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Abstract

In this paper, we have found the automorphism group of the Zappa-5Szép product of
two groups. Also, we have computed the automorphism group of the Zappa—Szép
product of a cyclic group of order m and a cyclic group of order p?, where p is a
prime.
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1 Introduction

A group G is the internal Zappa—Szép product of its two subgroups H
and K if G = HK and HNK = {1}. The Zappa-Szép product is a
natural generalization of the semidirect product of two groups in
which neither of the factor is required to be normal. If G is the in-
ternal Zappa-Szép product of H and K, then K appears as a right
transversal to Hin G. Let h € H and k € K. Then kh = o(k, h)t(k, h),
where o(k, h) € H and t(k, h) € K. This determines the maps

0:KxH—-H and 7:KxH—K.

These maps are the matched pair of groups. We denote o(k,h) =k-h
and 1(k, h)=k". These maps satisfy the following conditions (see [3])
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(C1) 1-h=hand k! =k,
(C2) k-1=1=1h,
(C3) kk'-h=k-(k"-h),
(C4) (kKM =KK™,
(C5) k- (hh') = (k- M) (k- 1),
(C6) KM = (kM)
for all h,h/ € Hand k, k’ € K.
On the other hand, let H and K be two groups. Let

0:KxH—=H and 7:KxH-—=K

be two maps defined by o(k, h) = k-h and t(k, h) = k" satisfying the
above conditions. Then, the external Zappa-Szép product G = Hx K
of H and K is the group defined on the set H x K with the binary
operation defined by

(h,k)(W, k) = (h(k-R),kKMK).

The internal Zappa-Szép product is isomorphic to the external Zap-
pa—Szép product (see [3, Proposition 2.4, p. 4]). We will identify the
external Zappa-Szép product with the internal Zappa—-Szép product.

The Zappa-Szép product of two groups was introduced by G. Zap-
pa in [13]. J. Szép studied such type of products in a series of pa-
pers (few of them are [7],[8],[9],[10]). From the QR decomposition
of matrices, one concludes that the general linear group GL(n,C) is
a Zappa-Szép product of the unitary group and the group of upper
triangular matrices. Z. Arad and E. Fisman in [1] studied the finite
simple groups as a Zappa—Szép product of two groups H and K with
the order of H and K coprime. In the same paper, they studied the
finite simple groups as a Zappa—-Szép product of two groups H and K
with one of H or K is p-group, where p is a prime. From the main
result of [4], one observes that a finite group G is solvable if and
only if G is a Zappa-Szép product of a Sylow p-subgroup and a Sy-
low p-complement.

Note that, if either of the actions k - h or k™ is a group homomor-
phism, then the Zappa-Szép product reduces to the semidirect prod-



Automorphisms of Zappa—Szép products 97

uct of groups. M.]J. Curran [2] and N.C. Hsu [5] studied the automor-
phisms of the semidirect product of two groups as the 2 x 2 matrices
of maps satisfying some certain conditions. In this paper (with the
same terminology as in [2] and [5]), we have found the automor-
phism group of the Zappa-Szép product of two groups as the 2 x 2
matrices of maps satisfying some certain conditions. As an applica-
tion, we have found the automorphism group of the Zappa-Szép
product of two cyclic groups in which one is of order p? and other is
of order m, where p is a prime. Throughout the paper, Z, denotes
the cyclic group of order n and U(n) denotes the group of units of n.
Also, Aut(G) denotes the group of all automorphisms of a group G.
Let U and V be groups. Then CrossHom(U, V) denotes the group
of all crossed homomorphisms from U to V. Also, if U acts on V,
then Staby (V) denotes the stabilizer of V in U.

2 Structure of the automorphism group

Let
G=Hx~xK

be the Zappa-Szép product of two groups H and K. Let U, V, W be
groups, and Map(U, V) denote the set of all maps between U and V.
If , v € Map(U, V) and neMap(V, W), then ¢ +¢ € Map(U, V) is
defined by

(& +¥)(u) = d(whb(u),

né € Map(U, W) is defined by

¢ - € Map(U, V) is defined by
(¢ b)) = d(u) - h(u)
and ¥ € Map(U, V) is defined by
dP () = b,

for all u € U.
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Let A be the set of all matrices of the form

oY)

with x€ Map(H, H), p € Map(K, H),yeMap(H, K), and 6 € Map(K, K)
satisfying the following conditions for all h,h’ € H and k, k' € K:

(A1) a(hh) = a(h)(y(h) - x(h));

(A2) y(hh') = y(h)*(My(R);

(A3) B(KK') = B(K)(5(k) - B(K);

(Ag) 8(kK') = 5(k)PI5(K");

(A5) B(K)(8(K) - a(h)) = (k- h) (y(k-h) - B(KM));
(A6) 5(k)*(My(h) = y(k-h)PEM5(KM);

(A7) for any h'k/ € G, there exists a unique h € H and k € K such
y q
that b/ = a(h)(y(h) - B(k)) and k' = y(h)B )5 (k).

Then, the set A forms a group with the binary operation defined by
of B (o B\ _ (daxtva-py o'B+yB-po
YO8 ) \y 8) T \(WFY 8y (vBIFP+85)

1.0 and the inverse of & B € A,
0 1 vy &
which is obtained using the factorization

o« BY (o O\ (/1 B) (T O
y &) \0O 1)\y 1/)\0 &)’
is given by

<fx (3>_1: (1—By) ta! —(1—BY)'B_
y 8 ST =By) " & =)(—(1—=py) "B+ 1)’

where B = 'ps .

The identity element is

Proposition 2.1 Let (3‘ B) €A Then (1) =1=p(1) =y(1) = 5(1).
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Proor — Let h € H be any element. Then, using (A1),
«(h) = «(h1) = «(h) (y(h) - (1))

which implies that y(h) - «(1) =1 =vy(h) - 1 by (C2). Thus

Hence, using (C1), (1) = 1.

Using (A2), y(h) = y(hl) = v(h)*(My(1). Using (C1), y(1) = 1.
Using a similar argument, we get (1) =1 and 6(1) = 1. O

Let us define the kernel of the map o« € Map(H, H) as usual for
groups, that is, ker(«) ={h € H | «(h) = 1}. Here, we should remem-
ber that the map « need not to be a homomorphism. ker(3), ker(vy)
and ker(6) are defined in the same sense.

Lemma 2.2 The following holds:

(i) ker(o) < H, (i) ker(B) <K,
(iii) ker(y) < H, (iv) ker(d) <K,
(v) ker(x) Nker(y) ={1},  (vi) ker(p) Nnker(s) ={1}.

Proor — (i) Leth, h' € ker(x). Then using (A1) and (C2),
a(hh') = a(h)(y(h) - «(h')) =y(h) -1 =1.

Also, 1 = «(1) = a(h™'h) = a(h "N (y(h~")-1). Thus, a(h~1)=1.
Hence, hh/, h~! € ker(«) and so ker(a) < H.

(ii) One can easily prove it using a similar argument as in (i).
(iii) Leth, h’ € ker(y). Then using (A2) and (C2),
y(hh') = y(R)*My () = 1% =1,

Also, 1 = y(1) = y(hh™ ") = y(W)*M™ Dy(h=1). Then, y(h') = 1
and so, hh/, h—! € ker(H). Hence, ker(y) < H.

(iv) One can easily prove it using a similar argument as in (iii).
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(v) Leth € ker(x) Nker(y). Then «(h) =1 =vy(h). Therefore,
ax PBY(h) [a(h)) [1
vy &8)\1) \ymh)/ \1)°

Since (2/( E) € A is a bijection, h = 1. Hence, (v) holds.

(vi) One can easily prove it using a similar argument as in (v). O

Theorem 2.3 Let G = H > K be the Zappa—Szép product of two groups H
and K, and A be as above. Then there is an isomorphism of groups be-
tween Aut(G) and A given by

o« B
6<—><y 6>’

where B(h) = a(h)y(h) and 8(k) = B(k)d(k), for all h € Hand k € K.

Proor — Given 0 € Aut(G), we define «, 3, v and & by means
of 0(h) = a(h)y(h) and 8(k) = B(k)d(k), for all h € H and k € K.
Now, for all h, h/ € H,

e(hh’)ze(h)e(h’)zoc(h) (h) (h’) ()
) (y(h) - a(W))y (W) >y ().
Thus, a(hh')y(hh') = (a(h) (y(h) - a(h)) (y(h) (W) y (W), Therefore,

by uniqueness of representation, we have (A1) and (A2). Using a sim-
ilar argument, we get (A3) and (A4).

Now,
0(kh) = 0((k-h) (k")) =0(k-h)O(k") = a(k - h)y (k- h)B(k™)5(k™)
= (k- ) (y(k-h) - B(KM)y(k-n)PEN (KM,

Also,
0(kh) = 0(k)0(h) = B(k)8(k)ex(h)y(h)

= B (k) (8(k) - a(h))8(k)*My(h)

Therefore, by the uniqueness of representation,

B(k)(5(k) - a(h)) = au(k - M) (y(k-h) - B(Kk™))
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and N
§(k)*My(h) = y(k - h)BIs kM),

which proves (As) and (A6). Finally, (A7) holds because 0 is onto.
Thus, to every 0 € Aut(G) we can associate the matrix

@ E) e A

T:Aut(G) — A

This defines a map

given by
0— (oc B) .
Yy d
Now, if ($ E) € A satisfying the conditions (A1)-(A7y), then we
associate to it, the map
0:G—G

defined by
0(h) = x(h)y(h) and 6(k) = B(k)5(k),
for all h € H and k € K. Using (A1)-(A6), one can check that 6

is an endomorphism of G. Also, by (Ay), the map 6 is onto. Now,
let hk € ker(0). Then 6(hk) = 1. Therefore,

a(h)(y(h) - B(k))y (h)PHI8(k) =1
and so, by the uniqueness of representation
a(h)(y(h)-B(k)) =1 and y(h)PI5(k) = 1.

Again, by the uniqueness of representation and using (C1), (C2), (C3)
and (C6), we get

a(h)=1=v(h) and PBk)=1=56(k).
Therefore, by Lemma 2.2 (v) and (vi), h = 1 =k and so, ker(8) = {1}.

Thus, 0 is one-one and hence, 6 € Aut(G). Thus, T is a bijection.
Let «, B,y and & be the maps associated with 8 and «, ’,y’ and &’
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be the maps associated with 6’. Now, for all h € H and k € K, we

have

vy 9
oo — (¢ B () _ o’ a(h)(y'au(h) - B'y(h))
¥ \v()) T\ (Yam)BY(MWsy(n)
and
oon) — (€ B (B _ o B(k) +v¥'B(K) - B'8(k)
Y )8k T\ (B(k)R 1 8s(k) )

Thus, using a similar argument,

/ _ (dat+ Yo By) B+ (VBB (h
0°0(hk) = < (y/a)ﬁ’y+6/y (V/B)Blé 485 > (k) ’

for all h € H and k € K. Therefore,
/ / / / / /

gy _ (¥t (Yo Bly) B+ (v'R-BIS)) _ /
Hence, T is an isomorphism of groups. 0
From here on, we will identify the automorphisms of G with the

matrices in A. Let
P={ae€ Aut(H) | k- a(h) = a(k-h) and k*M) = k",
VheHkeK},
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Q= {B € Map(K,H) | B(kK') = B(k)(k- B(K)), k = kB,
B(k) = B(k"), VheH,keK},

R = {y € Map(H,K) | y(h') = y(h)"Vy(R'),h' = y(h) - W,
y(k-h)=vy(h), Vhe H,k € K},

S={56eAut(K)|8(k)-h=k-h,8(k)"=5(k"),vheHkeK},

X = {(«,v,8) € Map(H, H) x Map(H, K) x Aut(K) | «(hh’) = «(h)
(y(h) - a(h)), y(hR') = y(R)*(W)y(R'), 5(k) - a(h) = er(k - h),
5(k)*My(h) =y(k-h)§(k"),Vh e H k€ K},

= {(e, B,8) € Aut(H) x Map(K H) x Map(K,K) | B(kk’) = B(k)
(8(k) - B(K')), (kk’) ( )BUIs(K), Bk)(8(K) - ar(h)) = ax(k - )
B(kM),8(k)*M) = §(kM),¥h € H,k € K},

Z = {(«,8) € Aut(H) x Aut(K) | 8(k) - a(h) = (k- h),
5(k)*(M) = §(kM), Vh e H, k € K}.
Then one can easily check that P, S, X, Y and Z are all subgroups
of the group Aut(G). But Q and R need not be subgroups of the

group Aut(G). However, if H and K are abelian groups, then Q and R
are subgroups of Aut(G). Let

{5 rmer)e w{( el
(L Niver o= {( Yises),
{5 s} o= (G Yrenser)

be the corresponding subsets of A. Then one can easily check
that A, D, E,F and M are subgroups of A, and if H and K are abelian
groups, then B and C are also subgroups of A. Note that A and D
normalizes B and C.

Theorem 2.4 Let G = H va K be the Zappa—Szép product of two abelian
groups Hand K. Let A, B, C and D be defined as above. Then, if 1 — 3y € P,
for all maps (3 and 'y, then ABCD = A and Aut(G) ~ ABCD.

Proor — Letax € P, € Q,y € Rand 6 € S. Then note that, xf36 € Q
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and <l/ [15) € A. Assume that 1 — 3y € P. Now, if B = o 15T,

then
_(1=Py O\ (1 =By "B\ (1 O
)= 6 TR ) e

1B
v 1

Thus, if (‘X B) € A, then
)

586906 D ermsen-raco

Therefore, A C ABCD. Clearly, ABCD C A. Hence, ABCD = A and
so, Aut(G) ~ ABCD. O

3 Automorphisms of Zappa-Szép products
of groups Z4 and Z,,

In [11], Yacoub classified the groups which are Zappa—-Szép products
of cyclic groups of order 4 and order m. He found that these are of
the following type (see [11, Conclusion, p. 126]):

L =(a,b|a™=1= b4, ab =ba", v =1 (mod m)),

L, =(a,b|a™=1= b4, ab = b3t a?b = bazs>,

where in L, m is even. These are not non-isomorphic classes. The
group Ly may be isomorphic to the group L, depending on the val-
ues of m,r and t (see [11, Theorem 5, p. 126]). Clearly, L; is a semidi-
rect product. Throughout this section G will denote the group L,
and we will be only concerned about groups L, which are Zap-
pa-Szép products but not a semidirect product. Note that G = H > K,
where H = (b) and K = (a). For the group G, the mutual actions of H
and K are defined by a-b = b3,a® = a?**! along with a?-b = b
and (a?)® = a?%, where t and s are the integers satisfying the condi-
tions

(G1) 252 =2 (mod m),
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(G2) 4t(s+1) =0 (mod m),
(G3) 2(t+1)(s—1) =0 (mod m),
(Gg) ged(s, 5F) =1.

Lemma 3.1

ls

(al)b— aZt—b—H—(l—])s/ Z'f].l'SOdd
] als, if Lis even

Lemma 3.2 Let :/C E) € A. Then

—~~
=
N
3
on
=z
N
[<)
%
~

, where r is odd,

B(a), iflisodd
1

, if Lis even ’

(iv) o € Aut(H),
(v) By =0, where 0 is the trivial group homomorphism,
(vi) v(h) - B(k) = B(k), forallh € Hand k € K,

(vii) Ifeithers =1or Im(p) C (b2), then y(h)Bk) = v(h), forallh e H
and k € K.

ProorF — (i) If possible, let §(a) = a", where 1 is even. Then, us-
ing (A3) and a’? - bl =bJ, it follows that B is a homomorphism. Also,
using (a?)? = a?s, (C4) and (Ag), if B(a) =1 or b2, then 5 is defined
by §(al) = a™!, for all 1. Similarly, if 3(a) =b or b3, then & is defined
by

§(al) =

I+, 11 . .
az "™z jflisodd

1 o .
azv(s+1) if 1 is even

One can easily observe that & is neither one-one nor onto. But this is
a contradiction by (Ay). Hence, Im(8) C (a"), where  is odd.

(ii) If vis odd, using (C3)and a-b = b~!, we have a¥ - bl = b,
for all j. Thus using (A3), (C2) and part (i),

B(a?) =B(a)(5(a)-B(a)) =B(a)(B(a) ' =1
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and

Inductively, we get the required result.

(iii) Suppose that y(b) = a®, where A is odd. Then using (A1),
a(b) =b'=a(b?) and a(b?)=1=a(l),

where 0 < 1 < 3. Thus the map « is neither one-one nor onto,
but by (A7), the map « is a bijection. This is a contradiction. There-
fore A is even. Now, using (Az2), for different choices of x(b) we find
that y(b?) € {a?*, a*sT1)}. Since A is even, y(b?) € (a?). Similar-
ly, y(b3) € {a?, a7‘(5+2)} and so, y(b3) € (a?). Hence, (iii) holds.

(iv) Using (iii) and (A1), one observes that « is an endomorphism
of H. Also, by (A7), « is a bijection. Thus, « is an automorphism of H.
Hence, (iv) holds.

(v) Using parts (ii) and (iii), By(h) =1, forall h € H. Thus, By = 0.
(vi) Using relation a? - b = b and part (iii), (vi) holds.
(vii) Using (C4) and (G1), we get

. 2].8 efoe .

21 act®, ifjis odd
(™)™ = { a?l, ifjiseven (3.1)
Thus, if either s = 1 or Im(B) C (b?), then using part (iii) and Equa-
tion (3.1), (vii) holds. O

By Lemma 3.2 (ii), observe that, 3 (kM) =p(k), for all ke K and heH.
Lemma 3.3 Let 3 € Q. Then
B e Hom(K,H) and Im(B) < (b?).

Moreover, Im(B) = (b?) if and only if 2t(1+s) = 0 (mod m), where
gad(s+1,5) #1.

Proor — Let B(a) = b'. Using Lemma 3.2 (ii), we have p(a?)) =1
and (azj“) = bt for all j. So, it is sufficient to study only (a) in

the following,

a) bt

a=abl@) =¢gb" (3-2)
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Clearly, Equation (3.2) holds trivially for i = 0. If i = 1, then by Equa-
tion (3.2), a = a?***1 which implies that 2t = 0 (mod m). Therefore,
in the defining relations of the group G, ab = b3a which shows
that G is a semidirect product of the groups H and K. For i =3,

3
a—= ab — a4t+2ts+1,

which gives that
4t + 2ts = 0 (mod m).

So, using (G2) and (Gg), 2ts = 0 (mod m) giving t = 0 (mod ).
Thus, G is again a semidirect product of H and K. Now, for i =2,
using (C6) and Lemma 3.1,

2 b
ab _ (a2t+1) :a2t+1+2t3.

Then, a®® = a if and only if 2t(1 +s) = 0 (mod m).

Now, if ged (s +1,3) = 1, then t = 0 (mod ) and hence G is
a semidirect product of the groups H and K. On the other hand,
if ged (s+1,F) # 1, then t # 0 (mod ). Thus, G is a Zappa-Szép
product of H and K. It follows that Im(B) = (b?) if and only
if 2t(1+s) =0 (mod m) and ged (s + 1, %) # 1. Since Im(B) C (b?),
using Lemma 3.2 (ii), one can easily observe that f € Hom(K, H).
Hence, the result holds. O

Now, one can easily observe that for the given group G, we have
that
kea(h) = a(k-h), Blk) = B(kM), B =y (h) -,

d(k)-h=%-h, (k) - x(h) = a(k-h),

B(k)(8(k) - x(h)) = (k- h)B(k")
always holds for alh € H, k €¢ K, x € P, 3 € Q, vy € R, 8 € §,
(,v,8) € X, («,8) € Zand (x,3,8) € Y, respectively. Thus the sub-
groups P, Q, R, S, X, Y and Z reduce to the following,

P={oe Aut(H) | k*MW =k vV h e H ke K},
Q = {B € Hom(K,H) | k = kP vk € K} = Hom(K, Staby (K)),
R = {v € CrossHom(H, Stabk (H)) | y(k-h) =vy(h),V h € H,k € K},
S={8€Aut(K) | 5(k)* =58(k"),VheHkeK},
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X= {(oc,y,é) € Aut(H) x Map(H, K) x Aut(K) |
v(hh') = y(h)*(M)y(R), 5(k)*(My(h) = y(k-h)5(k"), Yhe H, ke K},

(o, B,08) € Aut(H) x Map(K,H) x Map(K,K) | B(kk) = B(k)
B(K)), 5(kK) = 8(k)PRI5(K/), 5(k)* (M) = §(kM), Vhe H, keK},
(

Theorem 3.4 Let A, B, C,D be defined as above. Then Aut(G) = ABCD.

Proor — Using Lemma 3.2 (v), we have that By =0,s0 1 —py € P.
Therefore, by Theorem 2.4, we have Aut(G) = ABCD. O

@ E) c A.

Then, if B € Q and («,v,0) € X, then Aut(G) ~ E x B ~ (C x M) x B.

Theorem 3.5 Let

ProoF — Let B € Q. Using Lemma 3.3, Im(B) < (b?). Let k, k' € K
such that B (k) = b?' and (k') = b?, for all i,j. Then

YBOK) = (B (k- B)) = (B) B )y (. paer)
=y(02) "y () = (@M Ny (B(i)

= (@)Y (B(KN) = aMSHDSTy (B (K))
= Dy (B(K) =y (b2 (B(K)) = YB(K)YB(K).
Thus yp € Hom(K,K), so yB + 8 € Hom(K,K). Now, let p(a) = b?J

and d(a) = a', where j € {0, 1} and r € U(m). Then, using Lemma 3.2,
we have

r

N if 1 is even
(vB +8)(a’) —{ aMs+DF i 1s odd

One can easily observe that yf3 4+ & defined as above is a bijection.
Thus vp + 6 € Aut(K).

Now, using (C3), (C4) and Lemma 3.2 (iii), we have

(vB +d)(a) - x(b) =vyp(a)d(a) - a(b)
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and
(vB +8)(a)*®)y(b) = (vB(a)5(a)) *!*)y(b)
— (5(a)yB(a) “®y(b) = 5(a)” (B()-x(®)y (g(a))*(P)y(p)
= 5(@)*(®)y (621 *(P)y (b) = 5(a)X(P)y(b) (aiA(s+1)) (P
=y(a-b)8(a?)a? 5+ = y(a - b)5(a®)y(b?)
= y(a-b)y(B(a)) 5(a®) = y(a-b)y(B(a2t""))5(a)
—y(a-b)y(B(a®))5(a®) = y(a-b)(yp +8)(a®).
Thus, (&, vy, vp +06) € X.

Using Lemma 3.2 (v), we have

1 B\ ([« 0\ (1 B\ " [« (x+By)(—B)+Bd )
o 1)\y s/\o 1 ~\y YB+5 33

Now, using Lemma 3.2 (ii), we have

((oc+BY)(=B) +B8)(a) = (a+ By)(— B(a))B(5(a))

= (o+ BY)(b~)B(a") = x(b)B (v(b¥)) b2
— bZiijj — ij(iJr]) - 1.

Thus,
(+BY)(—=B)+Bd=0.

Therefore, by Equation (3.3),

EDEIED 6 )

So, E<A. Now, if (:ﬁ E) € A, then

ax B\ [« 0 T o« 1B
<y 6>_<y —yoc_1[3+6> (o 1 )EEB'

Clearly, ENB ={1}. Thus, A = E x B. Hence, Aut(G) ~ E x B.
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Let <$ O) € E. Then

)
o 0 o 0 1 0
5 8= 8y 3)eme

Clearly, MN C = {1}. Since A x D normalizes C, we have that C is nor-
mal in E. Therefore, E=CxM. Hence, X ~ Cx M and
so, Aut(G) ~ (C x M) x B. O

Now, we will find the structure and the order of the automorphism
group Aut(G). For this, we will proceed by first taking t to be such
that gcd(t, m) = 1 and then by taking t to be such that gcd(t, m) = d,
where d > 1.

Theorem 3.6 Let 4 divide m and t be odd such that gcd(t, m) = 1. Then

N (Z%N(szlﬂm)))NZz, #SE{%—],TYL—]}
Aut(G)—{ Zy % (Z2 x U(m), ifse{m_1,3m_1

Proor — Let ged(t, m)=1. Then, using (G2), we get s=—1 (mod %)
which implies that s € {%—1,%—1,37“1—1,111—1}. Now, using (G3),
we gett = —1 (mod 7). Then t € {%—1,%—1,37‘“—1,111—1}.

Let (&,7v,8) € X be such that «(b) = b!, y(b) = a” and 6(a) = a”,
where i €{1,3}, Aiseven, 0 <A< m—1,and r € U(m). Using

y(hr') = y(h)*(Wy(n),

we get y(b?) = a5+ y(b3) = a?5+2) and y(b*) = 1. We consider
two cases based on the image of the map .

Case (i): a(b) = b.
Using y(a- b)8(ab) = 5(a)Py(b), we get

a?\(s+2)+(2t+1)r :y(a-b)é(ab) — 6(a)b'y(b)

— (ar)ba?\ — a2t+1+(r—1)s+)\

which implies that

As+1)=(r—1)(s—2t—1) (mod m). (3-4)
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If s e {% —I,m—1 }, then Equation (3.4) holds for all values of t,A
and 7. Now, if (s,t) € {(+ =1, 3 —1),(F —1,m—1)}, then by E-
quation (3.4), r = 1+ A (mod 4). Since A is even, r = 1 or 3 (mod 4).
Again, if (s,t) € {(+ =1, —1),(F — 1,3Tm — 1)}, then by Equa-
tion (3.4), r=1—A (mod 4). Since A is even, r = 1 or 3 (mod 4).

Using a similar argument, we get the same results for s = 3Tm -1

Thus, in this case, there are 5+ and ¢(m) choices for the maps y

and & respectively and these are y)(b) = a® and &,(a) = a", for
all0 <A< m—1,Aiseven,and r € U(m).

Case (ii): a(b) = b3.
Then
aMs+2)+(2t+1)r v(a- b)é(ab) _ é(a)o‘(b)y(b)

— (ar)b3 a?\ — a4t—|—2ts+1+(r—1 )s+A

which implies that
As+1)=2t(s+1)+(r—1)(s—=2t—1) (mod m). (3.5)

Ifse {% —I,m-—1 }, then Equation (3.5) holds for all values of t, A
and r. Now, if (s,t) € {(% 1,3 =1),(F —1,m—1)}, then by Equa-
tion (3.5), r = 3+ A (mod 4). Since A is even, r = 1 or 3 (mod 4). Again,
if (s,t) € {(% -1, 3 -1,(F -1, 3Tm — 1)}, then by Equation (3.5),
we have r = 1+ A (mod 4). Since A is even, v = 1 or 3 (mod 4).
Using a similar argument, we get the same results for s = 3Tm -1
Thus, in this case also, there are 5+ and ¢(m) choices for the maps y
and b respectively and these are y)(b) = a® and §.(a) = a”, for
all0 <A< m—1,Aiseven, and r € U(m).

Thus combining both the cases (i) and (ii), we get for all x € Aut(H),
the choices for the maps y and 6 are y)(b) = a® and 6(a) = a”,
where 0 <A <m—1, Ais even, and r € U(m). So, using Theorem 3.5,

X~ Z% X (Zz X U(m))

Now, if s € {3 —1,m — 1}, then 2t(s + 1) = 0 (mod m). Therefore, us-
ing Lemma 3.3, Im(p) = {b2}and so, B~ Z,.If s € {% -1, 3Tm —1 },
then 2t(s + 1) # 0 (mod m). Therefore, using Lemma 3.3, Im(f3) = {1}
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and so, B is a trivial group. Hence, by Theorem 3.5,

(Z%m(zzxu(m)))xzz, ifse{®—1,m—1}
Aut(G)_ENB_{Z?N(ZZXU(m)), ifse{®—1,3n 1}
The statement is proved. 0

Theorem 3.7 Let m = 2q, where q > 1 is odd and gcd(t, m) = 1. Then
we have Aut(G) ~ (ZL} x (Zy x U(m))) x Z;.

Proor — Using (G1), (G2), and (G3), we get s,t € {3 —1,m—1}.
Then, the result follows on the lines of the proof of Theorem 3.6. 0O

Theorem 3.8 Let m =2", n > 3. Then
(i) if t is even, then Aut(G) =~ (Z4 x (Zy X (Z3 X Zyn-2))) X Z3,

(ii) if t is odd, then

Aut(G) ~ { (Zyn1 % (Zy % (Zy x Zyn-2))) 022, ifse{F—1,m—1}
| Zyna N(ZzX(ZzXZanz)), zfse{%_],3Tm_1}
Proor — We will find the automorphism group Aut(G) in two

cases namely, when t is even and when t is odd.

Case (i): t is even.
Then

2(t+1)(s=1)=0 (mod 2™) = s=1 (mod 2™ ).

Therefore, s = 1,2"~ 1 + 1. Moreover 4t(s +1) = 0 (mod 2™") implies
that t = 0 (mod 2™~ 3). Therefore,

te{2n 3,02, 3.2n 3, 01 5. 0n 3 3. 002 7 3 o

Note that, for t = 2" ! or t = 2", G is the semidirect product of H
and K. So, we consider the other values of t.

Let v € R be such that y(b) = a?, where 0 <A < m—1 and A is
even. Then, since s =1 and A is even, by (A2), y € Hom(H, K). Now,

1=y = a®
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implies that A = 0 (mod 2™~ 2). Therefore

Ae{2n2 2 3.2 on
Using y(a-b)=vy(b), a3 =y(a-b)=y(b)=a’ gives A=0 (mod 2,
Thus, A € {0,2™ '} and so C ~ Z,.

Now, let (x, ,8) € Y be such that «(b) = b}, f(a) = bJ,5(a) = a”,
wherei € {1,3},0<j<3,0<r<2"—1and ris odd. Using Lem-
ma 3.2 (ii),

B(KK') = B(Kk)(8(k) - B(K))
holds for all k, k’ € K. Now, using 5(kk’) = (k)P (*)5(k/), we get
L al=D0tm)+r - if 1 s odd
6((1 = l('t ! . .
atOttr) if 1 is even
Finally, using §(kM) = §(k)*M) | we have

i

aZitJrT _ (ar)b _ 5(a)oc(b) _ 6(ab) _ 6(a2t+1) _ aZt(jt+T)+r.
Thus, 2t(jt +r—1) = 0 (mod 2™) which implies that

r=1i(mod 4), ifte{2n=3,3.2"n3 5.3 7.2n 3landn >5
r=1i+2j (mod4), ifte{2n3,3.2n3,5.2n3 7.2n 3 andn =4
r=1(mod 2), ifte{2n=2,3.2"2)
Now, if j € {0,2}, then r = 1 (mod 4) and if j € {1,3}, then r = i
or i+ 2 (mod 4). Thus, for all B € CrossHom(K, H), the choices for

the maps o and b are «;(b) = bl and &.(a) = a”, where i € {1,3}
and r € U(m). Note that, if
(8‘ E) €F,

(68080 ") e

Clearly, MNB = {1} and M normalizes B. So, B«F and F = B x M.
Therefore,

then

Y~ B xMx~Z4x (Zy x U(m)).
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Using Lemma 3.2 (v)—(vii),

GVE DD ~(arorron ) 09
y 1)J\o 8)\y 1) T \yar(B+8)(—y) vB+s)

Now,

(Yot (vB +8)(—y)) (b) = ya(b) (vB +8)(—y)(b)

=y (YB+95) (a™) = aPy(B(a?))8(a™ M)
— ai)\,y(])af?\(jthr) — a)\(i—jt—r) =1.

Thus, Yo+ (yp + 8)(—y) = 0. Also, one can easily observe that

(o, B, YB+0) €Y.

Therefore, by Equation (3.6),

COEHED -6 e

So, F<A. Clearly, FN C = {1}. Also, if < B) € A, then

o
v b

ax B _ (o B 1 0
(5 8) =6 8y Dere
Hence, A = F x C and so,

Aut(G) ~Fx C ~ (Z4 X (Zz X (Za % Zznfz))) XNZj.

Case (ii): t is odd.
Then gcd(t, m) = 1. Hence, the result follows from Theorem 3.6. O

Now, we discuss the structure of the automorphism group Aut(G)
in the case when ged(t, m) > 1.

Theorem 3.9 Let m = 4q and gcd(t, m) = 2¥d, where q > 1 is odd,
1€{0,1,2}, and d divides q. Then Aut(G) ~ (Z% X (Zy x U(m))) x Z,.

ProorF — Let q = du, for some integer u. Then, using (G2), we
get s = —1 (mod u), which implies that s = lu— 1, where 1 < 1 < 4d.
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Since ged(s, 7) = 1, s is odd and so, 1 is even. Using (G1) and (G3),
we get l(us —1) =0 (mod d) and t+ 1 =ui (mod q). Now, one can
easily observe that gcd(l, d) = 1, which implies u% —1 =0 (mod 4).
Thus, 2t(s+1) = 2ltu = 0 (mod m) and ged (s +1, ) # 1. Therefore,
using Lemma 3.3, B ~ Z;.

Let (x, v, 8) € X be such that «(b) = b!, y(b) = a* and §(a) = a”,
where i €{1,3},0 <A< m—1,Ais even, and r € U(m). Then, using

y(hh') =y () <My (R,
we have
Y(bz) _ a?\(s+1), Y(bs) _ aMs+2) and y(b4) —1.
Now, using
§(a)*®ly(b) =v(a-b)8(a®) and 2t(s+1) =0 (mod m),

we have

a?\(s+2)+(2t+1)r :y(b3)6(a2t+1) :y(a'b)é(ab) — 6(a)oc(b),y(b)

_ (ar)bia?\ — 2tHTH=D) s A+ 5124 (s 1) _ (2t +T+(r—T)s+A

Thus
As+1)=(r—T1)(s—2t—1) (mod m). (3.7)

Since 2t(s + 1) = 0 (mod m), using (G3), we get
2(s—2t—1) =0 (mod m).

Therefore, by Equation (3.7), Alu = 0 (mod m). Using Lemma 3.2 (iii),
we get A = 0 (mod 2d). Thus, using Theorem 3.5,

X>Zp % (Z; x U(m)).
Hence, Aut(G) ~ E x B ~ (Z% X (Zy x U(m))) x Z,. 0

Theorem 3.10 Let m = 2q and gcd(t, m) = 2d, where q > 1 is odd,
i €{0,1}, and d divides q. Then Aut(G) ~ (Z% x (Zy x U(m))) x Z.

Proor — Follows on the lines of the proof of Theorem 3.9. O
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Theorem 3.11 Let m = 2™q, t be even and gcd(m,t) = 2td, where
1<i<n,n2>3, q>1isoddand d divides q. Then

(Z4 % (Zy xU(m))) x2Z,, ifd=q
Aut(G) ~ ZZX(Z%N(Zqu(m))), ifd#qandn—2<i<n

Zag x (Z3 x U(m)), ifd#qandi=n—3
d
Proor — We consider the following four cases to find the structure

of Aut(G).

Case (i): d = qand ged(t+1,m) = u.
Since t+ 1 is odd, u is odd and u divides q. Thus, u divides t and
so, u = 1. Therefore, using (G2) and (G3),

s=1(mod2) and t=0 (mod<).
Using a similar argument used in the proof of Theorem 3.8 (i), we
get Aut(G) ~ Fx C =~ (Z4 x (Z; x U(m))) x Z.

Case (ii): n—2 < i< nand q = du, for some odd integer u.
Using (G2), s = —1 (mod u) and so, s =lu—1, where 0 <1 < 2™d.
Since gecd (s, %) =1, s is odd and so, 1 is even. Now, using (G1),

%(%u— 1) =0 (mod 2™ 3d)

and by (G3),
t

N —

u—1 (mod 2™ ?q).

Since t is even, % is odd and gcd (%, d) = 1. Thus,

%u =1(mod2™3d) and t=2'd(mod 2™ 2q).

One can easily observe that 2t(s + 1) = 0 (mod m). Therefore, using
a similar argument as in the proof of Theorem 3.6, we get

Aut(G) ¥ Ex B~ (Zyq x (Z3 x U(m))) x Z;.

Case (iii): i =n —3, d # q and q = du, for some odd integer u.
Using (G2), s= —1 (mod 2u), i.e. s=2lu—1, where 1 <1< m-lg.
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Now, using (G1) and (G3),
(lu—1)=0(mod 2™ 3d) and (t+1)(lu—1) =0 (mod 2™ 2q).

If lis even, thent = lu—1 (mod 2“*2q) gives that t is odd, which is
a contradiction. Therefore, 1 is odd. Using

(t+1)(lu—1) =0 (mod 2™ 2q),
one can easily observe that gcd(l,d) = 1. Then
lu—1=2"3d and s=2""2dl'+1,
where T < U < 8u. Clearly, ged(V,u) = 1. Thus, (t+ 1) = 0 (mod 2u).
If ' is odd, then (t+ 1) = 0 (mod 2u) which implies that t is odd.
So, Uiseven and so,t =uq’'—1,1 < q’ < 2™'d, ¢’ is odd as t is

even. Note that

— m—241/ —oym-—2 / t
s—2t—1=2"2a0 — 2t =27 2a (V- 5ty

_om—24(lu=1 _uq’—1\ _ 9n-2 1—q’
=2" d(zkisd—fizfd)*zn du(ﬁ%)

Let (,v,d) € X be such that «(b) = b, y(b) = a* and 5(a) = d,
wherei € {1,3}, 0 <A< m—1,Ais even and r € U(m). We consider
two sub-cases based on the image of the map «.
Sub-Case (i): x(b) = b.

Using §(a)*(®)y(b) =y(a-b)s(ab), we have

a2 2T — (g 1)5(ab) = 5(a)Py(b)
— (a")Pa = @2tH1H(r=1)s+A

7

which implies that
As+1)=(r—1)(s—2t—1) (mod m).

Therefore

/

A2l = 2" 2du(r— 1) <zl;_‘3]'(1) (mod 2™q),
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which implies that
!/

?\1:2“_3d(r—1)<L_q

2“3d> (mOd 2TL—1 d)

Now, if A = 0 (mod 2™ 2d), then r = 1 or 3 (mod 4) and vice-versa.
Thus, in this sub-case, the choices for the maps y and 6 are y; (b) = a?
and 5,(a) = a”, where A is even and A = 0 (mod 2™ 2d), and re U(m).

Sub-Case (ii): Let «(b) = b3.
Using §(a)*(®)y(b) =y(a-b)s(ab), we get

a?\(s+2)+(2t+1 )L - Y(a . b)é(ab) _ é(a)“(b)y(b)

— (ar)b3 a?\ — a4t+2ts+1+(r—1)s+)\

which implies that

A=2t)(s+1)=(r—1)(s—2t—1) (mod m).

Therefore
n—2 1— q/ n
QWA —2t) =2 du(r—1) o 3g (mod 2™q),
which implies that
n—3 - q/ n—1
LA—2t)=2 d(r—1) m3g (mod 2 d).

Now, if A = 0 (mod 2™ 2d), then r = 1 or 3 (mod 4) and vice-versa.
Thus, in this sub-case, the choices for the maps y and 6 are y) (b) = a
and 6-(a) = a”, where A is even and A = 0 (mod 2" 2d), and re U(m).

Combining both sub-cases (i) and (ii), we get for all « € Aut(H),
the choices for the maps y and 6 are y)(b) = a® and 6(a) = a',
where A is even and A = 0 (mod 2™ 2d), and r € U(m). Therefore,
using Theorem 3.5,

X ~ Z% x (Z3 x U(m)).

At last, since 1 is odd, 2t(s + 1) = 4tlu £ 0 (mod m). Therefore,
using Lemma 3.3, Im(B) = {1}. Thus, B is a trivial group. Hence,
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using Theorem 3.5, Aut(G) ~ E x B ~ Zaq x (Z; x U(m)).
d

Case (iv): Let 1 <i<n—4. and q = du, for some odd integer u.
Using (G2), s = —1 (mod 2™ 12u), that is, s = 2™ 1 2lu—1,
where 1 < 1< 2H2d. Now, using (G1) and (G3),

12" 31w —1) = 0 (mod 21d)

and .
(t+1)(W2™13 —1) =0 (mod 2™ 2q).

Sincen—1i—3 >0, lu2™ 3 —1is odd. If l is even, then
t =123 —1 (mod 2" ?q)

gives that t is odd, which is a contradiction. Now, if 1 is odd, then
using (t+1)(lu—1) = 0 (mod 2"—2q), one can easily observe that
gcd(l,d) = 1. Thus,

2131 — 1 =0 (mod 24d),
which is absurd. Hence, there is no such | exist and so, no such t

and s exist and hence no group G exists as the Zappa-Szép product
of H and K. 0

Theorem 3.12 Let m = 2™q, t be odd and gcd(t, m) = d, where n > 4
and q is odd. Then

Aut(G (Z% x (Zy x U(m))) X Zy, if2t(s+1) =0 (mod m)
WG = Z e (Z x u(m)), if 2t(s +1) £ 0 (mod m)
Proor — Let q = du, for some odd integer u. Then using (Gz2), we

have
s=—1 (mod 2" %u)

which implies that s = M2y — 1, where T < 1 < 4d. Now, us-
ing (G1),
12" 3ul—1) =0 (mod d).

Using (G3), we get

(t+1)(u2™3—1) =0 (mod 2™ 2q). (3.8)
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Case (i): lis even.
By Equation (3.8),

t=1u2""3 —1 (mod 2™ 2q).

Note that
2t(s+1) = 2t(2"2lu) = 0 (mod m)

and
As+1) = A(lu2™2).

Thus A(s+1) = 0 (mod m) if and only if Al = 0 (mod 4d), which is
true for all A = 0 (mod 2d). Using a similar argument as in the proof
of Theorem 3.6, we get

X Zn % (Z; xU(m)) and B=~Z,.

Hence, Aut(G) ~ E x B ~ (Z% x (Z3 x U(m))) x Z;.

Case (ii): 1 is odd.

Using Equation (3.8), one can easily observe that gcd(l,d) = 1
which means that 2" 31u—1 = dU, where U is odd, ged(l/,u) = 1
and 1 < U < 2™u. Thus, using Equation (3.8),

(t+1)dl = 0 (mod 2™ 2q).
Since ged(V,u) =1, t = 2" 2uq’ — 1, where 1 < ¢’ < 4d. Now,
s—2t—1=2dl'-2t=2d (- %)

—2d (2“’3“1—(12“’21“1’) — 2y t=2d

Let (x,v,8) € X be such that x(b) =b!, y(b) = a” and §(a) =a",
wherei € {1,3},0 <A< m—1,Ais even and r € U(m). We consider
two sub-cases based on the image of the map «.

Sub-case (i): x(b) =b.
Using §(a)*(®)y(b) =y(a-b)d(ab), we get

a)\(s+2)+(2t+1)r :y(a-b)é(ab) — 6(a)by(b)
— (ar)baA — a2t+]+(r71)s+?\
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which implies that
As+1)=(r—1)(s—2t—1) (mod m).

Therefore

1—2q’

AMlu2™2) =2 2q(r—1) ( ) (mod 2™q),

which implies that

1—2q’

Al=d(r—1) < > (mod 4d).

Now, if A =0 (mod 2d), then r = 3 (mod 4). Again, if A = 0 (mod 4d),
then r = 1 (mod 4). Thus, in this sub-case, the choices for the maps y

and b are

A T

yYalb) =a and 6;(a)=ad",
where A is even and A = 0 (mod 2d), and r € U(m).
Sub-case (ii): «(b) = b3.
Using §(a)*(®ly(b) =y(a-b)d(ab), we get
a?\(s+2)+(2t+1)r :y(a-b)é(ab) _ 6(a)oc(b),y(b)

_ (ar)b3 at = gtt2ts+14+(r—=1)s+A

which implies that

A=20)(s+1)=(r—1)(s—2t—1) (mod m).

Therefore
W2 2(A—2t) = 2" 2q(r— 1) (1_ 2q’> (mod 2™q),
which implies that
A —2t) =d(r—1) <1_2q/) (mod 4d).

Now, if A = 0 (mod 2d), then r = 1 (mod 4). Again, if A = 0 (mod 4d),
then r = 3 (mod 4). Thus, in this sub-case, the choices for the maps vy
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and & are

A T

ya(b) =a and d;(a)=ad,

where A is even and A = 0 (mod 2d), and r € U(m).

Combining both the sub-cases (i) and (ii), we get for all x€ Aut(H),
the choices for the maps y and 6 are

A

T

Ya(b)=a and o;(a)=ad",

where A is even and A = 0 (mod 2d), and r € U(m). Therefore, us-
ing Theorem 3.5,
Ex~Zpm x (Z3 x U(m)).

Also, since 2t(s +1) # 0 (mod m), using Lemma 3.3, Im(p) = {1}
Thus, B is a trivial group. Hence, using Theorem 3.5,

Aut(G) ~ExB~Zpm x (Z x U(m)).

The statement is proved. 0

Theorem 3.13 Let m = 8q, t be odd, and gcd(t, m) = d, where q > 1 is
odd. Then

Awt(G (Z% x (Zy x U(m))) xZy, if2t(s+1) =0 (mod m)
ut(G) ~ Z gy x (Z; x U(m)), if 2t(s +1) # 0 (mod m)
Proor — Let q = du, for some odd integer u. Then using (G2), we

have s=—1 (mod 2u), which implies that s=2lu—1, where 1<1 <4d.
Now, using (G1), l(lu—1) =0 (mod d). Using (G3), we get

(t+1)(lu—1) =0 (mod 2q). (3.9)

Case (i): L is even.
Then by Equation (3.9), t = lu—1 (mod 2q). Note that

2t(s+1) =2t(2lu) =0 (mod m) and A(s+1) =A2lu).

Thus A(s+1) = 0 (mod m) if and only if Al = 0 (mod 4d) which
is true for all A = 0 (mod 2d). Thus, using a similar argument as in
the proof of Theorem 3.6, we get E ~ Z% X (Zz X U(m)) and B ~ Z>.
Hence, by Theorem 3.5, Aut(G)~E x B~ (Z% X (Zy x U(m))) x Z.
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Case (ii): 1 is odd.

Then using Equation (3.9), one can easily observe that ged(l,d) =1
which means that lu—1 = dl/, where 1 < ' < 8u and ged(l,u) = 1.
Since lu—1 is even, U is even. Thus using Equation (3.9), we have
that

(t+1)dl' = 0 (mod 2q).

Since ged(V,u) =1, t = uq’—1, where 1 < q’ < 8d and ¢’ is even,
as t is odd. Now,

s—2t—1 :2dl’—2t:2d(1/_%)
=2d (ul;dwt> = Zduﬂ*d '
Let («,7,8) € X be such that a(b) = b!, y(b) = a” and §(a) = a”,

wherei € {1,3},0 <A< m—1,Ais even and r € U(m). We consider
two sub-cases based on the image of the map «.

Sub-case (i): «(b) =b.
Then

aMs+2)+2t 1T — 3 (. b)5(ab) = 5(a)by(b)
— (a")Pa = @2tH1H(r=1)s+A

which implies that
As+1)=(r—1)(s—2t—1) (mod m).

Therefore

1—¢
AQ2lw) = 2du(r—1) (mod 8q),
which implies that
1—(q
A =d(r—1) 1 (mod 44d).

Now, if A =0 (mod 2d), then r = 3 (mod 4). Again, if A = 0 (mod 4d),
then r =1 (mod 4). Thus, in this sub-case, the choices for the maps y
and b are

A

ya(b)=a” and &:(a)=a’,

where A is even and A = 0 (mod 2d), and r € U(m).
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Sub-case (ii): «(b) = b3.
Then

a?\(s+2)+(2t+1)r ZY(G . b)é(ab) — S(a)bsy(b)

_ (ar)b3 at = gtt2ts+1+(r—1)s+A
which implies that
A=20)(s+1)=(r—1)(s—2t—1) (mod m).

Therefore

/

(A —2t) = 2du(r—1) (l_dq ) (mod 8q),

which implies that

/

IA—2t) = d(r—1) (l_dq > (mod 4d).

Now, if A = 0 (mod 2d), then r = 1 (mod 4). Again, if A = 0 (mod 4d),
then r = 3 (mod 4). Thus, in this sub-case, the choices for the maps y

and 6 are
Ya(b) = a® and &.(a)=d",

where A is even and A = 0 (mod 2d), and r € U(m).

Combining both the sub-cases (i) and (ii), we get for all x € Aut(H),
the choices for the maps y and 6 are y)(b) = a® and 6.(a) = d,
where A is even and A = 0 (mod 2d), and r € U(m). Therefore, us-
ing Theorem 3.5,

X ~ Z% X (Zz X U(m))

Also, since 2t(s +1) # 0 (mod m), using Lemma 3.3, Im(p) = {1}
Thus, B is a trivial group. Hence, by Theorem 3.5,

Aut(G) ~EXB=Zm x (Z3 x U(m)).

The statement is proved. 0
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4 Automorphisms of Zappa-Szép products
of groups Z,» and Z,, p odd prime
In [12], Yacoub classified the groups which are Zappa-Szép prod-

ucts of cyclic groups of order m and order p?, where p is an odd
prime. He found that these are of the following type (see [12, Conclu-

sion, p. 38])

M; =(aq,b|a™=1= bpz, ab = bau,upz =1 (mod m)),

M; =(a,bla™=1= bpz,ab =bla, t™ =1 (mod pz)),

M3 =(a,b|a™ =1= bpz, ab =btaP™!, aPb = baP Py,
and in M3, p divides m. These are not non-isomorphic classes. The
groups M7 and M; may be isomorphic to the group M3 depend-
ing on the values of m,r and t. Clearly, M; and M, are semidi-
rect products. Throughout this section G will denote the group M3
and we will be only concerned about groups M3 which are Zap-
pa-Szép products but not a semidirect product. Note that G = H < K,

where H = (b) and K = (a). For the group G, the mutual actions of H
and K are defined by

a-b :bt, ab = aPT—H’ aP-b=b, (a‘p)b _ ap(pr—H)’

where t and r are integers satisfying the conditions:
(G1) ged(t— 1,p2) =p, thatis, t =1+ Ap, where gcd(A,p) =1,
(G2) ged(r,p) =1,
(G3) plpr+1)P =p (mod m).
Lemma 4.1 a(P™t! JPA _ qil(pr+1)PA—1 )+ for all 4.
PrROOF — One can easily prove the result using (G3). 0
Lemma 4.2 (i) a-bl =blt, forallj,
(i) at-b=b'+PA forall 1,

(i) a®) = a1 forall j,

(iv) (@) = @' 2 (PTHDY=DFUpr1) oo gy,
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(v) at-bl = bjtl,for all j and 1,

(vi) (@) = o TN G a5 and 1.

Proor — (i) Using (C3) and (Cs),

a-b?=(a-b)(a® - b)=b(aP™"!.b) =bt(a- (aP" b))
=b(a-b) = b2t
Similarly,
a-b3=(a-b)(a? -b?) =bt(aP™t!.b2)
=b%(a-(aP"-b?)) =b'(a-b?) =b3"
Inductively, we get a - bl = bJt, for all j.
(ii) Using (C3) and part (i),
a’2-b=a-(a-b)=a-bt

— btz — pl+2pA,

Similarly,
@3- b=a-(a®-b)=a bt
— bt3 — pl+3pA.
Inductively, we get al-b=b"*WwA foralll.

(iii) First, note that, using (C4), we have

(alp)b _ alp(prJr] )
Now, using (C4) and (C6),

a(bz) = (a®)b = (apr+1)b _ a(apr~b)(apr)b

= ab aPT(PTJr]) — a(PT‘+1 )2‘

Similarly,

a(bs) _ (ab)bz _ (apr+1 )bz _ a(a1f’r-b2)(a'pr)b2 _ abz((apr)b)b

— qpr+1)? (apT(pT! ))b — aprH) 2 gpr(pr+1)? _ q(pr+1)3
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Inductively, we get a(®) = g(pr+1 )j, for all j.
(iv) Using (C4), (G3) and part (iii), we get
(a2)b = qlab)gb = a®) qpr+1 — gpr+1) TP pryd

— aPrEPpr(pr+ )M prl _ (pr+1)AP—1)42(pr+1)

Using a similar argument, we get

(a3)b _ (QZ)(a-b)ab _ (a2)btapr+1 _ a(a-bt)a(bt)apr+]

_ a(b1+21’)‘) a(b1+)‘p) aPT+1 (pr+1)TH2PA L (pr+1)1+PA 4 pr41

= = Qa
_ a(‘pr+1)2p7‘+pr(p1‘+1)2p7‘+(p1‘+1)p)\+pr(pr+1)p7‘+pr+1
— @2(pr+1)PA=1) 4T 4prt (pr+1)P 4propr+] (using Lemma 4.1)

_ a3((pr+1)p>‘—1)+3(pr+1).

Inductively, we get (iv).
(v) Follows inductively, using parts (i) and (ii).
(vi) Follows inductively, using parts (iii) and (iv). O
Lemma 4.3 Ifforall1#0, (pr+1)Pt # 1 (mod m), then
(i) Im(y) C (aP),
(i) @ € Aut(H).

ProoF — (i) Let a(b)=b'and y(b)=a". Then using (A1) and Lem-
ma 4.2 (v),

Oé(bz) = Oé(b)(v(b) . Oc(b)) — bi(au . bi) — bi“_‘_tp),
Inductively, we get
x(bY) = BT HEH Lt ()

— i+ 4+puA)+(1+2ppA) oot (T+(u=1)ppA)) _ bi(u+w‘pu?\)

for all 0 < u < p? —1. Now, using (A2) and Lemma 4.2 (vi),

Y(b?) = v(0)*P)y(b) = (a*)"'at

— S ((pr )P ) (pr 1)
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Inductively, we get

‘y(bu) — a(iu(u71)2u(uf1)+iu2 u(uflé)(u72)) (pr+1 )‘p?\i] )+PLZ$;(1) (pr+1 )W

forall0 <u < p2 — 1. Now, using (G3),

ip“ _
2 p2—1 1y “<(p(;ﬂ)1)i11>
1 :y(bp ) — gty (Pr+1)Y _

7

which implies that

<(pr +P

pr i ) =0 (mod m). (4.1)

If for all 1 # 0, (pr+ 1)P' = 1 (mod m), then by Equation (4.1), u can
be anything. If for all 1 # 0, (pr+ 1)P! # 1 (mod m), then by Equa-
tion (4.1) and (G3), 1 = 0 (mod p). Also, note that, in both the cases,
namely

(pr+1)P'=1(modm) and (pr+1)P'#1 (mod m),

we have that : )
YB%) = @t EEd (T

Hence, if (pr+1)P! # 1 (mod m), then y(b%) = at ZVZo ()Y
belongs to (aP).

(ii) Follows immediately using part (i). O

Lemma 4.4 Let <$ E) € A. Then, if B € Q, then:

(i) B € Hom(K,H) and Im(B) < (bP);
@ii) Upr+1)) =1 (mod m), for all ;
(iil) y(h) - B(k) = B(k) and y(h)B(¥) =y (h), forall h € Hand k € K;
(iv) vB =0, where 0 is the trivial homomorphism in Hom(K, K);
(v) YB+6 € Aut(K)and yB+b€S;

(vi) By € Hom(H, H);
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(vii) o+ By € Aut(H) and «+ By € P.
ProoF — Let B(a) = bJ. Then using (A3),

B(a?) = pla)(a-Bla)) = bi(a b)) = b1t
Inductively, we get

ﬁ(al) _ bj(1+t+t2+...+t‘*‘) — pI (THTHAP)+(142Ap)+...4+(1+(1=1)Ap))

_ bj(l+ApTl(l_]])'

(i) Since p € Q, B(k™) = B(k). Therefore
bl = B(a) = B(a®) = B(aP™H) = bI(PTHY),

which implies that
jpr+]j = (mod p?).

Since gcd(r,p) = 1,j =0 (mod p). Thus, B(a') = bt € (bP), for all L.
Hence, One can easily observe that § is a group homomorphism
and Im(f) < (bP).

(ii) Since € Q, kP () = k. Therefore, using Lemma 4.2 (vi),

al = (aV)B@) = (g1 = MR (pre ) 1) ti(pra1)),

Now, using part (i) and (G3), we get L(pr + 1)) =1 (mod m), for all L.

(iii) First, note that a' - bP = bP and using part (ii), (ah)?” = al, for
all 1. Hence, the result follows using part (i).

(iv) Using Lemma 4.3 (i), we have
y(bY) = gt ZV=0 (DY)

for all u. Then, using part (ii), for all |, we get

: T iv u(i(p””i]:l*])
vB(a) =y(bY) = atLv—o (PTHIY — "\ reni1 )

Thus, yp3 = 0.
(v) Follows directly using part (iv).
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(vi) Using B(kM) =B (k) and part (i),

By(hh') = Bly(h)*M)y(R)
= B(y()*M))B(y(h) = B(v(R))B(y(R)).
Hence, By € Hom(K, K).

(vii) Using Lemma 4.3 (i), we have y(b") = at V5o (p””iv, for
all u. Also, using part (i), we have By(b") = b*¥, for all u. Therefore,
(oc+ By)(bY) = b (iHimtpirsst)

Now, one can easily observe that « + 3y is a bijection. Hence, using

part (vi), x + By € Aut(H).
Now, using part (i), (C5) and (C6),

k- (a+ By)(h) =k - a(h)By(h) = (k- a(h)) (k*M) . B (y(h)))
= a(k-h)B(y(h)) = a(k-h)By(k-h) = (a+ By) (k- h)

and

klxtBy)(h) _ jx(h)py(h) _ (koc(h))ﬁv(h) — xx(h) _ i h

Hence, a4 By € P. O

Note that, using Lemma 4.4 (iii), multiplication in the group A
reduces to the usual multiplication of matrices.

Theorem 4.5 Let A, B, C, D be defined as above. Then Aut(G) = ABCD.

Proor — Using Lemma 4.4 (vii), « 4 3y € P. In particular, 1 — By €P.
Therefore, by Theorem 2.4, we have Aut(G) = ABCD. O

Theorem 4.6 Let G be as above. Then

(Zm % (Zp x D)) X Zp, if (pr+1)P =1 (mod m)
(Zm % (Zp x D)) % Zp, if (pr+1)P £ 1 (mod m)

7

Aut(G) ~ {

¢ (m)
p—1"
Proor — Let f € Q. Using Lemma 4.4 (i), we have that B(al) =blt,
where j = 0 (mod p). Thus, B ~ Z,. Now, let (c,7v,0) € X be such

where D is a subgroup of U(m) of order
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that _

a(b)=0b", vy(b)=da"* and &(a)=a?
where i € Z p2s ged (i, p ) =1,0< m—1, and s € U(m). Then
using a(hh’) = a(h)(y(h) - «(h')), (hh’) = v(h)*(")y (W) and Lem-

ma 4.3 (i), we have

u(u—1)

a(b") = b‘(LL+ puA) and y(b") = at Zvso (pr+1)tY (4.2)

Now, using («,v,8) € X, we obtain
5(k) - a(h) = a(k - h)
and . - -
bt = a(b!) = afa-b) = 8(a) - x(b) = a® - bt = b,

Thus, it® = it (mod p?) which implies that (1 +pA)s~ ! =1 (mod p?).
Therefore,
s =1 (mod p).

Using (a,7,5) € X, 8(k)*(My(h) = y(k-h)s(k"), (G3) and the fact
that s =1 (mod p), we get

At X Ao (Pr+1) Y 4s(pr+1) =y(b45(aP™1) = y(a-b)5(a®)

is(s—1)

= 5(a)*®ly(b) = (a%)P ak = a7 (PreDP=DislpraD)igu

_ as(pr—H )i+u.

Thus uZ o (pr+ DY +s(pr+1) = s(pr+ 1)+ u (mod m). There-
fore,

. it
Lt s(pr+1)i= u(%) +s(pr+1) (mod m)

_ (pr+1)t0+PA) _q
- < (pr+1)t—1

) +s(pr+1) (mod m)

_ ((pT—H ) (pr+1)PAq
- (pr+1)t—1

) +s(pr+1) (mod m).

We consider two cases, namely

(pr+1)P =1 (modm) and (pr+1)? Z1 (mod m).
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Case (i): (pr+1)P =1 (mod m).
Then

LL—!—s(pr—i—])i =u+s(pr+1) (mod m),

which implies that i = 1 (mod p). Thus in this case, the choices for
the maps «, v and 0 are

oi(b) =b', yu(b)=a", and &s(a)=a®

4

where i € U(p?), i =
s =1 (mod p).

1 (mod p),0 < u<m—1,s € U(m), and
Case (ii): (pr+1)P # 1 (mod m).

Then using Lemma 4.3, 1 = 0 (mod p). Therefore

w+s(pr+ 1= p+s(pr+1) (mod m),
which implies that i = 1 (mod p). Thus in this case, the choices for
the maps «, y and o are

ai(b) =b', yu(b)=a* and &s(a)=a®,

where 1 € U(p?)

,i=1T(modp), 0 K u<m—1,u=0 (mod p),
s € U(m)and s =1 (mod p).

From both the cases (i) and (ii), we observe that for all y,

i=1(modp) and

s =1 (mod p).

Using these conditions, first, we find the structure of Aut(G).

Since A x D normalizes C, we have that M normalizes C. So, clear-
ly,C<1EandMﬂCz{1}.Now,if( 0

x ) € E, then
Yy b
x 0 x 0 1 0
(5 8) =8 8) (e ) eme
Thus E = C x M. Now, using Lemma 4.4 (iii) and (iv), we get

<1 (5) (oc 0> (1 B)“:<a+ﬁv (oc+ BY)(—B) + BS
o 1)\y &)\o 1

v 5 ) - (4-3)
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Using Lemma 4.4 (i) and (ii), we have
((oc+BY)(=B)+BS)(a) = (a+ By)(—B)(a)(BS)(a)
= (a+By)(d7)B(a%) = a(bT)B(y(b 7)) b

_piip (auz;’;g‘ (pr+1 )”)bSi
(pr+1)~H—1
—pils—ip (J‘( (= )) =B(1) =1.

Thus, (x4 By)(—B) + Bd = 0. Also, using Lemma 4.4 (vii), one can
easily observe that (x4 Bv,v,8) € X. Therefore, by Equation (4.3),

BOEOEE (5 e

Thus E <A. Clearly, ENB = {1}. Now, if <$ E) € A, using yaf3 =0,

we get
o« B\ _ (o O\ /(1 o« 'p
b 8)-G 86 e

Hence, A = E x B and so, Aut(G) ~E x B~ (Cx (A x D)) xB.
Thus,

X~ Zmx(ZyxD) and Aut(G) =~ (Zm x (Zp x D)) x Z,

in the Case (i), and
X Zom % (Zp, xD) and Aut(G) ~ (Z% X (Zp % f))) X Zp

in the Case (i), where D is a subgroup of U(m) of order %. 0
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