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Abstract

In this paper, we have found the automorphism group of the Zappa–Szép product of
two groups. Also, we have computed the automorphism group of the Zappa–Szép
product of a cyclic group of order m and a cyclic group of order p2, where p is a
prime.
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1 Introduction

A group G is the internal Zappa–Szép product of its two subgroups H
and K if G = HK and H \ K = {1}. The Zappa–Szép product is a
natural generalization of the semidirect product of two groups in
which neither of the factor is required to be normal. If G is the in-
ternal Zappa–Szép product of H and K, then K appears as a right
transversal to H in G. Let h 2 H and k 2 K. Then kh = �(k,h)⌧(k,h),
where �(k,h) 2 H and ⌧(k,h) 2 K. This determines the maps

� : K⇥H! H and ⌧ : K⇥H! K.

These maps are the matched pair of groups. We denote �(k,h) = k · h
and ⌧(k,h)=kh. These maps satisfy the following conditions (see [3])
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(C1) 1 · h = h and k1 = k,

(C2) k · 1 = 1 = 1h,

(C3) kk0 · h = k · (k0 · h),

(C4) (kk0)h = kk
0·hk0h,

(C5) k · (hh0) = (k · h)(kh · h0),

(C6) khh
0
= (kh)h

0 ,

for all h,h0 2 H and k, k0 2 K.

On the other hand, let H and K be two groups. Let

� : K⇥H! H and ⌧ : K⇥H! K

be two maps defined by �(k,h) = k ·h and ⌧(k,h) = kh satisfying the
above conditions. Then, the external Zappa–Szép product G = H ./ K
of H and K is the group defined on the set H⇥ K with the binary
operation defined by

(h, k)(h0, k0) =
�
h(k · h0), kh

0
k0
�
.

The internal Zappa–Szép product is isomorphic to the external Zap-
pa–Szép product (see [3, Proposition 2.4, p. 4]). We will identify the
external Zappa–Szép product with the internal Zappa–Szép product.

The Zappa–Szép product of two groups was introduced by G. Zap-
pa in [13]. J. Szép studied such type of products in a series of pa-
pers (few of them are [7],[8],[9],[10]). From the QR decomposition
of matrices, one concludes that the general linear group GL(n, C) is
a Zappa–Szép product of the unitary group and the group of upper
triangular matrices. Z. Arad and E. Fisman in [1] studied the finite
simple groups as a Zappa–Szép product of two groups H and K with
the order of H and K coprime. In the same paper, they studied the
finite simple groups as a Zappa–Szép product of two groups H and K
with one of H or K is p-group, where p is a prime. From the main
result of [4], one observes that a finite group G is solvable if and
only if G is a Zappa–Szép product of a Sylow p-subgroup and a Sy-
low p-complement.

Note that, if either of the actions k · h or kh is a group homomor-
phism, then the Zappa–Szép product reduces to the semidirect prod-
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uct of groups. M.J. Curran [2] and N.C. Hsu [5] studied the automor-
phisms of the semidirect product of two groups as the 2⇥ 2 matrices
of maps satisfying some certain conditions. In this paper (with the
same terminology as in [2] and [5]), we have found the automor-
phism group of the Zappa–Szép product of two groups as the 2⇥ 2
matrices of maps satisfying some certain conditions. As an applica-
tion, we have found the automorphism group of the Zappa–Szép
product of two cyclic groups in which one is of order p2 and other is
of order m, where p is a prime. Throughout the paper, Zn denotes
the cyclic group of order n and U(n) denotes the group of units of n.
Also, Aut(G) denotes the group of all automorphisms of a group G.
Let U and V be groups. Then CrossHom(U,V) denotes the group
of all crossed homomorphisms from U to V . Also, if U acts on V ,
then StabU(V) denotes the stabilizer of V in U.

2 Structure of the automorphism group

Let
G = H ./ K

be the Zappa–Szép product of two groups H and K. Let U,V ,W be
groups, and Map(U,V) denote the set of all maps between U and V .
If �, 2Map(U,V) and ⌘2Map(V ,W), then �+ 2Map(U,V) is
defined by

(�+ )(u) = �(u) (u),

⌘� 2Map(U,W) is defined by

⌘�(u) = ⌘
�
�(u)

�
,

� · 2Map(U,V) is defined by

(� · )(u) = �(u) · (u)

and � 2Map(U,V) is defined by

� (u) = �(u) (u),

for all u 2 U.
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Let A be the set of all matrices of the form
✓
↵ �
� �

◆
,

with ↵2Map(H,H),�2Map(K,H),�2Map(H,K), and �2Map(K,K)
satisfying the following conditions for all h,h0 2 H and k, k0 2 K:

(A1) ↵(hh0) = ↵(h)
�
�(h) ·↵(h0)

�
;

(A2) �(hh0) = �(h)↵(h
0)�(h0);

(A3) �(kk0) = �(k)
�
�(k) ·�(k0)

�
;

(A4) �(kk0) = �(k)�(k0)�(k0);

(A5) �(k)(�(k) ·↵(h)) = ↵(k · h)
�
�(k · h) ·�(kh)

�
;

(A6) �(k)↵(h)�(h) = �(k · h)�(kh)�(kh);

(A7) for any h0k0 2 G, there exists a unique h 2 H and k 2 K such
that h0 = ↵(h)

�
�(h) ·�(k)

�
and k0 = �(h)�(k)�(k).

Then, the set A forms a group with the binary operation defined by
✓
↵0 �0

�0 �0

◆✓
↵ �
� �

◆
=

✓
↵0↵+ �0↵ ·�0� ↵0�+ �0� ·�0�
(�0↵)�

0
� + �0� (�0�)�

0
� + �0�

◆
.

The identity element is
✓
1 0
0 1

◆
and the inverse of

✓
↵ �
� �

◆
2 A,

which is obtained using the factorization
✓
↵ �
� �

◆
=

✓
↵ 0
0 1

◆✓
1 b�
� 1

◆✓
1 0
0 �

◆
,

is given by

✓
↵ �
� �

◆-1

=

 
(1- b��)-1↵-1 -(1- b��)-1b�

�-1(-�)(1- b��)-1 �-1(-�)(-(1- b��)-1b�) + �-1

!

,

where b� = ↵-1��-1.

Proposition 2.1 Let
✓
↵ �
� �

◆
2A. Then ↵(1) = 1 = �(1) = �(1) = �(1).
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Proof — Let h 2 H be any element. Then, using (A1),

↵(h) = ↵(h1) = ↵(h)
�
�(h) ·↵(1)

�

which implies that �(h) ·↵(1) = 1 = �(h) · 1 by (C2). Thus

�(h)-1 ·
�
�(h) ·↵(1)

�
= �(h)-1 · (�(h) · 1).

Hence, using (C1), ↵(1) = 1.
Using (A2), �(h) = �(h1) = �(h)↵(1)�(1). Using (C1), �(1) = 1.

Using a similar argument, we get �(1) = 1 and �(1) = 1. ut

Let us define the kernel of the map ↵ 2 Map(H,H) as usual for
groups, that is, ker(↵) = {h 2 H | ↵(h) = 1}. Here, we should remem-
ber that the map ↵ need not to be a homomorphism. ker(�), ker(�)
and ker(�) are defined in the same sense.

Lemma 2.2 The following holds:

(i) ker(↵) 6 H, (ii) ker(�) 6 K,

(iii) ker(�) 6 H, (iv) ker(�) 6 K,

(v) ker(↵)\ ker(�) = {1}, (vi) ker(�)\ ker(�) = {1}.

Proof — (i) Let h, h0 2 ker(↵). Then using (A1) and (C2),

↵(hh0) = ↵(h)(�(h) ·↵(h0)) = �(h) · 1 = 1.

Also, 1 = ↵(1) = ↵(h-1h) = ↵(h-1)(�(h-1) · 1). Thus, ↵(h-1)=1.
Hence, hh0, h-1 2 ker(↵) and so ker(↵) 6 H.

(ii) One can easily prove it using a similar argument as in (i).

(iii) Let h, h0 2 ker(�). Then using (A2) and (C2),

�(hh0) = �(h)↵(h
0)�(h0) = 1↵(h

0) = 1.

Also, 1 = �(1) = �(hh-1) = �(h)↵(h
-1)�(h-1). Then, �(h-1) = 1

and so, hh0, h-1 2 ker(H). Hence, ker(�) 6 H.

(iv) One can easily prove it using a similar argument as in (iii).
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(v) Let h 2 ker(↵)\ ker(�). Then ↵(h) = 1 = �(h). Therefore,
✓
↵ �
� �

◆✓
h
1

◆
=

✓
↵(h)
�(h)

◆
=

✓
1
1

◆
.

Since
✓
↵ �
� �

◆
2 A is a bijection, h = 1. Hence, (v) holds.

(vi) One can easily prove it using a similar argument as in (v). ut

Theorem 2.3 Let G = H ./ K be the Zappa–Szép product of two groups H
and K, and A be as above. Then there is an isomorphism of groups be-
tween Aut(G) and A given by

✓ !
✓
↵ �
� �

◆
,

where ✓(h) = ↵(h)�(h) and ✓(k) = �(k)�(k), for all h 2 H and k 2 K.

Proof — Given ✓ 2 Aut(G), we define ↵, �, � and � by means
of ✓(h) = ↵(h)�(h) and ✓(k) = �(k)�(k), for all h 2 H and k 2 K.
Now, for all h,h0 2 H,

✓(hh0) = ✓(h)✓(h0) = ↵(h)�(h)↵(h0)�(h0)

= ↵(h)
�
�(h) ·↵(h0)

�
�(h)↵(h

0)�(h0).

Thus, ↵(hh0)�(hh0) =
�
↵(h)

�
�(h) ·↵(h0)

���
�(h)↵(h

0)�(h0)
�
. Therefore,

by uniqueness of representation, we have (A1) and (A2). Using a sim-
ilar argument, we get (A3) and (A4).

Now,

✓(kh) = ✓
�
(k · h)(kh)

�
= ✓(k · h)✓(kh) = ↵(k · h)�(k · h)�(kh)�(kh)

= ↵(k · h)
�
�(k · h) ·�(kh)

�
�(k · h)�(kh)�(kh).

Also,
✓(kh) = ✓(k)✓(h) = �(k)�(k)↵(h)�(h)

= �(k)
�
�(k) ·↵(h)

�
�(k)↵(h)�(h)

Therefore, by the uniqueness of representation,

�(k)
�
�(k) ·↵(h)

�
= ↵(k · h)

�
�(k · h) ·�(kh)

�



Automorphisms of Zappa–Szép products 101

and
�(k)↵(h)�(h) = �(k · h)�(k

h)�(kh),

which proves (A5) and (A6). Finally, (A7) holds because ✓ is onto.
Thus, to every ✓ 2 Aut(G) we can associate the matrix

✓
↵ �
� �

◆
2 A.

This defines a map
T : Aut(G) �! A

given by

✓ 7�!
✓
↵ �
� �

◆
.

Now, if
✓
↵ �
� �

◆
2 A satisfying the conditions (A1)–(A7), then we

associate to it, the map
✓ : G �! G

defined by

✓(h) = ↵(h)�(h) and ✓(k) = �(k)�(k),

for all h 2 H and k 2 K. Using (A1)–(A6), one can check that ✓
is an endomorphism of G. Also, by (A7), the map ✓ is onto. Now,
let hk 2 ker(✓). Then ✓(hk) = 1. Therefore,

↵(h)(�(h) ·�(k))�(h)�(k)�(k) = 1

and so, by the uniqueness of representation

↵(h)
�
�(h) ·�(k)

�
= 1 and �(h)�(k)�(k) = 1.

Again, by the uniqueness of representation and using (C1), (C2), (C3)
and (C6), we get

↵(h) = 1 = �(h) and �(k) = 1 = �(k).

Therefore, by Lemma 2.2 (v) and (vi), h = 1 = k and so, ker(✓) = {1}.
Thus, ✓ is one-one and hence, ✓ 2 Aut(G). Thus, T is a bijection.
Let ↵,�,� and � be the maps associated with ✓ and ↵0,�0,�0 and �0
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be the maps associated with ✓0. Now, for all h 2 H and k 2 K, we
have

✓0✓(h) = ✓0
�
↵(h)�(h)

�

= ↵0
�
↵(h)

�
�0
�
↵(h)

�
�0
�
�(h)

�
�0
�
�(h)

�

= ↵0
�
↵(h)

��
�0
�
↵(h)

�
·�0
�
�(h)

��
�0
�
↵(h)

��0
�
�(h)

�
�0
�
�(h)

�

=
�
↵0↵+ (�0↵ ·�0�)

�
(h)
�
(�0↵)�

0
� + �0�

�
(h).

Therefore, if we write hk as
✓
h
k

◆
and the map ✓ as

✓
↵ �
� �

◆
, then

✓(hk) =

✓
↵ �
� �

◆✓
h
k

◆
=

✓
↵(h)(�(h) ·�(k))
�(h)�(k)�(k)

◆
,

✓0✓(h) =

✓
↵0 �0

�0 �0

◆✓
↵(h)
�(h)

◆
=

✓
↵0↵(h)(�0↵(h) ·�0�(h))
(�0↵(h))�

0
�(h)�0�(h)

◆

and

✓0✓(k) =

✓
↵0 �0

�0 �0

◆✓
�(k)
�(k)

◆
=

✓
↵0�(k) + �0�(k) ·�0�(k)
(�0�(k))�

0
�(k) + �0�(k)

◆
.

Thus, using a similar argument,

✓0✓(hk) =

✓
↵0↵+ (�0↵ ·�0�) ↵0�+ (�0� ·�0�)
(�0↵)�

0
� + �0� (�0�)�

0
� + �0�

◆✓
h
k

◆
,

for all h 2 H and k 2 K. Therefore,

T(✓0✓) =

✓
↵0↵+ (�0↵ ·�0�) ↵0�+ (�0� ·�0�)
(�0↵)�

0
� + �0� (�0�)�

0
� + �0�

◆
= T(✓)T(✓0).

Hence, T is an isomorphism of groups. ut

From here on, we will identify the automorphisms of G with the
matrices in A. Let

P =
�
↵ 2 Aut(H) | k ·↵(h) = ↵(k · h) and k↵(h) = kh,

8 h 2 H, k 2 K
 

,
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Q =
�
� 2Map(K,H) | �(kk0) = �(k)

�
k ·�(k0)

�
, k = k�(k

0),
�(k) = �(kh), 8 h 2 H, k 2 K

 
,

R =
�
� 2Map(H,K) | �(hh0) = �(h)h

0
�(h0),h0 = �(h) · h0,

�(k · h) = �(h), 8 h 2 H, k 2 K
 

,

S =
�
� 2 Aut(K) | �(k) · h = k · h, �(k)h = �(kh), 8 h 2 H, k 2 K

 
,

X =
�
(↵,�, �) 2Map(H,H)⇥Map(H,K)⇥Aut(K) | ↵(hh0) = ↵(h)

(�(h) ·↵(h0)),�(hh0) = �(h)↵(h
0)�(h0), �(k) ·↵(h) = ↵(k · h),

�(k)↵(h)�(h) = �(k · h)�(kh), 8 h 2 H, k 2 K
 

,

Y =
�
(↵,�, �) 2 Aut(H)⇥Map(K,H)⇥Map(K,K) | �(kk0) = �(k)

(�(k) ·�(k0)), �(kk0) = �(k)�(k0)�(k0),�(k)(�(k) ·↵(h)) = ↵(k · h)
�(kh), �(k)↵(h) = �(kh), 8 h 2 H, k 2 K

 
,

Z =
�
(↵, �) 2 Aut(H)⇥Aut(K) | �(k) ·↵(h) = ↵(k · h),

�(k)↵(h) = �(kh), 8 h 2 H, k 2 K
 

.

Then one can easily check that P, S, X, Y and Z are all subgroups
of the group Aut(G). But Q and R need not be subgroups of the
group Aut(G). However, if H and K are abelian groups, then Q and R
are subgroups of Aut(G). Let

A =

�✓
↵ 0
0 1

◆
| ↵ 2 P

�
, B =

�✓
1 �
0 1

◆
| � 2 Q

�
,

C =

�✓
1 0
� 1

◆
| � 2 R

�
, D =

�✓
1 0
0 �

◆
| � 2 S

�
,

E =

�✓
↵ 0
� �

◆
| (↵,�, �) 2 X

�
, F =

�✓
↵ �
0 �

◆
| (↵,�, �) 2 Y

�
,

M =

�✓
↵ 0
0 �

◆
| (↵, �) 2 Z

�
.

be the corresponding subsets of A. Then one can easily check
that A,D,E, F and M are subgroups of A, and if H and K are abelian
groups, then B and C are also subgroups of A. Note that A and D
normalizes B and C.

Theorem 2.4 Let G = H ./ K be the Zappa–Szép product of two abelian
groups H and K. Let A,B,C and D be defined as above. Then, if 1-�� 2 P,
for all maps � and �, then ABCD = A and Aut(G) ' ABCD.

Proof — Let ↵ 2 P, � 2 Q, � 2 R and � 2 S. Then note that, ↵�� 2 Q
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and
✓
1 �
� 1

◆
2 A. Assume that 1- �� 2 P. Now, if b� = ↵-1��-1,

then
✓
1 b�
� 1

◆
=

✓
1- b�� 0

0 1

◆✓
1 (1- b��)-1b�
0 1

◆✓
1 0
� 1

◆
2 ABC.

Thus, if
✓
↵ �
� �

◆
2 A, then

✓
↵ �
� �

◆
=

✓
↵ 0
0 1

◆✓
1 b�
� 1

◆✓
1 0
0 �

◆
2 A(ABC)D = ABCD.

Therefore, A ✓ ABCD. Clearly, ABCD ✓ A. Hence, ABCD = A and
so, Aut(G) ' ABCD. ut

3 Automorphisms of Zappa–Szép products

of groups Z4 and Zm

In [11], Yacoub classified the groups which are Zappa–Szép products
of cyclic groups of order 4 and order m. He found that these are of
the following type (see [11, Conclusion, p. 126]):

L1 =ha,b | am = 1 = b4,ab = bar, r4 ⌘ 1 (mod m)i,
L2 =ha,b | am = 1 = b4,ab = b3a2t+1,a2b = ba2si,

where in L2, m is even. These are not non-isomorphic classes. The
group L1 may be isomorphic to the group L2 depending on the val-
ues of m, r and t (see [11, Theorem 5, p. 126]). Clearly, L1 is a semidi-
rect product. Throughout this section G will denote the group L2
and we will be only concerned about groups L2 which are Zap-
pa–Szép products but not a semidirect product. Note that G = H ./ K,
where H = hbi and K = hai. For the group G, the mutual actions of H
and K are defined by a · b = b3,ab = a2t+1 along with a2 · b = b
and (a2)b = a2s, where t and s are the integers satisfying the condi-
tions

(G1) 2s2 ⌘ 2 (mod m),
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(G2) 4t(s+ 1) ⌘ 0 (mod m),

(G3) 2(t+ 1)(s- 1) ⌘ 0 (mod m),

(G4) gcd(s, m
2
) = 1.

Lemma 3.1

�
al
�b

=

�
a2t+1+(l-1)s, if l is odd
als, if l is even .

Lemma 3.2 Let
✓
↵ �
� �

◆
2 A. Then

(i) Im(�) ✓ hari, where r is odd,

(ii) �(al) =

�
�(a), if l is odd
1, if l is even ,

(iii) Im(�) ✓ ha2i,

(iv) ↵ 2 Aut(H),

(v) �� = 0, where 0 is the trivial group homomorphism,

(vi) �(h) ·�(k) = �(k), for all h 2 H and k 2 K,

(vii) If either s = 1 or Im(�) ✓ hb2i, then �(h)�(k) = �(h), for all h 2 H
and k 2 K.

Proof — (i) If possible, let �(a) = ar, where r is even. Then, us-
ing (A3) and a2 · bj = bj, it follows that � is a homomorphism. Also,
using (a2)b = a2s, (C4) and (A4), if �(a) = 1 or b2, then � is defined
by �(al) = arl, for all l. Similarly, if �(a) = b or b3, then � is defined
by

�(al) =

�
a

l+1

2
r+ l-1

2
rs, if l is odd

a
l

2
r(s+1), if l is even

.

One can easily observe that � is neither one-one nor onto. But this is
a contradiction by (A7). Hence, Im(�) ✓ hari, where r is odd.

(ii) If ⌫ is odd, using (C3) and a · b = b-1, we have a⌫ · bj = b-j,
for all j. Thus using (A3), (C2) and part (i),

�(a2) = �(a)
�
�(a) ·�(a)

�
= �(a)(�(a))-1 = 1
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and
�(a3) = �(a)

�
�(a) ·�(a2)

�
= �(a)

�
�(a) · 1

�
= �(a).

Inductively, we get the required result.

(iii) Suppose that �(b) = a�, where � is odd. Then using (A1),

↵(b) = bi = ↵(b3) and ↵(b2) = 1 = ↵(1),

where 0 6 i 6 3. Thus the map ↵ is neither one-one nor onto,
but by (A7), the map ↵ is a bijection. This is a contradiction. There-
fore � is even. Now, using (A2), for different choices of ↵(b) we find
that �(b2) 2

�
a2�,a�(s+1)

 
. Since � is even, �(b2) 2 ha2i. Similar-

ly, �(b3) 2
�
a3�,a�(s+2)

 
and so, �(b3) 2 ha2i. Hence, (iii) holds.

(iv) Using (iii) and (A1), one observes that ↵ is an endomorphism
of H. Also, by (A7), ↵ is a bijection. Thus, ↵ is an automorphism of H.
Hence, (iv) holds.

(v) Using parts (ii) and (iii), ��(h) = 1, for all h 2 H. Thus, �� = 0.

(vi) Using relation a2 · b = b and part (iii), (vi) holds.

(vii) Using (C4) and (G1), we get

(a2l)b
j

=

�
a2ls, if j is odd
a2l, if j is even (3.1)

Thus, if either s = 1 or Im(�) ✓ hb2i, then using part (iii) and Equa-
tion (3.1), (vii) holds. ut

By Lemma 3.2 (ii), observe that, �(kh)=�(k), for all k2K and h2H.

Lemma 3.3 Let � 2 Q. Then

� 2 Hom(K,H) and Im(�) 6 hb2i.

Moreover, Im(�) = hb2i if and only if 2t(1 + s) ⌘ 0 (mod m), where
gcd(s+ 1, m

2
) 6= 1.

Proof — Let �(a) = bi. Using Lemma 3.2 (ii), we have �
�
a2j
�
= 1

and �
�
a2j+1

�
= bi, for all j. So, it is sufficient to study only �(a) in

the following,
a = a�(a) = ab

i

. (3.2)
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Clearly, Equation (3.2) holds trivially for i = 0. If i = 1, then by Equa-
tion (3.2), a = a2t+1 which implies that 2t ⌘ 0 (mod m). Therefore,
in the defining relations of the group G, ab = b3a which shows
that G is a semidirect product of the groups H and K. For i = 3,

a = ab
3

= a4t+2ts+1,

which gives that
4t+ 2ts ⌘ 0 (mod m).

So, using (G2) and (G4), 2ts ⌘ 0 (mod m) giving t ⌘ 0 (mod m

2
).

Thus, G is again a semidirect product of H and K. Now, for i = 2,
using (C6) and Lemma 3.1,

ab
2

=
�
a2t+1

�b
= a2t+1+2ts.

Then, ab
2

= a if and only if 2t(1+ s) ⌘ 0 (mod m).

Now, if gcd
�
s + 1, m

2

�
= 1, then t ⌘ 0

�
mod m

2

�
and hence G is

a semidirect product of the groups H and K. On the other hand,
if gcd

�
s+ 1, m

2

�
6= 1, then t 6⌘ 0

�
mod m

2

�
. Thus, G is a Zappa–Szép

product of H and K. It follows that Im(�) = hb2i if and only
if 2t(1+ s) ⌘ 0 (mod m) and gcd

�
s+ 1, m

2

�
6= 1. Since Im(�) ✓ hb2i,

using Lemma 3.2 (ii), one can easily observe that � 2 Hom(K,H).
Hence, the result holds. ut

Now, one can easily observe that for the given group G, we have
that

k ·↵(h) = ↵(k · h), �(k) = �(kh), h0 = �(h) · h0,

�(k) · h = k · h, �(k) ·↵(h) = ↵(k · h),

�(k)
�
�(k) ·↵(h)

�
= ↵(k · h)�(kh)

always holds for all h 2 H, k 2 K, ↵ 2 P, � 2 Q, � 2 R, � 2 S,
(↵,�, �) 2 X, (↵, �) 2 Z and (↵,�, �) 2 Y, respectively. Thus the sub-
groups P, Q, R, S, X, Y and Z reduce to the following,

P =
�
↵ 2 Aut(H) | k↵(h) = kh, 8 h 2 H, k 2 K

 
,

Q =
�
� 2 Hom(K,H) | k = k�(k

0), 8 k 2 K
 
= Hom

�
K, StabH(K)

�
,

R =
�
� 2 CrossHom

�
H, StabK(H)

�
| �(k · h) = �(h), 8 h 2 H, k 2 K

 
,

S =
�
� 2 Aut(K) | �(k)h = �(kh), 8 h 2 H, k 2 K

 
,
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X =
�
(↵,�, �) 2 Aut(H)⇥Map(H,K)⇥Aut(K) |

�(hh0) = �(h)↵(h
0)�(h0), �(k)↵(h)�(h)= �(k · h)�(kh), 8h2H, k2K

 
,

Y =
�
(↵,�, �) 2 Aut(H)⇥Map(K,H)⇥Map(K,K) | �(kk0) = �(k)�

�(k) ·�(k0)
�
, �(kk0) = �(k)�(k0)�(k0), �(k)↵(h)= �(kh), 8h2H, k2K

 
,

Z =
�
(↵, �) 2 Aut(H)⇥Aut(K) | �(k)↵(h) = �(kh), 8h 2 H, k 2 K

 
.

Theorem 3.4 Let A,B,C,D be defined as above. Then Aut(G) = ABCD.

Proof — Using Lemma 3.2 (v), we have that �� = 0, so 1-�� 2 P.
Therefore, by Theorem 2.4, we have Aut(G) = ABCD. ut

Theorem 3.5 Let ✓
↵ �
� �

◆
2 A.

Then, if � 2 Q and (↵,�, �) 2 X, then Aut(G) ' EoB ' (CoM)oB.

Proof — Let � 2 Q. Using Lemma 3.3, Im(�) 6 hb2i. Let k, k0 2 K
such that �(k) = b2i and �(k0) = b2j, for all i, j. Then

��(kk0) = �
�
�(k)

�
k ·�(k0)

��
= �

�
�(k)

�↵
�
k·�(k0)

�
�
�
k ·�(k0)

�

= �
�
b2i
�↵(k·b2j)

�
�
�(k0)

�
=
�
ai�(s+1)

�↵(b2j)
�
�
�(k0)

�

=
�
ai�(s+1)

�b2j

�
�
�(k0)

�
= ai�(s+1)s2j�

�
�(k0)

�

= ai�(s+1)�
�
�(k0)

�
= �(b2i)�

�
�(k0)

�
= ��(k)��(k0).

Thus �� 2 Hom(K,K), so ��+ � 2 Hom(K,K). Now, let �(a) = b2j

and �(a) = ar, where j 2 {0, 1} and r 2 U(m). Then, using Lemma 3.2,
we have

(��+ �)(al) =

�
alr, if l is even
a�j(s+1)+lr, if l is odd

One can easily observe that �� + � defined as above is a bijection.
Thus ��+ � 2 Aut(K).

Now, using (C3), (C4) and Lemma 3.2 (iii), we have

(��+ �)(a) ·↵(b) = ��(a)�(a) ·↵(b)

= ��(a) ·
�
�(a) ·↵(b)

�
= ��(a) ·↵(a · b) = ↵(a · b)
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and

(��+ �)(a)↵(b)�(b) =
�
��(a)�(a)

�↵(b)
�(b)

=
�
�(a)��(a)

�↵(b)
�(b) = �(a)�

�
�(a)

�
·↵(b)�

�
�(a)

�↵(b)
�(b)

= �(a)↵(b)�(b2i)↵(b)�(b) = �(a)↵(b)�(b)
�
ai�(s+1)

�↵(b)

= �(a · b)�(ab)ai�(s+1) = �(a · b)�(ab)�(b2i)

= �(a · b)�
�
�(a)

�
�(ab) = �(a · b)�

�
�(a2t+1)

�
�(ab)

= �(a · b)�
�
�(ab)

�
�(ab) = �(a · b)(��+ �)(ab).

Thus, (↵,�,��+ �) 2 X.

Using Lemma 3.2 (v), we have

✓
1 �
0 1

◆✓
↵ 0
� �

◆✓
1 �
0 1

◆-1

=

✓
↵ (↵+��)(-�) +��
� ��+ �

◆
(3.3)

Now, using Lemma 3.2 (ii), we have
�
(↵+��)(-�) +��

�
(a) = (↵+��)

�
-�(a)

�
�
�
�(a)

�

= (↵+��)(b-2j)�(ar) = ↵(b2j)�
�
�(b2j)

�
b2j

= b2ijb2j = b2j(i+1) = 1.

Thus,
(↵+��)(-�) +�� = 0.

Therefore, by Equation (3.3),

✓
1 �
0 1

◆✓
↵ 0
� �

◆✓
1 �
0 1

◆-1

=

✓
↵ 0
� ��+ �

◆
2 E.

So, E /A. Now, if
✓
↵ �
� �

◆
2 A, then

✓
↵ �
� �

◆
=

✓
↵ 0
� -�↵-1�+ �

◆✓
1 ↵-1�
0 1

◆
2 EB.

Clearly, E\B = {1}. Thus, A = EoB. Hence, Aut(G) ' EoB.
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Let
✓
↵ 0
� �

◆
2 E. Then

✓
↵ 0
� �

◆
=

✓
↵ 0
0 �

◆✓
1 0

�-1� 1

◆
2MC.

Clearly, M\C = {1}. Since A⇥D normalizes C, we have that C is nor-
mal in E. Therefore, E = CoM. Hence, X ' C o M and
so, Aut(G) ' (CoM)oB. ut

Now, we will find the structure and the order of the automorphism
group Aut(G). For this, we will proceed by first taking t to be such
that gcd(t,m) = 1 and then by taking t to be such that gcd(t,m) = d,
where d > 1.

Theorem 3.6 Let 4 divide m and t be odd such that gcd(t,m) = 1. Then

Aut(G) '
� �

Zm

2
o
�
Z2 ⇥U(m)

��
o Z2, if s 2

�
m

2
- 1,m- 1

 

Zm

2
o
�
Z2 ⇥U(m)

�
, if s 2

�
m

4
- 1, 3m

4
- 1

 

Proof — Let gcd(t,m)=1. Then, using (G2), we get s⌘-1
�
mod m

4

�

which implies that s 2
�
m

4
-1, m

2
-1, 3m

4
-1,m-1

 
. Now, using (G3),

we get t ⌘ -1 (mod m

4
). Then t 2

�
m

4
- 1, m

2
- 1, 3m

4
- 1,m- 1

 
.

Let (↵,�, �) 2 X be such that ↵(b) = bi, �(b) = a� and �(a) = ar,
where i 2 {1, 3}, � is even, 0 6 � 6 m- 1, and r 2 U(m). Using

�(hh0) = �(h)↵(h
0)�(h0),

we get �(b2) = a�(s+1),�(b3) = a�(s+2) and �(b4) = 1. We consider
two cases based on the image of the map ↵.

Case (i): ↵(b) = b.
Using �(a · b)�(ab) = �(a)b�(b), we get

a�(s+2)+(2t+1)r = �(a · b)�(ab) = �(a)b�(b)

= (ar)ba� = a2t+1+(r-1)s+�

which implies that

�(s+ 1) ⌘ (r- 1)(s- 2t- 1) (mod m). (3.4)
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If s 2
�
m

2
- 1,m- 1

 
, then Equation (3.4) holds for all values of t, �

and r. Now, if (s, t) 2
�
(m
4
- 1, m

2
- 1), (m

4
- 1,m - 1)

 
, then by E-

quation (3.4), r ⌘ 1+ � (mod 4). Since � is even, r ⌘ 1 or 3 (mod 4).
Again, if (s, t) 2

�
(m
4

- 1, m
4

- 1), (m
4

- 1, 3m
4

- 1)
 

, then by Equa-
tion (3.4), r ⌘ 1- � (mod 4). Since � is even, r ⌘ 1 or 3 (mod 4).
Using a similar argument, we get the same results for s = 3m

4
- 1.

Thus, in this case, there are m

2
and �(m) choices for the maps �

and � respectively and these are ��(b) = a� and �r(a) = ar, for
all 0 6 � 6 m- 1, � is even, and r 2 U(m).

Case (ii): ↵(b) = b3.

Then

a�(s+2)+(2t+1)r = �(a · b)�(ab) = �(a)↵(b)�(b)

= (ar)b
3

a� = a4t+2ts+1+(r-1)s+�

which implies that

�(s+ 1) ⌘ 2t(s+ 1) + (r- 1)(s- 2t- 1) (mod m). (3.5)

If s 2
�
m

2
- 1,m- 1

 
, then Equation (3.5) holds for all values of t, �

and r. Now, if (s, t) 2
�
(m
4
- 1, m

2
- 1), (m

4
- 1,m- 1)

 
, then by Equa-

tion (3.5), r ⌘ 3+� (mod 4). Since � is even, r ⌘ 1 or 3 (mod 4). Again,
if (s, t) 2

�
(m
4
- 1, m

4
- 1), (m

4
- 1, 3m

4
- 1)

 
, then by Equation (3.5),

we have r ⌘ 1 + � (mod 4). Since � is even, r ⌘ 1 or 3 (mod 4).
Using a similar argument, we get the same results for s = 3m

4
- 1.

Thus, in this case also, there are m

2
and �(m) choices for the maps �

and � respectively and these are ��(b) = a� and �r(a) = ar, for
all 0 6 � 6 m- 1, � is even, and r 2 U(m).

Thus combining both the cases (i) and (ii), we get for all ↵2Aut(H),
the choices for the maps � and � are ��(b) = a� and �r(a) = ar,
where 0 6 � 6 m- 1, � is even, and r 2 U(m). So, using Theorem 3.5,

X ' Zm

2
o
�
Z2 ⇥U(m)

�
.

Now, if s 2
�
m

2
- 1,m- 1

 
, then 2t(s+1) ⌘ 0 (mod m). Therefore, us-

ing Lemma 3.3, Im(�) = {b2} and so, B ' Z2. If s 2
�
m

4
- 1, 3m

4
- 1

 
,

then 2t(s+ 1) 6⌘ 0 (mod m). Therefore, using Lemma 3.3, Im(�) = {1}
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and so, B is a trivial group. Hence, by Theorem 3.5,

Aut(G) ' EoB '
� �

Z m

2
o
�
Z2 ⇥U(m)

��
o Z2, if s2

�
m

2
- 1,m- 1

 

Z m

2
o
�
Z2 ⇥U(m)

�
, if s2

�
m

4
- 1, 3m

4
- 1

 

The statement is proved. ut

Theorem 3.7 Let m = 2q, where q > 1 is odd and gcd(t,m) = 1. Then
we have Aut(G) '

�
Zm

2
o
�
Z2 ⇥U(m)

��
o Z2.

Proof — Using (G1), (G2), and (G3), we get s, t 2
�
m

2
- 1,m- 1

 
.

Then, the result follows on the lines of the proof of Theorem 3.6. ut

Theorem 3.8 Let m = 2n, n > 3. Then

(i) if t is even, then Aut(G) '
�
Z4 o

�
Z2 ⇥ (Z2 ⇥Z

2n-2)
��

o Z2,

(ii) if t is odd, then

Aut(G) '
� �

Z
2n-1 o

�
Z2 ⇥ (Z2 ⇥Z

2n-2)
��

o Z2, if s 2
�
m

2
- 1,m- 1

 

Z
2n-1 o

�
Z2 ⇥ (Z2 ⇥Z

2n-2)
�
, if s 2

�
m

4
- 1, 3m

4
- 1

 

Proof — We will find the automorphism group Aut(G) in two
cases namely, when t is even and when t is odd.

Case (i): t is even.
Then

2(t+ 1)(s- 1) ⌘ 0 (mod 2n) =) s ⌘ 1 (mod 2n-1).

Therefore, s = 1, 2n-1 + 1. Moreover 4t(s+ 1) ⌘ 0 (mod 2n) implies
that t ⌘ 0 (mod 2n-3). Therefore,

t 2
�
2n-3, 2n-2, 3 · 2n-3, 2n-1, 5 · 2n-3, 3 · 2n-2, 7 · 2n-3, 2n

 
.

Note that, for t = 2n-1 or t = 2n, G is the semidirect product of H
and K. So, we consider the other values of t.

Let � 2 R be such that �(b) = a�, where 0 6 � 6 m- 1 and � is
even. Then, since s = 1 and � is even, by (A2), � 2 Hom(H,K). Now,

1 = �(b4) = a4�
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implies that � ⌘ 0 (mod 2n-2). Therefore

� 2
�
2n-2, 2n-1, 3 · 2n-2, 2n

 
.

Using �(a ·b)=�(b), a3�=�(a ·b)=�(b)=a� gives �⌘0 (mod 2n-1).
Thus, � 2 {0, 2n-1} and so C ' Z2.

Now, let (↵,�, �) 2 Y be such that ↵(b) = bi,�(a) = bj, �(a) = ar,
where i 2 {1, 3}, 0 6 j 6 3, 0 6 r 6 2n - 1 and r is odd. Using Lem-
ma 3.2 (ii),

�(kk0) = �(k)
�
�(k) ·�(k0)

�

holds for all k, k0 2 K. Now, using �(kk0) = �(k)�(k0)�(k0), we get

�(al) =

�
a(l-1)(jt+r)+r, if l is odd
al(jt+r), if l is even

Finally, using �(kh) = �(k)↵(h), we have

a2it+r = (ar)b
i

= �(a)↵(b) = �(ab) = �(a2t+1) = a2t(jt+r)+r.

Thus, 2t(jt+ r- i) ⌘ 0 (mod 2n) which implies that
8
>>><

>>>:

r ⌘ i (mod 4), if t 2 {2n-3, 3 · 2n-3, 5 · 2n-3, 7 · 2n-3} and n > 5

r ⌘ i+ 2j (mod 4), if t 2 {2n-3, 3 · 2n-3, 5 · 2n-3, 7 · 2n-3} and n = 4

r ⌘ i (mod 2), if t 2 {2n-2, 3 · 2n-2}

Now, if j 2 {0, 2}, then r ⌘ i (mod 4) and if j 2 {1, 3}, then r ⌘ i
or i+ 2 (mod 4). Thus, for all � 2 CrossHom(K,H), the choices for
the maps ↵ and � are ↵i(b) = bi and �r(a) = ar, where i 2 {1, 3}
and r 2 U(m). Note that, if

✓
↵ �
0 �

◆
2 F,

then ✓
↵ �
0 �

◆
=

✓
↵ 0
0 �

◆✓
1 ↵-1�
0 1

◆
2MB.

Clearly, M \ B = {1} and M normalizes B. So, B / F and F = BoM.
Therefore,

Y ' BoM ' Z4 o
�
Z2 ⇥U(m)

�
.
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Using Lemma 3.2 (v)–(vii),

✓
1 0
� 1

◆✓
↵ �
0 �

◆✓
1 0
� 1

◆-1

=

✓
↵ �

�↵+ (��+ �)(-�) ��+ �

◆
(3.6)

Now,
�
�↵+ (��+ �)(-�)

�
(b) = �↵(b)(��+ �)(-�)(b)

= �(bi)(��+ �) (a-�) = ai��
�
�(a-�)

�
�(a-�)

= ai��(1)a-�(jt+r) = a�(i-jt-r) = 1.

Thus, �↵+ (��+ �)(-�) = 0. Also, one can easily observe that

(↵,�,��+ �) 2 Y.

Therefore, by Equation (3.6),

✓
1 0
� 1

◆✓
↵ �
0 �

◆✓
1 0
� 1

◆-1

=

✓
↵ �
0 ��+ �

◆
2 F.

So, F /A. Clearly, F\C = {1}. Also, if
✓
↵ �
� �

◆
2 A, then

✓
↵ �
� �

◆
=

✓
↵ �
0 �

◆✓
1 0

�-1� 1

◆
2 FC.

Hence, A = FoC and so,

Aut(G) ' FoC '
�
Z4 o

�
Z2 ⇥ (Z2 ⇥Z

2n-2)
��

o Z2.

Case (ii): t is odd.
Then gcd(t,m) = 1. Hence, the result follows from Theorem 3.6. ut

Now, we discuss the structure of the automorphism group Aut(G)
in the case when gcd(t,m) > 1.

Theorem 3.9 Let m = 4q and gcd(t,m) = 2id, where q > 1 is odd,
i2 {0, 1, 2}, and d divides q. Then Aut(G) '

�
Z m

2d
o (Z2 ⇥U(m)

��
o Z2.

Proof — Let q = du, for some integer u. Then, using (G2), we
get s ⌘ -1 (mod u), which implies that s = lu- 1, where 1 6 l 6 4d.
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Since gcd(s, m
2
) = 1, s is odd and so, l is even. Using (G1) and (G3),

we get l
�
u l

2
- 1
�
⌘ 0 (mod d) and t+ 1 ⌘ u l

2
(mod q). Now, one can

easily observe that gcd(l,d) = 1, which implies u l

2
- 1 ⌘ 0 (mod d).

Thus, 2t(s+ 1) ⌘ 2ltu ⌘ 0 (mod m) and gcd
�
s+ 1, m

2

�
6= 1. Therefore,

using Lemma 3.3, B ' Z2.

Let (↵, �, �) 2 X be such that ↵(b) = bi, �(b) = a� and �(a) = ar,
where i 2 {1, 3}, 0 6 � 6 m- 1, � is even, and r 2 U(m). Then, using

�(hh0) = �(h)↵(h
0)�(h0),

we have

�(b2) = a�(s+1), �(b3) = a�(s+2) and �(b4) = 1.

Now, using

�(a)↵(b)�(b) = �(a · b)�(ab) and 2t(s+ 1) ⌘ 0 (mod m),

we have

a�(s+2)+(2t+1)r = �(b3)�(a2t+1) = �(a · b)�(ab) = �(a)↵(b)�(b)

= (ar)b
i

a� = a2t+1+(r-1)s+�+ i-1

2
2t(s+1) = a2t+1+(r-1)s+�.

Thus
�(s+ 1) ⌘ (r- 1)(s- 2t- 1) (mod m). (3.7)

Since 2t(s+ 1) ⌘ 0 (mod m), using (G3), we get

2(s- 2t- 1) ⌘ 0 (mod m).

Therefore, by Equation (3.7), �lu ⌘ 0 (mod m). Using Lemma 3.2 (iii),
we get � ⌘ 0 (mod 2d). Thus, using Theorem 3.5,

X ' Z m

2d
o
�
Z2 ⇥U(m)

�
.

Hence, Aut(G) ' EoB '
�
Z m

2d
o
�
Z2 ⇥U(m)

��
o Z2. ut

Theorem 3.10 Let m = 2q and gcd(t,m) = 2id, where q > 1 is odd,
i 2 {0, 1}, and d divides q. Then Aut(G) '

�
Z m

2d
o
�
Z2 ⇥U(m)

��
o Z2.

Proof — Follows on the lines of the proof of Theorem 3.9. ut
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Theorem 3.11 Let m = 2nq, t be even and gcd(m, t) = 2id, where
1 6 i 6 n, n > 3, q > 1 is odd and d divides q. Then

Aut(G) '

8
><

>:

�
Z4 o

�
Z2 ⇥U(m)

��
o Z2, if d = q

Z2 ⇥
�
Z 2q

d

o
�
Z2 ⇥U(m)

��
, if d 6= q and n- 2 6 i 6 n

Z 4q

d

o
�
Z2 ⇥U(m)

�
, if d 6= q and i = n- 3

Proof — We consider the following four cases to find the structure
of Aut(G).

Case (i): d = q and gcd(t+ 1,m) = u.
Since t+ 1 is odd, u is odd and u divides q. Thus, u divides t and

so, u = 1. Therefore, using (G2) and (G3),

s ⌘ 1
�
mod m

2

�
and t ⌘ 0

�
mod m

8

�
.

Using a similar argument used in the proof of Theorem 3.8 (i), we
get Aut(G) ' FoC '

�
Z4 o

�
Z2 ⇥U(m)

��
o Z2.

Case (ii): n- 2 6 i 6 n and q = du, for some odd integer u.
Using (G2), s ⌘ -1 (mod u) and so, s = lu- 1, where 0 6 l 6 2nd.

Since gcd
�
s, m

2

�
= 1, s is odd and so, l is even. Now, using (G1),

l

2

⇣ l
2
u- 1

⌘
⌘ 0 (mod 2n-3d)

and by (G3),

t ⌘ l

2
u- 1 (mod 2n-2q).

Since t is even, l

2
is odd and gcd

�
l

2
,d
�
= 1. Thus,

l

2
u ⌘ 1 (mod 2n-3d) and t ⌘ 2id (mod 2n-2q).

One can easily observe that 2t(s+ 1) ⌘ 0 (mod m). Therefore, using
a similar argument as in the proof of Theorem 3.6, we get

Aut(G) ' EoB '
�
Z 2q

d

o
�
Z2 ⇥U(m)

��
o Z2.

Case (iii): i = n- 3, d 6= q and q = du, for some odd integer u.
Using (G2), s⌘ -1 (mod 2u), i.e. s=2lu- 1, where 1 6 l 6 2n-1d.
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Now, using (G1) and (G3),

l(lu- 1) ⌘ 0 (mod 2n-3d) and (t+ 1)(lu- 1) ⌘ 0 (mod 2n-2q).

If l is even, then t ⌘ lu- 1 (mod 2n-2q) gives that t is odd, which is
a contradiction. Therefore, l is odd. Using

(t+ 1)(lu- 1) ⌘ 0 (mod 2n-2q),

one can easily observe that gcd(l,d) = 1. Then

lu- 1 = 2n-3dl0 and s = 2n-2dl0 + 1,

where 1 6 l0 6 8u. Clearly, gcd(l0,u) = 1. Thus, (t+1)l0 ⌘ 0 (mod 2u).
If l0 is odd, then (t+ 1) ⌘ 0 (mod 2u) which implies that t is odd.
So, l0 is even and so, t = uq0 - 1, 1 6 q0 < 2n-1d, q0 is odd as t is
even. Note that

s- 2t- 1 = 2n-2dl0 - 2t = 2n-2d
⇣
l0 - t

2n-3d

⌘

= 2n-2d
⇣

lu-1

2n-3d
- uq

0-1

2n-3d

⌘
= 2n-2du

⇣
l-q

0

2n-3d

⌘

Let (↵,�, �) 2 X be such that ↵(b) = bi, �(b) = a� and �(a) = ar,
where i 2 {1, 3}, 0 6 � 6 m- 1, � is even and r 2 U(m). We consider
two sub-cases based on the image of the map ↵.

Sub-Case (i): ↵(b) = b.

Using �(a)↵(b)�(b) = �(a · b)�(ab), we have

a�(s+2)+(2t+1)r = �(a · b)�(ab) = �(a)b�(b)

= (ar)ba� = a2t+1+(r-1)s+�
,

which implies that

�(s+ 1) ⌘ (r- 1)(s- 2t- 1) (mod m).

Therefore

�(2lu) ⌘ 2n-2du(r- 1)

✓
l- q0

2n-3d

◆
(mod 2nq),
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which implies that

�l ⌘ 2n-3d(r- 1)

✓
l- q0

2n-3d

◆
(mod 2n-1d).

Now, if � ⌘ 0 (mod 2n-2d), then r ⌘ 1 or 3 (mod 4) and vice-versa.
Thus, in this sub-case, the choices for the maps � and � are ��(b)=a�

and �r(a) = ar, where � is even and � ⌘ 0 (mod 2n-2d), and r2U(m).

Sub-Case (ii): Let ↵(b) = b3.
Using �(a)↵(b)�(b) = �(a · b)�(ab), we get

a�(s+2)+(2t+1)r = �(a · b)�(ab) = �(a)↵(b)�(b)

= (ar)b
3

a� = a4t+2ts+1+(r-1)s+�

which implies that

(�- 2t)(s+ 1) ⌘ (r- 1)(s- 2t- 1) (mod m).

Therefore

2lu(�- 2t) ⌘ 2n-2du(r- 1)

✓
l- q0

2n-3d

◆
(mod 2nq),

which implies that

l(�- 2t) ⌘ 2n-3d(r- 1)

✓
l- q0

2n-3d

◆
(mod 2n-1d).

Now, if � ⌘ 0 (mod 2n-2d), then r ⌘ 1 or 3 (mod 4) and vice-versa.
Thus, in this sub-case, the choices for the maps � and � are ��(b) = a�

and �r(a) = ar, where � is even and � ⌘ 0 (mod 2n-2d), and r2U(m).

Combining both sub-cases (i) and (ii), we get for all ↵ 2 Aut(H),
the choices for the maps � and � are ��(b) = a� and �r(a) = ar,
where � is even and � ⌘ 0 (mod 2n-2d), and r 2 U(m). Therefore,
using Theorem 3.5,

X ' Z 4q

d

o
�
Z2 ⇥U(m)

�
.

At last, since l is odd, 2t(s + 1) ⌘ 4tlu 6⌘ 0 (mod m). Therefore,
using Lemma 3.3, Im(�) = {1}. Thus, B is a trivial group. Hence,
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using Theorem 3.5, Aut(G) ' EoB ' Z 4q

d

o
�
Z2 ⇥U(m)

�
.

Case (iv): Let 1 6 i 6 n- 4. and q = du, for some odd integer u.
Using (G2), s ⌘ -1 (mod 2n-i-2u), that is, s = 2n-i-2lu - 1,

where 1 6 l 6 2i+2d. Now, using (G1) and (G3),

l(2n-i-3lu- 1) ⌘ 0 (mod 2id)

and
(t+ 1)(lu2n-i-3 - 1) ⌘ 0 (mod 2n-2q).

Since n- i- 3 > 0, lu2n-i-3 - 1 is odd. If l is even, then

t ⌘ lu2n-i-3 - 1 (mod 2n-2q)

gives that t is odd, which is a contradiction. Now, if l is odd, then
using (t+ 1)(lu- 1) ⌘ 0 (mod 2n-2q), one can easily observe that
gcd(l,d) = 1. Thus,

2n-i-3lu- 1 ⌘ 0 (mod 2id),

which is absurd. Hence, there is no such l exist and so, no such t
and s exist and hence no group G exists as the Zappa–Szép product
of H and K. ut

Theorem 3.12 Let m = 2nq, t be odd and gcd(t,m) = d, where n > 4
and q is odd. Then

Aut(G) '
� �

Z m

2d
o
�
Z2 ⇥U(m)

��
o Z2, if 2t(s+ 1) ⌘ 0 (mod m)

Z m

2d
o
�
Z2 ⇥U(m)

�
, if 2t(s+ 1) 6⌘ 0 (mod m)

Proof — Let q = du, for some odd integer u. Then using (G2), we
have

s ⌘ -1 (mod 2n-2u)

which implies that s = 2n-2lu - 1, where 1 6 l 6 4d. Now, us-
ing (G1),

l(2n-3ul- 1) ⌘ 0 (mod d).

Using (G3), we get

(t+ 1)(lu2n-3 - 1) ⌘ 0 (mod 2n-2q). (3.8)
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Case (i): l is even.
By Equation (3.8),

t ⌘ lu2n-3 - 1 (mod 2n-2q).

Note that
2t(s+ 1) ⌘ 2t(2n-2lu) ⌘ 0 (mod m)

and
�(s+ 1) = �(lu2n-2).

Thus �(s+ 1) ⌘ 0 (mod m) if and only if �l ⌘ 0 (mod 4d), which is
true for all � ⌘ 0 (mod 2d). Using a similar argument as in the proof
of Theorem 3.6, we get

X ' Z m

2d
o
�
Z2 ⇥U(m)

�
and B ' Z2.

Hence, Aut(G) ' EoB '
�
Z m

2d
o
�
Z2 ⇥U(m)

��
o Z2.

Case (ii): l is odd.
Using Equation (3.8), one can easily observe that gcd(l,d) = 1

which means that 2n-3lu- 1 = dl0, where l0 is odd, gcd(l0,u) = 1
and 1 6 l0 6 2nu. Thus, using Equation (3.8),

(t+ 1)dl0 ⌘ 0 (mod 2n-2q).

Since gcd(l0,u) = 1, t = 2n-2uq0 - 1, where 1 6 q0 6 4d. Now,

s- 2t- 1 = 2dl0 - 2t = 2d
�
l0 - t

d

�

= 2d
⇣
2
n-3

ul-2
n-2

uq
0

d

⌘
= 2n-2du l-2q

0

d

Let (↵,�, �) 2 X be such that ↵(b) = bi, �(b) = a� and �(a) = ar,
where i 2 {1, 3}, 0 6 � 6 m- 1, � is even and r 2 U(m). We consider
two sub-cases based on the image of the map ↵.

Sub-case (i): ↵(b) = b.
Using �(a)↵(b)�(b) = �(a · b)�(ab), we get

a�(s+2)+(2t+1)r = �(a · b)�(ab) = �(a)b�(b)

= (ar)ba� = a2t+1+(r-1)s+�
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which implies that

�(s+ 1) ⌘ (r- 1)(s- 2t- 1) (mod m).

Therefore

�(lu2n-2) ⌘ 2n-2q(r- 1)

✓
l- 2q0

d

◆
(mod 2nq),

which implies that

�l ⌘ d(r- 1)

✓
l- 2q0

d

◆
(mod 4d).

Now, if � ⌘ 0 (mod 2d), then r ⌘ 3 (mod 4). Again, if � ⌘ 0 (mod 4d),
then r ⌘ 1 (mod 4). Thus, in this sub-case, the choices for the maps �
and � are

��(b) = a� and �r(a) = ar,

where � is even and � ⌘ 0 (mod 2d), and r 2 U(m).

Sub-case (ii): ↵(b) = b3.
Using �(a)↵(b)�(b) = �(a · b)�(ab), we get

a�(s+2)+(2t+1)r = �(a · b)�(ab) = �(a)↵(b)�(b)

= (ar)b
3

a� = a4t+2ts+1+(r-1)s+�

which implies that

(�- 2t)(s+ 1) ⌘ (r- 1)(s- 2t- 1) (mod m).

Therefore

lu2n-2(�- 2t) ⌘ 2n-2q(r- 1)

✓
l- 2q0

d

◆
(mod 2nq),

which implies that

l(�- 2t) ⌘ d(r- 1)

✓
l- 2q0

d

◆
(mod 4d).

Now, if � ⌘ 0 (mod 2d), then r ⌘ 1 (mod 4). Again, if � ⌘ 0 (mod 4d),
then r ⌘ 3 (mod 4). Thus, in this sub-case, the choices for the maps �
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and � are
��(b) = a� and �r(a) = ar,

where � is even and � ⌘ 0 (mod 2d), and r 2 U(m).

Combining both the sub-cases (i) and (ii), we get for all ↵2Aut(H),
the choices for the maps � and � are

��(b) = a� and �r(a) = ar,

where � is even and � ⌘ 0 (mod 2d), and r 2 U(m). Therefore, us-
ing Theorem 3.5,

E ' Z m

2d
o
�
Z2 ⇥U(m)

�
.

Also, since 2t(s + 1) 6⌘ 0 (mod m), using Lemma 3.3, Im(�) = {1}.
Thus, B is a trivial group. Hence, using Theorem 3.5,

Aut(G) ' EoB ' Z m

2d
o
�
Z2 ⇥U(m)

�
.

The statement is proved. ut

Theorem 3.13 Let m = 8q, t be odd, and gcd(t,m) = d, where q > 1 is
odd. Then

Aut(G) '
� �

Z m

2d
o
�
Z2 ⇥U(m)

��
o Z2, if 2t(s+ 1) ⌘ 0 (mod m)

Z m

2d
o
�
Z2 ⇥U(m)

�
, if 2t(s+ 1) 6⌘ 0 (mod m)

Proof — Let q = du, for some odd integer u. Then using (G2), we
have s⌘-1 (mod 2u), which implies that s=2lu- 1, where 16 l 64d.
Now, using (G1), l(lu- 1) ⌘ 0 (mod d). Using (G3), we get

(t+ 1)(lu- 1) ⌘ 0 (mod 2q). (3.9)

Case (i): l is even.
Then by Equation (3.9), t ⌘ lu- 1 (mod 2q). Note that

2t(s+ 1) ⌘ 2t(2lu) ⌘ 0 (mod m) and �(s+ 1) = �(2lu).

Thus �(s + 1) ⌘ 0 (mod m) if and only if �l ⌘ 0 (mod 4d) which
is true for all � ⌘ 0 (mod 2d). Thus, using a similar argument as in
the proof of Theorem 3.6, we get E ' Z m

2d
o
�
Z2⇥U(m)

�
and B ' Z2.

Hence, by Theorem 3.5, Aut(G)'EoB'
�
Z m

2d
o
�
Z2⇥U(m)

��
oZ2.
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Case (ii): l is odd.
Then using Equation (3.9), one can easily observe that gcd(l,d) = 1

which means that lu- 1 = dl0, where 1 6 l0 6 8u and gcd(l0,u) = 1.
Since lu- 1 is even, l0 is even. Thus using Equation (3.9), we have
that

(t+ 1)dl0 ⌘ 0 (mod 2q).

Since gcd(l0,u) = 1, t = uq0 - 1, where 1 6 q0 6 8d and q0 is even,
as t is odd. Now,

s- 2t- 1 = 2dl0 - 2t = 2d
�
l0 - t

d

�

= 2d
⇣
ul-uq

0

d

⌘
= 2du l-q

0

d

Let (↵,�, �) 2 X be such that ↵(b) = bi, �(b) = a� and �(a) = ar,
where i 2 {1, 3}, 0 6 � 6 m- 1, � is even and r 2 U(m). We consider
two sub-cases based on the image of the map ↵.

Sub-case (i): ↵(b) = b.
Then

a�(s+2)+(2t+1)r = �(a · b)�(ab) = �(a)b�(b)

= (ar)ba� = a2t+1+(r-1)s+�

which implies that

�(s+ 1) ⌘ (r- 1)(s- 2t- 1) (mod m).

Therefore
�(2lu) ⌘ 2du(r- 1)

✓
l- q0

d

◆
(mod 8q),

which implies that

�(l) ⌘ d(r- 1)

✓
l- q0

d

◆
(mod 4d).

Now, if � ⌘ 0 (mod 2d), then r ⌘ 3 (mod 4). Again, if � ⌘ 0 (mod 4d),
then r ⌘ 1 (mod 4). Thus, in this sub-case, the choices for the maps �
and � are

��(b) = a� and �r(a) = ar,

where � is even and � ⌘ 0 (mod 2d), and r 2 U(m).



124 R. Lal — V. Kakkar

Sub-case (ii): ↵(b) = b3.
Then

a�(s+2)+(2t+1)r = �(a · b)�(ab) = �(a)b
3

�(b)

= (ar)b
3

a� = a4t+2ts+1+(r-1)s+�,

which implies that

(�- 2t)(s+ 1) ⌘ (r- 1)(s- 2t- 1) (mod m).

Therefore

2lu(�- 2t) ⌘ 2du(r- 1)

✓
l- q0

d

◆
(mod 8q),

which implies that

l(�- 2t) ⌘ d(r- 1)

✓
l- q0

d

◆
(mod 4d).

Now, if � ⌘ 0 (mod 2d), then r ⌘ 1 (mod 4). Again, if � ⌘ 0 (mod 4d),
then r ⌘ 3 (mod 4). Thus, in this sub-case, the choices for the maps �
and � are

��(b) = a� and �r(a) = ar,

where � is even and � ⌘ 0 (mod 2d), and r 2 U(m).

Combining both the sub-cases (i) and (ii), we get for all ↵2Aut(H),
the choices for the maps � and � are ��(b) = a� and �r(a) = ar,
where � is even and � ⌘ 0 (mod 2d), and r 2 U(m). Therefore, us-
ing Theorem 3.5,

X ' Z m

2d
o
�
Z2 ⇥U(m)

�
.

Also, since 2t(s + 1) 6⌘ 0 (mod m), using Lemma 3.3, Im(�) = {1}.
Thus, B is a trivial group. Hence, by Theorem 3.5,

Aut(G) ' EoB ' Z m

2d
o
�
Z2 ⇥U(m)

�
.

The statement is proved. ut
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4 Automorphisms of Zappa–Szép products

of groups Zp2 and Zm, p odd prime

In [12], Yacoub classified the groups which are Zappa–Szép prod-
ucts of cyclic groups of order m and order p2, where p is an odd
prime. He found that these are of the following type (see [12, Conclu-
sion, p. 38])

M1 =ha,b | am = 1 = bp
2

,ab = bau,up
2

⌘ 1 (mod m)i,

M2 =ha,b | am = 1 = bp
2

,ab = bta, tm ⌘ 1 (mod p2)i,

M3 =ha,b | am = 1 = bp
2

,ab = btapr+1,apb = bap(pr+1)i,

and in M3, p divides m. These are not non-isomorphic classes. The
groups M1 and M2 may be isomorphic to the group M3 depend-
ing on the values of m, r and t. Clearly, M1 and M2 are semidi-
rect products. Throughout this section G will denote the group M3

and we will be only concerned about groups M3 which are Zap-
pa–Szép products but not a semidirect product. Note that G = H ./ K,
where H = hbi and K = hai. For the group G, the mutual actions of H
and K are defined by

a · b = bt, ab = apr+1, ap · b = b, (ap)b = ap(pr+1),

where t and r are integers satisfying the conditions:

(G1) gcd(t- 1,p2) = p, that is, t = 1+ �p, where gcd(�,p) = 1,

(G2) gcd(r,p) = 1,

(G3) p(pr+ 1)p ⌘ p (mod m).

Lemma 4.1 a(pr+1)ip� = ai((pr+1)p�-1)+1, for all i.

Proof — One can easily prove the result using (G3). ut

Lemma 4.2 (i) a · bj = bjt, for all j,

(ii) al · b = b1+lp�, for all l,

(iii) a(bj) = a(pr+1)j , for all j,

(iv) (al)b = a
l(l-1)

2
((pr+1)�p-1)+l(pr+1), for all l,
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(v) al · bj = bjt
l , for all j and l,

(vi) (al)b
j

= a
jl(l-1)

2
((pr+1)�p-1)+l(pr+1)j , for all j and l.

Proof — (i) Using (C3) and (C5),

a · b2 = (a · b)(ab · b) = bt(apr+1 · b) = bt
�
a · (apr · b)

�

= bt(a · b) = b2t.

Similarly,

a · b3 = (a · b)(ab · b2) = bt(apr+1 · b2)

= bt
�
a · (apr · b2)

�
= bt(a · b2) = b3t.

Inductively, we get a · bj = bjt, for all j.

(ii) Using (C3) and part (i),

a2 · b = a · (a · b) = a · bt

= bt
2

= b1+2p�.

Similarly,
a3 · b = a · (a2 · b) = a · bt2

= bt
3

= b1+3p�.

Inductively, we get al · b = b1+lp�, for all l.

(iii) First, note that, using (C4), we have

(alp)b = alp(pr+1).

Now, using (C4) and (C6),

a(b2) = (ab)b = (apr+1)b = a(apr·b)(apr)b

= abapr(pr+1) = a(pr+1)2 .

Similarly,

a(b3) = (ab)b
2

= (apr+1)b
2

= a(apr·b2)(apr)b
2

= ab
2�
(apr)b

�b

= a(pr+1)2
�
apr(pr+1)

�b
= a(pr+1)2apr(pr+1)2 = a(pr+1)3 .
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Inductively, we get a(bj) = a(pr+1)j , for all j.
(iv) Using (C4), (G3) and part (iii), we get

(a2)b = a(a·b)ab = a(bt)apr+1 = a(pr+1)(1+�p)apr+1

= a(pr+1)�p+pr(pr+1)�p+pr+1 = a((pr+1)�p-1)+2(pr+1).

Using a similar argument, we get

(a3)b = (a2)(a·b)ab = (a2)b
t

apr+1 = a(a·bt)a(bt)apr+1

= a(b1+2p�)a(b1+�p)apr+1 = a(pr+1)1+2p�+(pr+1)1+p�+pr+1

= a(pr+1)2p�+pr(pr+1)2p�+(pr+1)p�+pr(pr+1)p�+pr+1

= a2((pr+1)p�-1)+1+pr+(pr+1)p�+pr+pr+1 (using Lemma 4.1)

= a3((pr+1)p�-1)+3(pr+1).

Inductively, we get (iv).
(v) Follows inductively, using parts (i) and (ii).
(vi) Follows inductively, using parts (iii) and (iv). ut
Lemma 4.3 If for all l 6= 0, (pr+ 1)pl 6⌘ 1 (mod m), then

(i) Im(�) ✓ hapi,

(ii) ↵ 2 Aut(H).
Proof — (i) Let ↵(b)=bi and �(b)=aµ. Then using (A1) and Lem-
ma 4.2 (v),

↵(b2) = ↵(b)
�
�(b) ·↵(b)

�
= bi(aµ · bi) = bi(1+t

µ).

Inductively, we get

↵(bu) = bi(1+t
µ+t

2µ+...+t
(u-1)µ)

= bi(1+(1+pµ�)+(1+2pµ�)+...+(1+(u-1)pµ�)) = bi
�
u+u(u-1)

2
pµ�

�

for all 0 6 u 6 p2 - 1. Now, using (A2) and Lemma 4.2 (vi),

�(b2) = �(b)↵(b)�(b) = (aµ)b
i

aµ

= a
iµ(µ-1)

2
((pr+1)p�-1)+µ(pr+1)i+µ.



128 R. Lal — V. Kakkar

Inductively, we get

�(bu) = a
�
i
u(u-1)µ(µ-1)

2
+iµ

2 u(u-1)(u-2)
6

�
((pr+1)p�-1)+µ

P
u-1

⌫=0
(pr+1)i⌫

for all 0 6 u 6 p2 - 1. Now, using (G3),

1 = �
�
bp

2�
= aµ

Pp
2-1

⌫=0
(pr+1)i⌫ = a

µ

 
(pr+1)ip

2
-1

(pr+1)i-1

!

,

which implies that

µ

 
(pr+ 1)ip

2

- 1

(pr+ 1)i - 1

!

⌘ 0 (mod m). (4.1)

If for all l 6= 0, (pr+ 1)pl ⌘ 1 (mod m), then by Equation (4.1), µ can
be anything. If for all l 6= 0, (pr+ 1)pl 6⌘ 1 (mod m), then by Equa-
tion (4.1) and (G3), µ ⌘ 0 (mod p). Also, note that, in both the cases,
namely

(pr+ 1)pl ⌘ 1 (mod m) and (pr+ 1)pl 6⌘ 1 (mod m),

we have that
�(bu) = aµ

P
u-1

⌫=0
(pr+1)i⌫ .

Hence, if (pr + 1)pl 6⌘ 1 (mod m), then �(bu) = aµ
P

u-1

⌫=0
(pr+1)i⌫

belongs to hapi.

(ii) Follows immediately using part (i). ut

Lemma 4.4 Let
✓
↵ �
� �

◆
2 A. Then, if � 2 Q, then:

(i) � 2 Hom(K,H) and Im(�) 6 hbpi;

(ii) l(pr+ 1)j ⌘ l (mod m), for all l;

(iii) �(h) ·�(k) = �(k) and �(h)�(k) = �(h), for all h 2 H and k 2 K;

(iv) �� = 0, where 0 is the trivial homomorphism in Hom(K,K);

(v) ��+ � 2 Aut(K) and ��+ � 2 S;

(vi) �� 2 Hom(H,H);
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(vii) ↵+�� 2 Aut(H) and ↵+�� 2 P.

Proof — Let �(a) = bj. Then using (A3),

�(a2) = �(a)
�
a ·�(a)

�
= bj(a · bj) = bj+jt.

Inductively, we get

�(al) = bj(1+t+t
2+...+t

l-1) = bj(1+(1+�p)+(1+2�p)+...+(1+(l-1)�p))

= bj
�
l+�pl(l-1)

2

�
.

(i) Since � 2 Q, �(kh) = �(k). Therefore

bj = �(a) = �(ab) = �(apr+1) = bj(pr+1),

which implies that
jpr+ j ⌘ j (mod p2).

Since gcd(r,p) = 1, j ⌘ 0 (mod p). Thus, �(al) = bjl 2 hbpi, for all l.
Hence, One can easily observe that � is a group homomorphism
and Im(�) 6 hbpi.
(ii) Since � 2 Q, k�(k0) = k. Therefore, using Lemma 4.2 (vi),

al = (al)�(a) = (al)b
j

= a
jl(l-1)

2
((pr+1)�p-1)+l(pr+1)j .

Now, using part (i) and (G3), we get l(pr+ 1)j ⌘ l (mod m), for all l.

(iii) First, note that al · bp = bp and using part (ii), (al)b
p

= al, for
all l. Hence, the result follows using part (i).

(iv) Using Lemma 4.3 (i), we have

�(bu) = aµ
P

u-1

⌫=0
(pr+1)i⌫ ,

for all u. Then, using part (ii), for all l, we get

��(al) = �(blj) = aµ
Plj-1

⌫=0
(pr+1)i⌫ = a

µ

✓
(pr+1)ijl-1

(pr+1)i-1

◆

= 1.

Thus, �� = 0.

(v) Follows directly using part (iv).
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(vi) Using �(kh) = �(k) and part (i),

��(hh0) = �(�(h)↵(h
0)�(h0))

= �(�(h)↵(h
0))�(�(h0)) = �(�(h))�(�(h0)).

Hence, �� 2 Hom(K,K).

(vii) Using Lemma 4.3 (i), we have �(bu) = aµ
P

u-1

⌫=0
(pr+1)i⌫ , for

all u. Also, using part (i), we have ��(bu) = bujµ, for all u. Therefore,

(↵+��)(bu) = bu(i+jµ+pµ�
u-1

2
).

Now, one can easily observe that ↵+ �� is a bijection. Hence, using
part (vi), ↵+�� 2 Aut(H).

Now, using part (i), (C5) and (C6),

k · (↵+��)(h) = k ·↵(h)��(h) = (k ·↵(h))
�
k↵(h) ·�

�
�(h)

��

= ↵(k · h)�(�(h)) = ↵(k · h)��(k · h) = (↵+��)(k · h)

and

k(↵+��)(h) = k↵(h)��(h) = (k↵(h))��(h) = k↵(h) = kh.

Hence, ↵+�� 2 P. ut
Note that, using Lemma 4.4 (iii), multiplication in the group A

reduces to the usual multiplication of matrices.

Theorem 4.5 Let A,B,C,D be defined as above. Then Aut(G) = ABCD.

Proof — Using Lemma 4.4 (vii), ↵+��2P. In particular, 1-��2P.
Therefore, by Theorem 2.4, we have Aut(G) = ABCD. ut
Theorem 4.6 Let G be as above. Then

Aut(G) '

8
<

:

�
Zm o (Zp ⇥ eD)

�
o Zp, if (pr+ 1)p ⌘ 1 (mod m)

�
Zm

p
o (Zp ⇥ eD)

�
o Zp, if (pr+ 1)p 6⌘ 1 (mod m)

,

where eD is a subgroup of U(m) of order �(m)
p-1

.

Proof — Let � 2 Q. Using Lemma 4.4 (i), we have that �(al) = bjl,
where j ⌘ 0 (mod p). Thus, B ' Zp. Now, let (↵,�, �) 2 X be such
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that
↵(b) = bi, �(b) = aµ and �(a) = as,

where i 2 Z
p2 , gcd(i,p2) = 1, 0 6 µ 6 m- 1, and s 2 U(m). Then

using ↵(hh0) = ↵(h)
�
�(h) · ↵(h0)

�
, �(hh0) = �(h)↵(h

0)�(h0) and Lem-
ma 4.3 (i), we have

↵(bu) = bi
�
u+u(u-1)

2
pµ�

�
and �(bu) = aµ

P
u-1

⌫=0
(pr+1)i⌫ . (4.2)

Now, using (↵,�, �) 2 X, we obtain

�(k) ·↵(h) = ↵(k · h)

and
bit = ↵(bt) = ↵(a · b) = �(a) ·↵(b) = as · bi = bit

s

.

Thus, its ⌘ it (mod p2) which implies that (1+p�)s-1 ⌘ 1 (mod p2).
Therefore,

s ⌘ 1 (mod p).

Using (↵,�, �) 2 X, �(k)↵(h)�(h) = �(k · h)�(kh), (G3) and the fact
that s ⌘ 1 (mod p), we get

aµ
P

t-1

⌫=0
(pr+1)i⌫+s(pr+1) = �(bt)�(apr+1) = �(a · b)�(ab)

= �(a)↵(b)�(b) = (as)b
i

aµ = a
is(s-1)

2
((pr+1)�p-1)+s(pr+1)iaµ

= as(pr+1)i+µ.

Thus µ
P

t-1

⌫=0
(pr+ 1)i⌫ + s(pr+ 1) ⌘ s(pr+ 1)i + µ (mod m). There-

fore,

µ+ s(pr+ 1)i ⌘ µ
⇣
(pr+1)it-1

(pr+1)i-1

⌘
+ s(pr+ 1) (mod m)

⌘ µ
⇣
(pr+1)i(1+p�)-1

(pr+1)i-1

⌘
+ s(pr+ 1) (mod m)

⌘ µ
⇣
(pr+1)i(pr+1)ip�-1

(pr+1)i-1

⌘
+ s(pr+ 1) (mod m).

We consider two cases, namely

(pr+ 1)p ⌘ 1 (mod m) and (pr+ 1)p 6⌘ 1 (mod m).



132 R. Lal — V. Kakkar

Case (i): (pr+ 1)p ⌘ 1 (mod m).

Then
µ+ s(pr+ 1)i ⌘ µ+ s(pr+ 1) (mod m),

which implies that i ⌘ 1 (mod p). Thus in this case, the choices for
the maps ↵, � and � are

↵i(b) = bi, �µ(b) = aµ, and �s(a) = as,

where i 2 U(p2), i ⌘ 1 (mod p), 0 6 µ 6 m - 1, s 2 U(m), and
s ⌘ 1 (mod p).

Case (ii): (pr+ 1)p 6⌘ 1 (mod m).

Then using Lemma 4.3, µ ⌘ 0 (mod p). Therefore

µ+ s(pr+ 1)i ⌘ µ+ s(pr+ 1) (mod m),

which implies that i ⌘ 1 (mod p). Thus in this case, the choices for
the maps ↵, � and � are

↵i(b) = bi, �µ(b) = aµ, and �s(a) = as,

where i 2 U(p2), i ⌘ 1 (mod p), 0 6 µ 6 m - 1, µ ⌘ 0 (mod p),
s 2 U(m) and s ⌘ 1 (mod p).

From both the cases (i) and (ii), we observe that for all µ,

i ⌘ 1 (mod p) and s ⌘ 1 (mod p).

Using these conditions, first, we find the structure of Aut(G).

Since A⇥D normalizes C, we have that M normalizes C. So, clear-

ly, C / E and M\C = {1}. Now, if
✓
↵ 0
� �

◆
2 E, then

✓
↵ 0
� �

◆
=

✓
↵ 0
0 �

◆✓
1 0

�-1� 1

◆
2MC

Thus E = CoM. Now, using Lemma 4.4 (iii) and (iv), we get

✓
1 �
0 1

◆✓
↵ 0
� �

◆✓
1 �
0 1

◆-1

=

✓
↵+�� (↵+��)(-�) +��
� �

◆
. (4.3)
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Using Lemma 4.4 (i) and (ii), we have
�
(↵+��)(-�) +��

�
(a) = (↵+��)(-�)(a)(��)(a)

= (↵+��)(b-j)�(as) = ↵(b-j)�
�
�(b-j)

�
bsj

= b-ij�
⇣
aµ

P-j-1

⌫=0
(pr+1)i⌫

⌘
bsj

= bj(s-i)�

 

a
µ

⇣
(pr+1)-ij-1

(pr+1)i-1

⌘!

= �(1) = 1.

Thus, (↵+ ��)(-�) + �� = 0. Also, using Lemma 4.4 (vii), one can
easily observe that (↵+��,�, �) 2 X. Therefore, by Equation (4.3),

✓
1 �
0 1

◆✓
↵ 0
� �

◆✓
1 �
0 1

◆-1

=

✓
↵+�� 0
� �

◆
2 E.

Thus E /A. Clearly, E\ B = {1}. Now, if
✓
↵ �
� �

◆
2 A, using �↵� = 0,

we get ✓
↵ �
� �

◆
=

✓
↵ 0
� �

◆✓
1 ↵-1�
0 1

◆
2 EB

Hence, A = EoB and so, Aut(G) ' EoB '
�
Co (A⇥D)

�
oB.

Thus,

X ' Zm o (Zp ⇥ eD) and Aut(G) '
�
Zm o (Zp ⇥ eD)

�
o Zp

in the Case (i), and

X ' Zm

p
o (Zp ⇥ eD) and Aut(G) '

�
Zm

p
o (Zp ⇥ eD)

�
o Zp

in the Case (ii), where eD is a subgroup of U(m) of order �(m)
p-1

. ut
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