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Abstract

In the current paper we study the groups, whose subnormal abelian subgroups are
normal. We obtained a quite detailed description of such hyperabelian groups with
a periodic Baer radical. The description of hyperabelian Lie algebras, whose abelian
subideals are ideals, is also obtained.
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1 Introduction

Not very many relationships between subgroups in groups are tran-
sitive. Of the most essential, here you can specify the relations “to
be a subgroup”, “to be a subnormal subgroup”, “to be an ascendant
subgroup”. At the same time, such important relationships as “to be
a normal subgroup”, to be a subnormal subgroup with fixed defect”,
“to be a permutable subgroup”, “to be a pronormal subgroup”, “to be
an abnormal subgroup” no longer possess the transitivity property.
Moreover, the transitivity property turned out to be a rather strict
restriction, which in many cases made it possible to obtain an ob-
servable description of the corresponding groups (see [2],[8],[7],[9],
[14],[21],[22],[27],[28],[29],[34]).
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If G is a group, in which the relation “to be a normal subgroup”
is transitive, then every subnormal subgroup of G is normal. This
simple circumstance leads us to problems of the following type: to
study groups in which not all, but only subnormal subgroups with
some natural fixed property are normal. For example, the paper [15]
has considered the groups, whose infinite subnormal subgroups are
normal; the paper [11] has considered the groups, whose subnormal
subgroups of infinite special rank are normal.

I.N. Abramovskii in [1] initiated the study of groups in which the
transitivity condition is imposed on only abelian normal subgroups.
Actually, he studied the groups with the transitivity of normality
for Dedekind normal subgroups, but since he considered such locally
finite groups with abelian Sylow p-subgroups, those Dedekind sub-
groups are abelian. It turns out that the class of such groups in which
this transitivity inherited by subgroups coincides with the class of lo-
cally finite groups with the transitivity for all normal subgroups.

It is clear that the study of groups in which all abelian subnor-
mal subgroups are normal makes sense in those classes of groups
in which there exist nontrivial subnormal abelian subgroups. One
of these classes is the class of hyperabelian groups. Recall that a
group G is called hyperabelian if G has an ascending series of normal
subgroups, whose factors are abelian.

It is clear that in groups in which the relation “to be a normal sub-
group” is transitive (such groups are called T -groups) every subnor-
mal abelian subgroup is normal. The soluble T -groups were studied
in detail in [2],[14], [16],[27],[28],[29]. In particular, it turned out that
in finite solvable groups the property “to be a T -group” is inherited
by subgroups. This, however, is no longer the case for infinite groups.
A group G is called T -group, if every subgroup of G is a T -group. The
description of soluble T -groups is in the paper [27]. The following
type of groups is connected with T -groups.

A subgroup H of a group G is called transitively normal in G, if H is
normal in every subgroup S such that H is subnormal in S (see [23]).
It is not hard to see that a group G is a T -group if and only if every
subgroup of G is transitively normal in G. It is natural to ask if in the
previous equivalence one can replace “every” with “every abelian”.
From the results of the paper [18] it is possible to obtain that a solu-
ble group G is a T -group if and only if every abelian subgroup of G
is transitively normal in G. In contrast, groups whose subnormal
abelian subgroups are normal differs significantly from T -groups.
These differences can already be seen in the following example.
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Let {pn |n 2 N} be the set of all odd primes and let Cn = hcni be
the cyclic group of order pnn,n 2 N. For any n 2 N, Cn has an au-
tomorphism xn of pn-1

n , so we can consider the natural semidirect
product Cn o hxni. In the Cartesian product Crn2N

�
Cn o hxni

�
we

choose G = T o hxi, where T = Drn2N Cn and x = (xn)n2N. It is not
hard to prove that every abelian subnormal subgroup of G is normal,
but G is not a T -group.

We will need the following concepts. Recall that group G is called
a Dedekind group if every subgroup of G is normal. The study of such
groups was started by R. Dedekind in the paper [12], and therefore
these groups were called Dedekind. Later in the paper [4], R. Baer
obtained a complete description of such groups, which is as follows:

If G is non-abelian Dedekind, then G = Q⇥ E⇥ B where Q is a quater-
nion group, E is an elementary abelian 2-subgroup and B is a periodic
abelian 2 0-subgroup.

Let G be a group. Denote by B(G) the subgroup generated by sub-
normal cyclic subgroups. The subgroup B(G) is called the Baer radical
of a group G. The subgroup B(G) is locally nilpotent and every its
finitely generated subgroup is subnormal in G [6]. The group G is
called a Baer group if G = B(G).

Let G be a group and B,C be the normal subgroups of G such
that B 6 C. The factor C/B is called G-central, if CG(C/B) = G. The
factor C/B is called G-eccentric, if CG(C/B) 6= G.

Let G be a group and A be a normal subgroup of G. We construct
the upper G-central series of A as

h0i = A0 6 A1 6 . . . A↵ 6 A↵+1 6 . . . A�,

where

A1 = ⇣G(A) =
�
a 2 A | [a, g] = 1 for all elements g 2 G

 
,

A↵+1/A↵ = ⇣G(A/A↵), for all ordinals ↵ < �,A� = [�<� A� for all
limit ordinals � < �, and ⇣G(A/A�) = h0i. We note that every sub-
group of this series is G-invariant. The last term A� of this series is
called the upper G-hypercenter of A and will be denoted by ⇣G1(A).
If A = A�, then A is called G-hypercentral; if � is finite, then A
called G-nilpotent.

A normal subgroup A of G is said to be G-hypereccentric, if it has
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an ascending series

h0i 6 C0 6 C1 6 . . . C↵ 6 C↵+1 6 . . . C� = C

of G-invariant subgroups of A such that each factor C↵+1/C↵ is
a G-eccentric and G-chief, for every ↵ < �.

We say that the normal abelian subgroup A of a group G has
the Z(G)-decomposition,s if

A = ⇣1
G
(A)� ⌘1

G
(A)

where ⌘1
G
(A) is the maximal G-hypereccentric G-invariant subgroup

of A. This concept was introduced by D.I. Zaitsev [35]. It is not hard
to see that in this case, ⌘1

G
(A) includes every G-hypereccentric G-in-

variant subgroup of A, in particular, it is unique.
The main results of this paper are the following one.

Theorem A Let G be a hyperabelian group, whose subnormal abelian
subgroups are normal, B be the Baer radical of G, L be the locally nilpotent
radical of G, and R be the locally nilpotent residual of G. Suppose that
the Baer radical of G is periodic. Then G satisfies the following conditions:

(i) G/B is abelian and residually finite, every subgroup of B is G-invari-
ant, in particular B is a Dedekind group;

(ii) R 6 B,R is G-hypereccentric, the factor-group G/R is hypercen-
tral, 2 /2 ⇧(R) and ⇧(R)\⇧(L/R) = ;,

(iii) CG(R) 6 L;

(iv) if p is an odd prime, then the Sylow p-subgroups of G are nilpotent;

(v) if p is an odd prime, then the Sylow p-subgroup of B is the Sylow p-
subgroup of locally nilpotent radical. ⇧(L/B) is a subset of the set {2},
and, in particular, the Sylow p-subgroups of L are abelian for odd
primes p.

(vi) Tor(L) = R⇥ Tor(Z) where Z is the upper hypercenter of G.

(vii) if the Sylow 2-subgroup of G is nilpotent, then L = D, moreover if
the orders of elements of Sylow 2-subgroup B2 of B are not bounded,
then the Sylow 2-subgroups of G are abelian, if the orders of elements
of Sylow 2-subgroup B2 of B are not bounded, then the Sylow 2-sub-
groups of G nilpotent.
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(viii) if p /2 ⇧(R) and the orders of elements of Bp are bounded, then the hy-
percenter of G of finite number includes Bp; if the orders of elements
of Bp are not bounded, then the hypercenter of G of the number !
includes Bp;

(ix) the hypercentral length of G/R is at most !+ 1;

(x) if the Sylow 2-subgroup D of G is not nilpotent, then D satisfies the
following conditions:

(xa) B \D = B2 is abelian and orders of elements of B2 are not
bounded;

(xb) D = Chai where C = CD(B2),a2 2 B and ba = b-1 for every
element b 2 B2;

(xc) B2 \CD(a) is an elementary abelian 2-subgroup;
(xd) [C,C] 6 B2 \ CD(a), in particular, [C,C] is an elementary

abelian 2-subgroup;
(xe) D includes a normal subgroup S > B2 such that the factor-

group D/S is elementary abelian and S = CS(a)B2;
(xi) if the Sylow 2-subgroup L2 of L is not nilpotent, then L2 satisfies

the following conditions:

(xia) the Sylow 2-subgroup B2 of B is abelian and orders of ele-
ments of B2 are not bounded;

(xib) L2 = B2hai,a2 2 B2 and xa = x-1 for every element
x 2 B2;

(xic) CB2
(a) is an elementary abelian 2-subgroup;

(xid) either a2 = 1 or a4 = 1.

Conversely, in every such group each subnormal abelian subgroup is nor-
mal.

Corollary A1 Let G be a hyperabelian group, whose subnormal abelian
subgroups are normal and let B be the Baer radical of G. Suppose that
the Baer radical of G is periodic. If G is locally nilpotent, then G satisfies
the following conditions:

(i) if p is an odd prime, then the Sylow p-subgroup of G is abelian;

(ii) if the Sylow 2-subgroup D of G is not nilpotent, then D satisfies the
following conditions:
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(iia) the Sylow 2-subgroup B2 of B is abelian and orders of elements
of B2 are not bounded;

(iib) D = B2hai,a2 2 B2, and xa = x-1 for every element x 2 B2;

(iic) CB2
(a) is an elementary abelian 2-subgroup;

(iid) either a2 = 1 or a4 = 1.

Corollary A2 Let G be a periodic hyperabelian group, whose subnormal
abelian subgroups are normal, let B be the Baer radical of G, L be the locally
nilpotent radical of G. Suppose that the set ⇧(G) = {p1,p2, . . . ,pk} is
finite, k > 1, and let p1 > p2 > . . . > pk. Then G satisfies the following
conditions:

(i) B is a Dedekind group, then every subgroup of B is G-invariant,
CG(B) 6 B;

(ii) the factor-group G/B is abelian and finite;

(iii) B includes the Sylow p1-subgroup of G, the Sylow pj-subgroup
of G/B has a special rank at most j- 1, 2 6 j 6 k- 1;

(iv) if pk 6= 2, then the Sylow pk-subgroup of G/B has a special rank at
most k- 1, if pk = 2, then the Sylow 2-subgroup of G/B has a special
rank at most k+ 1;

(v) if R is a locally nilpotent residual of G, then G = Ro S where S is
a hypercentral subgroup, moreover, Sylow 2 0-subgroup of S is nilpo-
tent;

(vi) if S1 is a subgroup of G such that G = Ro S1, then the subgroups S
and S1 are conjugate.

Corollary A3 Let G be a periodic hyperabelian group, whose subnormal
abelian subgroups are normal. Suppose that ⇧(G) = {p,q} where p < q.
If G is not locally nilpotent, then G satisfies the following conditions:

(i) the Sylow q-subgroup Q of G is abelian, G = Qo P where P is a
Sylow p-subgroup of G;

(ii) the Sylow p-subgroups of G are conjugate.

(iii) p divides q- 1;
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(iv) a factor-group P/CP(Q) is cyclic and CP(Q)⇥Q is the Baer radical
of G;

(v) if p 6= 2 and P is non-abelian, then the orders of elements of P are
bounded and P is nilpotent;

(vi) if p = 2 and P is not Dedekind, then P/CP(Q) has order 2 and P
satisfies the following conditions:

(via) CP(Q) = B is abelian and orders of elements of B are not
bounded;

(vib) P = Bhai,a2 2 B and xa = x-1 for every element x 2 B;
(vic) CB(a) is an elementary abelian 2-subgroup;
(vid) either a2 = 1 or a4 = 1.

This topic is not specific only to group theory. Lie algebras, whose
subideals are ideals, have also been studied (see [32] and [33]). In the
current work, the following description of hyperabelian Lie algebras,
whose abelian subideals are ideals, is obtained.

Theorem B Let L be a hyperabelian Lie algebra. Suppose that L is non-
abelian. If every abelian subideal of L is an ideal, then L = A� Fd where A
is an abelian ideal of L and [d,a] = a for all elements a 2 A. In particular,
every subideal of L is an ideal.

Corollary B1 Let L be a hyperabelian Lie algebra. Then every abelian
subideal of L is an ideal if and only if every subideal of L is an ideal.

An essential generalization of Lie algebras are Leibniz algebras.
We note that the Leibniz algebras, whose subideal are ideals, have
been studied in papers [20],[24]. However, the situation with abelian
subalgebras of Leibniz algebras is much more complicated. In con-
trast to Lie algebras, their classes such as solvable, nilpotent, and
those which are close to them may be completely unsaturated with
abelian subalgebras. In the current paper, we give an example of a
nilpotent Leibniz algebra of nilpotency class 2, which has a unique
abelian subalgebra, and the dimension of this subalgebra is 1. Its con-
struction shows that it is possible to construct examples of this type
with very diverse properties. This shows that abelian subalgebras
of Leibniz algebras have a very weak effect on the structure of Leib-
niz algebras, which cannot be said about the influence of nilpotent
subalgebras.
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2 Groups whose subnormal abelian subgroups

are normal

We begin with some elementary properties.

Lemma 2.1 Let G be a group, whose subnormal abelian subgroups are
normal, and L be the locally nilpotent radical of G. Then L includes the G-in-
variant subgroup K such that every subgroup of K is G-invariant and every
subnormal subgroup R of G such that K 6 R and K 6= R is not nilpotent.

Proof — Let S be a subnormal nilpotent subgroup of L. If x is
an arbitrary element of S, then the subgroup hxi is subnormal in L.
Then hxi is subnormal in G, so that hxi is normal in G. It follows
that every subgroup of S (and S also) is normal in G. In particu-
lar, S is Dedekind. It follows that S is nilpotent of nilpotency class at
most 2. Since it is true for each nilpotent subnormal subgroup of L,
the subgroup K, generated by all nilpotent subnormal subgroup of L,
is nilpotent of nilpotency class at most 2. By what we proved above,
every subgroup of K is G-invariant. ut

Corollary 2.2 Let G be a group, whose subnormal abelian subgroups are
normal. Then the Baer radical B(G) of G includes every nilpotent sub-
normal subgroup and every subgroup of B(G) is G-invariant (in particu-
lar, B(G) is a Dedekind group).

Corollary 2.3 Let G be a group, whose subnormal abelian subgroups are
normal. Then the factor-group G/CG

�
B(G)

�
is abelian.

Proof — By Corollary 2.2, every subgroup of B(G) is G-invariant.
By Corollary 2.2, every subgroup of B is G-invariant. Then G/CG(B)
is abelian (see, for example, [30], Theorem 1.5.1). ut

Corollary 2.4 Let G be a group, whose subnormal abelian subgroups are
normal. If G is hyperabelian, then every subgroup of B(G) is G-invariant
(in particular, B(G) is a Dedekind group) and B(G) includes CG

�
B(G)

�
.

Proof — By Corollary 2.2, every subgroup of B(G) is G-invariant.
Put B = B(G) and C = CG

�
B(G)

�
, and suppose that B does not in-

clude C. Then CB/B is not trivial. Since G is hyperabelian, CB/B
includes non-trivial abelian G-invariant subgroup A/B. The choice
of A shows that A is nilpotent. But Corollary 2.2 implies that, in this
case, B must include A, and we obtain a contradiction. This contra-
diction proves the inclusion CG

�
B(G)

�
6 B(G). ut
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Corollary 2.5 Let G be a group, whose subnormal abelian subgroups are
normal, and let B the Baer radical of G. If G is hyperabelian, then the factor-
group G/B is abelian.

Proof — By Corollary 2.2, every subgroup of B is G-invariant. Then
G/CG(B) is abelian by Corollary 2.3. By Corollary 2.4, CG(B) 6 B,
and therefore G/L is abelian. ut

Corollary 2.6 Let G be a group, whose subnormal abelian subgroups are
normal. If G is hyperabelian, then G is hypercyclic.

Proof — By Corollary 2.2, every subgroup of B(G) is G-invariant,
so that B(G) has an ascending series of G-invariant subgroups

h1i = C0 6 C1 6 . . . C↵ 6 C↵+1 6 . . . C� = B(G),

whose factors are cyclic. Since the factor-group G/B(G) is abelian
by Corollary 2.5, this series can be extended to an ascending series
of normal subgroups

h1i = C0 6 C1 6 . . . C↵ 6 C↵+1 6 . . . C� = B(G) 6 C�+1

6 . . . C� 6 C�+1 6 . . . C� = G,

whose factors are cyclic. ut

Corollary 2.7 Let G be a group, whose subnormal abelian subgroups are
normal. If G is hyperabelian, then G is locally supersoluble.

Proof — We must only note that every hypercyclic group is locally
supersoluble (see [5], Theorem 1). ut

Proposition 2.8 Let G be a group, whose subnormal abelian subgroups
are normal and let B be the Baer radical of G. Suppose that B is not periodic.
If G is hyperabelian, then G satisfies the following conditions:

(i) B is abelian;

(ii) G = Bhai and xa = x-1 for every element x 2 B;

(iii) CB(a) is an elementary abelian 2-subgroup;

(iv) either a2 = 1 or a4 = 1.

Conversely, in every such group each subnormal abelian subgroup is nor-
mal.
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Proof — By Corollary 2.2, B is a Dedekind group. Being non-pe-
riodic, B is abelian. Using Corollary 2.2 we obtain that every sub-
group of B is G-invariant. Then G/CG(B) has order 2 (see, for exam-
ple, [30], Theorem 1.5.7). Corollary 2.4 shows also that CG(B) = B,
so that G = Bhai for some element a 2 G such that a2 2 B. More-
over, xa = x-1 for every element x 2 L (see, for example, [30], The-
orem 1.5.7). If y 2 CB(a), then we obtain that y = ya = y-1. It
follows that y2 = 1. Suppose that a2 6= 1. Since a2 2 CL(a), we
have (a2)2 = 1.

Conversely, suppose that a group G satisfies all above conditions.
Let A be an arbitrary subnormal abelian subgroup of G. If B in-
cludes A, then by (ii) every cyclic subgroup of A is G-invariant. It
follows that A is a normal subgroup of G. Suppose now that B does
not include A. Since B is a maximal subgroup of G, we have G = BA.
But in this case, G is nilpotent (see [17], Lemma 4). However, the
fact that B is not periodic together with condition (ii) show that it is
impossible. This contradiction shows that B includes A. ut

Lemma 2.9 Let G be a group, whose subnormal abelian subgroups are
normal, and let B be the Baer radical of G. Suppose that B is periodic. Then
every abelian subgroup of ⇣(B) has the Z(G)-decomposition.

Proof — Let A be an arbitrary subgroup of ⇣(B). By Corollary 2.2, A
and each its subgroup are G-invariant. By Corollary 2.3, the factor-
group G/CG(B) is abelian. Let S be an arbitrary finite subgroup of A.
The inclusion CG(B) 6 CG(S) implies that G/CG(S) is abelian. Then
a subgroup S has the Z(G)-decomposition

S = ⇣1
G
(S)� ⌘1

G
(S)

(see [13], Corollary 1.6.5). Let K be a finite subgroup of ⇣(B) includ-
ing S. Again K is G-invariant. As proved above, K has the Z(G)-de-
composition K = ⇣1

G
(K)� ⌘1

G
(K). Clearly, ⇣1

G
(S) 6 ⇣1

G
(S). As noted

above, ⌘1
G
(K) includes every G-hypereccentric G-invariant subgroup

of K, in particular, ⌘1
G
(S) 6 ⌘1

G
(K). Taking into account these argu-

ments, it is not difficult to show that A = ⇣1
G
(A)� ⌘1

G
(A). ut

Corollary 2.10 Let G be a group, whose subnormal abelian subgroups
are normal, and let B be the Baer radical of G. Suppose that B is periodic.
If p 2 ⇧(B),p 6= 2, and P is the Sylow p-subgroup of B, then either the
upper hypercenter of G includes P, or P is G-hypereccentric.
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Proof — Since p 6= 2, the structure of a Dedekind group shows
that P 6 ⇣(B). Lemma 2.9 implies that P has the Z(G)-decomposition

P = ⇣1
G
(P)� ⌘1

G
(P).

Now suppose the contrary, let both subgroups ⇣1
G
(P), ⌘1

G
(P) are not

trivial. Then we can choose 1 6= c 2 ⇣G(P), and 1 6= d 2 ⌘1
G
(P) such

that |c| = |d| = p. Since subgroup hdi is G-invariant, G/CG

�
hdi

�
is a

non-trivial cyclic group and its order divides p- 1. Let g be an ele-
ment such that

G/CG

�
hdi

�
=

⌦
gCG

�
hdi

�↵
.

Then dg = dk where 1 < k < p. We have cg = c. Clearly, cd /2 ⇣G(P).
The subgroup hcdi is G-invariant, so that

cd 6= (cd)g = (cd)m = cmdm

where 1 < m < p. On the other hand, cmdm = (cd)g = cgdg = cdk.
It follows that m ⌘ 1 (mod p) and m ⌘ k (mod p), and we obtain a
contradiction, which proves the result. ut

Lemma 2.11 Let G be a group, whose subnormal abelian subgroups are
normal and let B be the Baer radical of G. Suppose that B is periodic. Then
the upper hypercenter of G includes the Sylow 2-subgroup of B.

Proof — Denote by D the Sylow 2-subgroup of B. By Corolla-
ry 2.2, D is a Dedekind group. Suppose first that D is abelian. Let

Dk = ⌦k(D) =
�
d | d 2 D and |d| divides pk

 
.

Consider a factor Dk+1/Dk. Since every subgroup of D is G-invariant,
by Corollary 2.2, every subgroup of Dk+1/Dk is also G-invariant. We
note that the center of each group includes normal cyclic subgroup
of order 2. Since Dk+1/Dk is elementary abelian 2-group, we ob-
tain that the factor Dk+1/Dk is G-central. Since it is true for every
positive integer k, the equality D = [k2NDk shows that the upper
hypercenter of G includes D.

Suppose that D is not abelian. Then D = Q ⇥ A where Q is a
quaternion group and A is an elementary abelian 2-subgroup. Then

⇣(D) = ⇣(Q)⇥A,
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in particular, ⇣(D) and D/⇣(D) are elementary abelian 2-groups. As
it was done above, we can prove that ⇣(D) and D/⇣(D) are G-central,
and we obtain that the upper hypercenter of G includes D. ut
Proposition 2.12 Let G be a group whose subnormal abelian subgroups
are normal, B the Baer radical of G, and R the locally nilpotent residual of G.
Suppose that B is periodic. If G is hyperabelian, then B includes R, 2 /2 ⇧(R),
⇧(R) \ ⇧(B/R) = ;. Furthermore, B is G-hypereccentric and the factor-
group G/B is hypercentral.

Proof — We have B = D ⇥ S where D is a Sylow 2-subgroup
of D and S is a Sylow 2 0-subgroup of B. Denote by ⇡ the set of
primes p 2 ⇧(B) such that the upper hypercenter of G includes the Sy-
low p-subgroup of B. Lemma 2.11 shows that 2 2 ⇡. By Corolla-
ry 2.10, we have B = A⇥S where S is a Sylow ⇡-subgroup of B and A
is a Sylow ⇡ 0-subgroup of B. By Corollary 2.5, the factor-group G/B
is abelian. It follows that the factor-group G/A is hypercentral. It
follows that R 6 A.

Suppose that R 6= A. Then there exists a prime q 2 ⇧(B)\⇡ such
that for the Sylow q-subgroup Q of B we have R \Q 6= Q. Since
every subgroup of Q is G-invariant, every subgroup of QR/R is G-
invariant. The fact that G/R is residually locally nilpotent implies
that every subgroup of G/R, having prime order q, is G-central. It
follows that QR/R has the non-trivial G-central factors. The G-iso-
morphism

Q/(R\Q) 'G QR/R

shows that Q/(R \Q) has non-trivial G-central factors. However the
choice of Q and Corollary 2.10 imply that every G-chief factor
of Q/(R\Q) must be G-eccentric. This contradiction proves the equal-
ity A = R. ut
Lemma 2.13 Let G be a hyperabelian group, whose subnormal abelian
subgroups are normal, and let B be the Baer radical of G. Suppose that B is
periodic. The following assertions hold:

(i) if p is an odd prime, then the Sylow p-subgroups of G are nilpotent;

(ii) if p is an odd prime, then the Sylow p-subgroup of B is the Sy-
low p-subgroup of the locally nilpotent radical L. In particular, the Sy-
low p-subgroup of the locally nilpotent radical L of G is abelian.

Proof — Let p be an odd prime, and P be the Sylow p-subgroup
of G. Corollary 2.2 shows that every subgroup of P \ B = Bp is G-in-
variant, in particular, Bp is a Dedekind group. The fact that p is
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odd implies that Bp is abelian. If the orders of elements of Bp are
bounded, then the factor-group P/CP(Bp) is finite cyclic p-group
(see, for example, [30], Theorem 1.5.6). Let x be an element such
that P = hxiCP(Bp). Since

P/Bp = P/(P \B) ' PB/B

is abelian, both subgroups CP(Bp) and hxiBp are normal in P. The
subgroup CP(Bp) is nilpotent, and the subgroup hxiBp is also nilpo-
tent (see, for example [10], Corollary 1.77). Being a product of the
two normal nilpotent subgroups hxiBp and CP(Bp),P is nilpotent.

If the orders of elements of Bp are not bounded, then the factor-
group P/CP(Bp) is isomorphic to some subgroup of the multiplica-
tive group of the ring of p-adic integers (see, for example, [30], The-
orem 1.5.6). But the last group has no elements of order p (see, for
example, [31], Chapter II, §3, Theorem 2). Thus P = CP(Bp), so P is
nilpotent.

Let P1 be the Sylow p-subgroup of L. As it was proved above, P1
is nilpotent. Then Corollary 2.2 implies that B includes P1, in partic-
ular, P1 is abelian. ut

Lemma 2.14 Let G be a hyperabelian group, whose subnormal abelian
subgroups are normal, let B be the Baer radical of G and D be the Sy-
low 2-subgroup of G. If D is not nilpotent, then D satisfies the following
conditions:

(i) B\D = B2 is abelian and orders of elements of B2 are not bounded;

(ii) D = Chai where C = CD(B2),a2 2 B, and ba = b-1 for every
element b 2 B2;

(iii) B2 \CD(a) is an elementary abelian 2-subgroup;

(iv) [C,C] 6 B2 \ CD(a); in particular, [C,C] is an elementary abe-
lian 2-subgroup;

(v) D includes a normal subgroup S > B2 such that the factor-group D/S
is elementary abelian and S = CS(a)B2.

Proof — By Corollary 2.2, B2 is a Dedekind group, moreover, ev-
ery subgroup of B2 is G-invariant. Suppose first that B2 is abelian
and the orders of its elements are bounded. Then D/CD(B2) is a
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direct product of two finite cyclic groups (see, for example, [30], The-
orem 1.5.6). Put C = CD(B2) and let D/C = haCi ⇥ hbCi. Since

D/B2 = D/(B\D) ' DB/B,

the fact that G/B is abelian implies that D/B2 is also abelian. Then
the subgroups C, haiB2 and hbiB2 are normal in D. A subgroup C is
clearly nilpotent and the subgroups haiB2, hbiB2 are nilpotent (see,
for example [10], Corollary 1.77). It follows that D =

�
haiB2

��
hbiB2

�
C

is also nilpotent.
If B2 is not abelian, then as we noted above, B2 = Q⇥ E where Q

is a quaternion group and E is an elementary abelian 2-subgroup.
Since, by Corollary 2.2, every cyclic subgroup of E is G-invariant,
the center of G includes E ⇥ ⇣(Q). By the same reason, the center
of G/

�
E⇥ ⇣(Q)

�
includes B2/

�
E⇥ ⇣(Q)

�
. It follows that the second

hypercenter of D includes B2 = B\D. The isomorphism

D/(B\D) ' DB/B

and the fact that G/B is abelian imply that D/B2 is abelian. It follows
that D is nilpotent. The contradictions, which have been obtained in
both above cases, show that B2 must be abelian and the orders of its
elements are not bounded.

By Corollary 2.2, every subgroup of B2 is G-invariant, therefore

D/C = haCi

is a cyclic group of order 2 and ba = b-1 for each element b 2 B2

(see, for example, [30], Theorem 1.5.6, or [31], Chapter II, §3, Theo-
rem 2). If y 2 CB(a), then we obtain that y = ya = y-1. It follows
that y2 = 1.

Let c1, c2 be arbitrary elements of C. The fact that D/B2 is abelian
implies that ca

1
= c1b1, ca

2
= c2b2 for some elements b1,b2 2 B2. We

have

[c1, c2]a = [ca
1

, ca
2
] = [c1b1, c2b2] = b-1

1
[c1, c2b2]b1[b1, c2b2]

= [c1, c2b2][b1, c2b2] = [c1,b2]b-1

2
[c1, c2]b2[b1,b2]b-1

2
[b1,c2]b2

= [c1, c2].

Since D/B2 is abelian, [C,C] 6 B2, and using (iii) we obtain that [C,C]
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is an elementary abelian subgroup.

If b 2 B2, then
[a,b] = a-1b-1a b = b2,

so [a,B2] = B2

2
. Put E = B2

2
. Put Z/E = CC/E(aE). Since D/E is nilpo-

tent of nilpotency class at most 2, the subgroup Z/E is normal in D/E.
The fact that B2/E is an elementary abelian 2-subgroup implies that Z
includes B2. The choice of Z/E shows that [a,Z] 6 E. Since Z in-
cludes B2 and [a,B2] = E, we obtain the equality [a,Z] = [a,B2].
If z1, z2 are arbitrary elements of Z, then

[a, z1z2] = [a, z2]z-1

2
[a, z1]z2.

The inclusions Z 6 C and [a,B2] 6 B2 imply that

z-1

2
[a, z1]z2 = [a, z1],

so
[a, z1z2] = [a, z1][a, z2].

Thus we obtain the equality [a,Z] =
�
[a, z] | z 2 Z

 
.

Let now z be an arbitrary element of Z. The equality [a,Z] = [a,B2]
implies that there exists an element b 2 B2 such that [a, z] = [a,b].
It follows that z-1az = b-1ab or zb-1 2 CZ(a). Thus we obtain the
equality Z = CZ(a)B2.

Consider the mapping

⇠a : C/E �! B2/E

defined by the rule ⇠a(xE) = [aE, xE], x 2 C. It is not hard to see
that ⇠a is an endomorphism of C/E such that

Ker(⇠a) = Z/E and Im(⇠a) = [aE,C/E].

The isomorphism

(C/E)/(Z/E) = (C/E)/Ker(⇠a) ' Im(⇠a) = [aE,C/E]

implies that
C/Z ' (C/E)/(Z/E)
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is an elementary abelian 2-group. The equality D = haiC implies that

D/Z = haZi(C/Z).

Put S = ha,Zi. Then S = haiCZ(a)B2 = CS(a)B2. Clearly, the factor-
group D/S is elementary abelian. ut

Corollary 2.15 Let G be a hyperabelian group, whose subnormal abelian
subgroups are normal, let B be the Baer radical of G and L2 be the Sy-
low 2-subgroup of the locally nilpotent radical L of G. If L2 is not nilpotent,
then L2 satisfies the following conditions:

(i) the Sylow 2-subgroup B2 of B is abelian and orders of elements of B2

are not bounded;

(ii) L2 = B2hai,a2 2 B2 and xa = x-1 for every element x 2 B2;

(iii) CB2
(a) is an elementary abelian 2-subgroup;

(iv) either a2 = 1 or a4 = 1.

Proof — If we suppose that the orders of elements of B2 are bound-
ed, then Lemma 2.13 implies that the Sylow 2-subgroup D of the
group G is nilpotent. In this case, L2 is nilpotent too, and we obtain
a contradiction. This contradiction shows that the orders of elements
of B2 must be not bounded.

Let C = CD(B2). The subgroup C \ L2 is nilpotent, and using
again Corollary 2.2 we obtain that B includes C \ L2. Since L2 is
not nilpotent, C can not include L2. This means that C \ L2 = B2.
Thus we can choose an element a such that a 2 L2. Lemma 2.13
proves that L2 = B2hai,a2 2 C \ L2 = B2 and xa = x-1 for every
element x 2 B2.

Lemma 2.13 shows also that CB2
(a) is an elementary abelian 2-sub-

group. We have that a2 2 B2, and since a2 2 CB2
(a) either a2 = 1

or a4 = 1. ut

Lemma 2.16 Let Q be a quaternion group of order 8. Then Pot(Q) of all
power automorphisms of Q is an elementary abelian 2-group of order 4.

This result is well know.

Proof of Theorem A — To prove condition (i), we note that the
fact that G/B is abelian follows from Corollary 2.5, and the fact that



On groups whose subnormal abelian subgroups are normal 83

every subgroup of B is G-invariant follows from Corollary 2.2. We
have

B = Dr
p2⇧(B)

Bp

where is the Sylow p-subgroup of B for every prime p. Since B is
a Dedekind group, Bp is abelian for odd prime p. A subgroup B2

is abelian or B2 = Q ⇥ E where Q is a quaternion group and E
is an elementary abelian 2-subgroup. If orders of elements of Bp

are not bounded, then we obtain that G/CG(Bp) is isomorphic to
a subgroup of the multiplicative group of the ring of p-adic inte-
gers (see, for example, [30], Theorem 1.5.6). This group is residu-
ally finite. If the orders of elements of Bp are bounded and p 6= 2,
then G/CG(Bp) is a finite cyclic group (see, for example, [30], The-
orem 1.5.6). If B2 is abelian and the orders of elements of B2 are
bounded, then G/CG(B2) is a direct product of two finite cyclic
group (see, for example, [30], Theorem 1.5.6). If B2 is not abelian,
then as we noted above, B2 = Q⇥ E where Q is a quaternion group
and E is an elementary abelian 2-subgroup. Since every cyclic sub-
group of E is G-invariant, the center of G includes E. It follows
that CG(B2) = CG(Q), therefore G/CG(B2) is finite. We have

CG(B) =
\

p2⇧(B)

CG(Bp).

The Remak’s theorem shows that G/CG(B) is isomorphic to a sub-
group of Crp2⇧(B)G/CG(Bp), in particular, G/CG(B) is residually
finite. Corollary 2.4 shows that CG(B) 6 B. If B2 is abelian, then B is
also abelian, so that, in this case, CG(B) = B and G/B is residually
finite. If B2 is not abelian, then

CG(B) = B\CG(B) = E⇥ ⇣(Q)⇥ Dr
p2⇧(B)\{2}

Bp.

It follows that B/CG(B) = QCG(B)/CG(B), in particular, B/CG(B) is
finite. We note that finite subgroups of residually finite group are
closed in profinite topology. It implies that G/B is residually finite,
and (i) is proved,

Proposition 2.12 implies that R 6 B, 2 /2 ⇧(R),R is G-hypereccentric
and G/R is hypercentral, ⇧(R) \⇧(B/R) = ;. The fact that 2 /2 ⇧(R)
together with Proposition 2.12 imply that ⇧(R)\⇧(L/R) = ;.

Let g 2 CG(R). The choice of g yields that B 6 ⇣
�
hg,Bi

�
. The fact
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that hg,Bi/B is hypercentral shows that hg,Bi is hypercentral. Since
the factor-group G/B is abelian, hg,Bi is a normal subgroup of G.
Then hg,Bi 6 L, and (iii) is proved.

Assertions (iv) and (v) follows from Lemma 2.13.
Let ⇡ = ⇧(R),� = ⇧(L) ⇧(R). Since G is hyperabelian, ⇧(L) = ⇧(B).

Let p 2 �, then by Corollary 2.10 the upper hypercenter Z of G in-
cludes Bp. If p is an odd prime, then by (v) Bp is the Sylow p-sub-
group of L. If B does not includes the Sylow 2-subgroup L2 of L,
then Corollary 2.15 implies that L2/B2 has order 2. Then the cen-
tre of G/B2 includes L2/B2. This means that Z includes L2. In other
words, Z includes Drp2� Lp, and (vi) is proved.

Let D be the Sylow 2-subgroup of G. Then Sylow 2-subgroup L2
of L is nilpotent. Corollary 2.2 implies that, in this case, B includes L2.
By (v), B includes every Sylow p-subgroup of L for all odd primes p.
Hence L = B. If the orders of elements of B2 are not bounded, then
we can apply the arguments from the first part of the proof of Lem-
ma 2.13 to obtain that D is abelian. Suppose the orders of elements
of B2 are bounded and B2 is not abelian. Then B2 = Q⇥ E where Q
is a quaternion group and E is an elementary abelian 2-subgroup.
Since every cyclic subgroup of E is G-invariant, the center of G in-
cludes E⇥ ⇣(Q). By the same reason, the center of G/

�
E⇥ ⇣(Q)

�
in-

cludes B2 =
�
E⇥ ⇣(Q)

�
. It follows that the second hypercenter of D

includes B2 = B \D. The fact that D/B2 is abelian implies that D is
nilpotent and (vii) is proved.

Let p be an odd prime and P1 be the Sylow p-subgroup of L.
By (iii), P1 is nilpotent. By Corollary 2.2 B includes P1, in particu-
lar, P1 is abelian, and (iv) is proved.

Suppose now that p /2 ⇧(R). By Corollary 2.10, the upper hyper-
center of G includes Bp. Corollary 2.2 implies that, in this case, every
factor ⌦j+1(Bp)/⌦j(Bp) is G-central, thus the series

h1i 6 ⌦1(Bp) 6 ⌦2(Bp) 6 . . . 6 ⌦j(Bp) 6 ⌦j+1(Bp)

6 . . . ⌦!(Bp) = [j2N⌦j(Bp)

is G-central, and (viii) is proved.
By (viii), the !th hypercenter of G/R includes B/R. Since G/B is

abelian, the hypercentral length of G/R is at most !+ 1.
Assertions (ix) and (x) follows from Lemma 2.14 and Corollary 2.15.

Conversely, suppose that a group G satisfies all above condition.
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Let A be an arbitrary subnormal abelian subgroup of G. If B in-
cludes A, then by (i) every cyclic subgroup of A is D-invariant. It
follows that A is a normal subgroup of G.

Suppose now that B does not include A. Since G/B is abelian, the
product BA is normal subgroup of G. We note that the subgroup BA
is nilpotent (see [17], Lemma 4). But, in this case, the Baer radical
of G includes BA, and we obtain a contradiction. This contradiction
proves that B must include A. ut

Proof of Corollary A1 — Let p be an odd prime and let P be
the Sylow p-subgroup of G. Theorem A implies that P is nilpotent.
Using Corollary 2.2 we obtain that P must be abelian. The asser-
tion (ii) follows from Theorem A. ut

Proof of Corollary A2 — Assertion (1) follows from Theorem A.
The fact that G/B is abelian also follows from Theorem A. Corolla-
ry 2.7 implies that a group G is locally supersoluble. Then G has a
series of normal subgroups

h1i = S0 6 S1 6 S2 6 . . . 6 Sk-1 6 Sk = G

where S1 is the Sylow p1-subgroup, S2 is the Sylow {p1,p2}-subgroup,
. . . , Sk-1 is the Sylow {p1,p2, . . . ,pk-1}-subgroup of G.

Let B1 = B \ S1,C1 = CG(B1). By Corollary 2.2, every subgroup
of B1 is G-invariant, in particular, B1 is a Dedekind group. Since k>1,
p1 6= 2. It implies that B1 is abelian. The Sylow p1-subgroup S1 \C1

of C1 is normal in G. Now,

S1/B1 = S1/(B\ S1) ' S1B/B

is abelian, so S1 \ C1 is nilpotent. Corollary 2.2 shows that B1 in-
cludes S1 \ C1. Then S1/B1 = S1/(S1 \ C1) ' S1C1/C1 6 G/C1. If
the orders of elements of B1 are at most pt1

1
for some positive inte-

ger t1, then the factor-group G/C1 is isomorphic to a subgroup of the
multiplicative group of the ring Z/pt1

1
Z (see, for example, [30], Theo-

rem 1.5.6). Then S1/B1 is finite cyclic p1-group. In this case, the sub-
group S1 is nilpotent (see, for example, [10], Corollary 1.77). But Co-
rollary 2.2 shows that, in this case, B must include S1, i.e. S1 = B1,
and in particular, S1 is abelian.

If the orders of elements of B1 are not bounded, then G/C1 is
isomorphic to a subgroup of the multiplicative group of the ring
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of p1-adic integers (see, for example, [30], Theorem 1.5.6). But the
last group has no elements of order p1 (see, for example, [31], Chap-
ter II, §3, Theorem 2). Thus again S1 = B1. We note that in both
cases G/C1 is a cyclic, whose order divides p1-1. In particular, G/C1

does not contain the p1-elements.
Denote by B2 the Sylow p2-subgroup of B and let C2=CG(B2)\C1.

Since G is locally supersoluble, the Sylow p2-subgroup Q2/S1
of C1/S1 is normal. By its choice, Q2 is locally nilpotent, so
that Q2 = P2 ⇥ S1, where P2 is the Sylow p2-subgroup of Q2, and
hence the Sylow p2-subgroup of C1. In particular, we obtain that P2
is normal in G. By Corollary 2.2, every subgroup of B2 is G-invariant,
in particular, B2 is a Dedekind group. Suppose that p2 6= 2. Then B2

is abelian. If the orders of elements of B2 are at most pt2
2

for some
positive integer t2, then the factor C1/C2 is isomorphic to a sub-
group of the multiplicative group of the ring Z/pt2

2
Z (see, for exam-

ple, [30], Theorem 1.5.6). Then P2/(P2\C2) is a finite cyclic p2-group.
Since P2/B2 is abelian, P2 \C2 is nilpotent. The fact that P2 \C2 is
normal in G together with Corollary 2.2 yields that B ◆ P2 \ C2,
so we have P2 \C2 = B2. Thus P2/B2 is a finite cyclic p2-group. In
this case, the subgroup P2 is nilpotent (see, for example [10], Corol-
lary 1.77), and, using again Corollary 2.2, we obtain that P2 = B2.

If the orders of elements of B2 are not bounded, then C1/C2 is
isomorphic to a subgroup of the multiplicative group of the ring
of p2-adic integers (see, for example, [30], Theorem 1.5.6). But the
periodic part of the last group is a cyclic group, whose order is p2- 1
(see, for example, [31], Chapter II, §3, Theorem 2). Thus again P2=B2.
It follows that C1/C2 is a cyclic group, whose order divides p2 - 1.
In particular, the Sylow p2-subgroup of G/C2 is cyclic.

Suppose now that p2 = 2. If B2 is abelian and orders of elements
of B2 are bounded, then using the above arguments we obtain that
the Sylow 2-subgroup of C1 coincides with B2. It follows that the Sy-
low 2-subgroup of G/C2 is a direct product of at most three cyclic
groups.

Suppose now that B2 is abelian and the orders of its elements are
not bounded. Then the factor C1/C2 is isomorphic to a subgroup
of the multiplicative group of the ring of 2-adic integers (see, for
example, [30], Theorem 1.5.6). But the periodic part of the last group
has order 2 (see, for example, [31], Chapter II, §3, Theorem 2). Thus
there exists an element a such that C1 = haiC2 and ba = b-1 for
each element b 2 B2. It follows that the Sylow 2-subgroup of G/C2
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has special rank at most 2.
Suppose now that B2 is not abelian. Since every subgroup of B2

is G-invariant, B2 is a Dedekind group. Then, as we noted, B2=Q⇥ E
where Q is a quaternion group and E is an elementary abelian 2-sub-
group. Since every cyclic subgroup of E is G-invariant, the center of G
includes E. It follows that CG(B2) = CG(Q). In this case, Lemma 2.16
shows that the Sylow 2-subgroup of C1/C2 is elementary abelian and
has order at most 4. Hence, in this case, the Sylow 2-subgroup of C1

is an extension of an elementary abelian subgroup by a finite 2-group.
Hence, it is nilpotent (see, for example [10], Corollary 1.77), so that
the Sylow 2-subgroup of C1 coincides with B2. It follows that the Sy-
low 2-subgroup of G/C2 is a direct product of at most three cyclic
groups.

If ⇧(G) = {p1,p2}, then C2 = CG(B2) \ CG(B1) = CG(B) 6 B so
that G/B is a finite p2-group.

If k > 2, then we can apply the above arguments and ordinary
induction to prove the assertions (ii)–(iv).

Let R be the locally nilpotent residual of G. By Theorem A, R
is G-hypereccentric, B = R⇥Z where ⇧(R)\⇧(Z) = ;, and Z is a sub-
group of the upper hypercenter of G. In the factor-group G/Z the sub-
group B/Z is G-hypereccentric, and (G/Z)/(B/Z) is finite and abelian.
Then G/Z = B/Zo S/Z, and every complement to B/Z in G/Z is con-
jugate to S/Z (see [19], Proposition 2.5). The equality B = R⇥Z shows
that G = Ro S.

Let S1 be another subgroup such that G = Ro S1. We have

B = R⇥ (B\ S1).

Let ⇡ = ⇧(B), then B \ S1 is a Sylow ⇡ 0-subgroup of B. But B is
abelian and its Sylow ⇡ 0-subgroup coincides with Z. Hence B\ S1=Z,
in particular, S1 includes Z. In the factor-group G/Z we have

G/Z = B/Zo S1/Z.

By what we noted above, S1/Z and S/Z conjugate. Then the sub-
groups S1 and S conjugate. ut

Corollary 2.17 Let G be a periodic hyperabelian group, whose subnormal
abelian subgroups are normal. Suppose that ⇧(G) = {p,q} where p < q.
If G is not locally nilpotent, then G satisfies the following conditions:

(i) the Sylow q-subgroup Q of G is abelian, G = Q o P where P is
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a Sylow p-subgroup of G;

(ii) the Sylow p-subgroups of G conjugate.

(iii) p divides q- 1;

(iv) the factor-group P/CP(Q) is cyclic, and CP(Q)⇥Q is the Baer radi-
cal of G;

(v) if p 6= 2 and P is non-abelian, then the orders of elements of P are
bounded, and P is nilpotent;

(vi) if p = 2 and P is not a Dedekind group, then P/CP(Q) has order 2,
and P satisfies the following conditions:

(via) CP(Q) = B is abelian, and orders of elements of B are not
bounded;

(vib) P = Bhai,a2 2 B, and xa = x-1 for every element x 2 B;

(vic) CB(a) is an elementary abelian 2-subgroup;

(vid) either a2 = 1 or a4 = 1.

Proof of Corollary A3 — From Corollary A2 it follows that Q
is abelian and the Baer radical of G includes Q. Corollary 2.10 and
the fact that G is not locally nilpotent imply that Q must be G-hyper-
eccentric. Since G/Q is a p-group, Q coincides with locally nilpotent
residual of G. By Corollary A2, G = Qo P and, clearly, in this case, P
is the Sylow p-subgroup of G. Moreover, Corollary A2 implies that
the Sylow p-subgroups of G conjugate.

If the orders of elements of Q are at most qt for some positive
integer t, then the factor-group G/CG(Q) ' P/CP(Q) is isomorphic
to a subgroup of the multiplicative group of the ring Z/qtZ (see,
for example, [30], Theorem 1.5.6). The fact that q 6= 2 implies that
the last group is cyclic, and p divides q- 1. If the orders of elements
of Q are not bounded, then the P/CP(Q) is isomorphic to a subgroup
of the multiplicative group of the ring of q-adic integers (see, for
example, [30], Theorem 1.5.6). But the periodic part of the last group
is a cyclic, having order q- 1.

Let B be the Sylow p-subgroup of the Baer radical of G. Since
the Baer radical of G is a Dedekind group, then B 6 CP(Q). If p
is odd, then Theorem A implies that P is nilpotent. Then CP(Q) is
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nilpotent and Corollary 2.2 implies that the Baer radical of G in-
cludes CP(Q). Thus B = CP(Q) and CP(Q)⇥Q is the Baer radical
of G.

Suppose that p = 2. If P is nilpotent, then CP(Q)⇥Q is the Baer
radical of G. If P is not nilpotent, then the result follows from asser-
tion (xi) of Theorem A. ut

3 Lie algebras whose abelian subideals are ideals

It is almost obvious that if L is a Lie algebra, whose subalgebras are
ideals, then L is abelian.

Lemma 3.1 Let L be a Lie algebra, whose abelian subideals are ideals.
Then L includes an abelian ideal K such that every subalgebra of K is an
ideal of L and every subideal R of L such that K 6 R and K 6= R is not
nilpotent.

Proof — Let S be a nilpotent subideal of L. If x is an arbitrary ele-
ment of S, then a subalgebra hxi = Fx is a subideal of S (see [3], Lem-
ma 3.7). Then hxi is a subideal of L, so that a subalgebra hxi is an
ideal of L. Since it is true for each nilpotent subideal of L, in the sub-
algebra K generated by all nilpotent subideals of H, every cyclic sub-
algebra is an ideal of L. It follows that every subalgebra of K (and K
itself) is an ideal of L. The choice of K shows that K includes every
nilpotent subideal of L. By what we noted above, K is abelian. ut

Let L be a Lie algebra over a field F,M be non-empty subset of L
and H be a subalgebra of L. Put

AnnH(M) = {a 2 H | [a,M] = h0i}.

The subset AnnH(M) is called the annihilator or the centralizer of M
in subalgebra H.

It is not hard to see that AnnH(M) is a subalgebra of L. Moreover,
if M is an ideal of L, then AnnL(M) is an ideal of L.

Lemma 3.2 Let L be a Lie algebra over a field F, and let A be an abelian
ideal of L. If every subalgebra of A is an ideal of L, then the factor-alge-
bra L/AnnL(A) has dimension 1, and for every element x 2 L there exists
an element �x 2 F such that [x,a] = �xa for all elements a 2 A.
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This assertion is (for example) a partial case of Lemma 2.2 of the
paper [25].

The Lie algebra L is called hyperabelian M if L has an ascending
series of ideals whose factors are abelian.

Proof of Theorem B — By Lemma 3.1, L has the greatest nilpo-
tent ideal A of L. Being hyperabelian, L includes a non-zero abelian
ideal, so that A is non-zero. Let C = AnnL(A), and suppose that A
does not include C. Then (C + A)/A is non-zero. Since L is hyper-
abelian, (C+A)/A includes a non-zero abelian ideal S/A. The in-
clusion S 6 C shows that S is nilpotent. But Lemma 3.1 implies
that in this case, A must include S, and we obtain a contradiction.
This contradiction proves the inclusion AnnL(A) 6 A. Since A is
abelian, AnnL(A) = A and every subalgebra of A is an ideal of L. Lem-
ma 3.2 implies that L/A has dimension 1, so that L = A� Fb for some
element b 2 L. Using again Lemma 3.2, we obtain that there exists
an element � 2 F such that [b,a] = �a for all elements a 2 A. If we
suppose that � = 0, then L is abelian, and we obtain a contradiction.
Hence � 6= 0. Put d = �-1b, then

[d,a] = [�-1b,a] = �-1[b,a] = �-1�a = a for all elements a 2 A.

In conclusion, we now give an example of a nilpotent Leibniz algebra
of nilpotency class 2, which has a unique abelian subalgebra, and the
dimension of this subalgebra is equal to 1. ut

Example 3.3 Let n be an arbitrary positive integer and let V be a
vector space over a field Q of rational numbers, having dimension n.
Let us define on the space V a positive defined bilinear form �. In
other words, we can choose a basis {v1, . . . , vn} of the space V such
that �(vk, vk) = 1 for all k, 1 6 k 6 n, and �(vk, vj) = 0 when-
ever k 6= j. Put L = V �Qc, and define the operation [,] on L for the
elements of the basis by the following rule: [v, c] = [c, v] = [c, c] = 0,
and [vk, vj] = �(vk, vj)c, 1 6 k, j 6 n, and expand it bilinearly to all
elements of L. Put Z = Qc. Then the centre of L includes Z and the
factor-algebra L/Z is abelian. It follows that L is a nilpotent Leibniz
algebra, moreover, its nilpotency class is 2.

Let x,y be the elements of L. Then

x = ⇠c+
X

16j6n

↵jvj,y = ⌘c+
X

16k6n

�kvk,↵1, . . . ,↵n,�1, . . . ,�n 2 F.
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We have

[x,y] =
h
⇠c+

X

16j6n

↵jvj, ⌘c+
X

16k6n

�kvk

i

=
X

16j6n

X

16k6n

↵j�k[vj, vk] =
⇣ X

16j6n

↵j�j

⌘
c.

It follows that
[x, x] = (↵2

1
+ . . .+↵2

n)c.

In particular, if x /2 Z, then (↵1, . . . ,↵n) 6= (0, . . . , 0) and, there-
fore, [x, x] 6= 0. Now if S is a subalgebra of L such that Z does not
include S, then S contains an element x /2 Z. Then [x, x] 6= 0, and
hence a subalgebra S is not abelian. This means that Z is the only
non-trivial abelian subalgebra of L.
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