\left(\begin{array}{ll}\alpha & 0 \\ \gamma & \delta\end{array}\right) \in E$, then

$$
\left(\begin{array}{ll}
\alpha & 0 \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{ll}
\alpha & 0 \\
0 & \delta
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\delta^{-1} \gamma & 1
\end{array}\right) \in M C
$$

Thus $E=C \rtimes M$. Now, using Lemma 4.4 (iii) and (iv), we get

$$
\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\alpha & 0 \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\alpha+\beta \gamma & (\alpha+\beta \gamma)(-\beta)+\beta \delta \\
\gamma & \delta
\end{array}\right)
$$

Using Lemma 4.4 (i) and (ii), we have

$$
\begin{gathered}
((\alpha+\beta \gamma)(-\beta)+\beta \delta)(a)=(\alpha+\beta \gamma)(-\beta)(a)(\beta \delta)(a) \\
=(\alpha+\beta \gamma)\left(b^{-j}\right) \beta\left(a^{s}\right)=\alpha\left(b^{-j}\right) \beta\left(\gamma\left(b^{-j}\right)\right) b^{s j} \\
=b^{-i j} \beta\left(a^{\mu \sum_{v=0}^{-j-1}(p r+1)^{i v}}\right) b^{s j} \\
=b^{j(s-i)} \beta\left(a^{\mu\left(\frac{(p r+1)^{-i j}-1}{(p r+1)^{i}-1}\right)}\right)=\beta(1)=1 .
\end{gathered}
$$

Thus, $(\alpha+\beta \gamma)(-\beta)+\beta \delta=0$. Also, using Lemma 4.4 (vii), one can easily observe that $(\alpha+\beta \gamma, \gamma, \delta) \in X$. Therefore, by Equation (4.3),

$$
\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\alpha & 0 \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\alpha+\beta \gamma & 0 \\
\gamma & \delta
\end{array}\right) \in E .
$$

Thus $\mathrm{E} \triangleleft \mathcal{A}$. Clearly, $\mathrm{E} \cap \mathrm{B}=\{1\}$. Now, if $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathcal{A}$, using $\gamma \alpha \beta=0$, we get

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{ll}
\alpha & 0 \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{cc}
1 & \alpha^{-1} \beta \\
0 & 1
\end{array}\right) \in E B
$$

Hence, $\mathcal{A}=E \rtimes B$ and so, $\operatorname{Aut}(G) \simeq E \rtimes B \simeq(C \rtimes(A \times D)) \rtimes B$.
Thus,

$$
X \simeq \mathbb{Z}_{\mathfrak{m}} \rtimes\left(\mathbb{Z}_{\mathfrak{p}} \times \widetilde{\mathrm{D}}\right) \quad \text { and } \quad \operatorname{Aut}(\mathrm{G}) \simeq\left(\mathbb{Z}_{\mathfrak{m}} \rtimes\left(\mathbb{Z}_{\mathfrak{p}} \times \widetilde{\mathrm{D}}\right)\right) \rtimes \mathbb{Z}_{\mathfrak{p}}
$$

in the Case (i), and

$$
X \simeq \mathbb{Z}_{\frac{\mathfrak{m}}{\mathfrak{p}}} \rtimes\left(\mathbb{Z}_{\mathfrak{p}} \times \widetilde{\mathrm{D}}\right) \quad \text { and } \quad \operatorname{Aut}(\mathrm{G}) \simeq\left(\mathbb{Z}_{\frac{\mathfrak{m}}{\mathfrak{p}}} \rtimes\left(\mathbb{Z}_{\mathfrak{p}} \times \widetilde{\mathrm{D}}\right)\right) \rtimes \mathbb{Z}_{\mathfrak{p}}
$$

in the Case (ii), where \widetilde{D} is a subgroup of $U(m)$ of order $\frac{\phi(m)}{p-1}$.

REFERENCES

[1] Z. Arad - E. Fisman: "On finite factorizable groups", J. Algebra 86 (1984), 522-548.
[2] M.J. Curran: "Automorphisms of semidirect products", Math. Proc. R. Ir. Acad. 108 (2008), 205-210.
[3] A. Firat - C. Sinan: "Knit products of some groups and their applications", Rend. Semin. Mat. Univ. Padova 121 (2009), 1-11.
[4] P. Hall: "A characteristic property of soluble groups", J. London Math. Soc. 12 (1937), 198-200.
[5] N.C. Hsu: "The group of automorphisms of the holomorph of a group", Pacific J. Math. 11 (1961), 999-1012.
[6] R. LaL: "Transversals in groups", J. Algebra 181 (1996), 70-81.
[7] J. SzÉp: "Über die als Produkt zweier Untergruppen darstellbaren endlichen Gruppen", Comment. Math. Helv. 22 (1949), 31-33.
[8] J. Szép: "On the structure of groups which can be represented as the product of two subgroups", Acta Sci. Math. (Szeged) 12 (1950), 57-61.
[9] J. Szép: "Zur Theorie der faktorisierbaren Gruppen", Acta Sci. Math. (Szeged) 16 (1955), 54-57.
[10] J. Szép - G. Zappa: "Sui gruppi trifattorizzabili", Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 45 (1968), 113-116
[11] K.R. Yacoub: "On general products of two finite cyclic groups one being of order 4", Proc. Math. Phys. Soc. Egypt 21 (1957), 119-126.
[12] K.R. Yacoub: "On general products of two finite cyclic groups one of which being of order p^{2} ", Publ. Math. Debrecen 6 (1959), 26-39.
[13] G. Zappa: "Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro", in: Atti Secondo Congresso Un. Mat. Ital. Bologna 1940, Edizioni Cremonense, Rome (1942), 119-125.

Ratan Lal, Vipul Kakkar
Department of Mathematics
Central University of Rajasthan
NH-8, Bandarsindri
Ajmer (India)
e-mail: vermarattan789@gmail.com; vplkakkar@gmail.com

[^0]: * The first author is supported by the Senior Research Fellowship of UGC, India

