

Advances in Group Theory and Applications © 2022 AGTA - www.advgrouptheory.com/journal 13 (2022), pp. 41–53 ISSN: 2499-1287 DOI: 10.32037/agta-2022-003

Realising a Finite Group as a Subgroup of a Product of Two Groups of Permutation Matrices

Mahmoud Benkhalifa

(Received May 24, 2021; Accepted Sept. 12, 2021 — Communicated by I.Ya. Subbotin)

Abstract

In this paper we prove that any finite group of order n can be viewed as the group of the solutions of a certain matrix equation XB = BY, where the unknowns X, Y are two permutation matrices of order n and (1 + k)n + 2 respectively and where $k \in \mathbb{N}$ is given by Cayley's theorem. Moreover, we show that G is isomorphic to a certain subgroup formed by permutation matrices of order (1 + k)n obtained by permuting all the rows of the identity matrix $I_{(1+k)n}$.

Mathematics Subject Classification (2020): 15A24, 55P10

Keywords: permutation matrix; graded commutative Q-algebra; group of homotopy self-equivalences

1 Introduction

Let $\mathcal{P}(n)$ denote the group of permutation matrices of degree n. For a given matrix B, let us consider the group Ω_B of the pairs (X, Y)in $\mathcal{P}(n) \times \mathcal{P}(m)$ which are solutions of the matrix equation XB = BY. Obviously, Ω_B is finite group as $\mathcal{P}(n)$ and $\mathcal{P}(m)$ are finite and it is worth noting that if $\lambda \in \mathbb{Q}$ and $(X, Y) \in \Omega_B$, then the pair $(\lambda X, \lambda Y)$ needs not be in Ω_B although that we have $(\lambda X)B = B(\lambda Y)$ since $\lambda X, \lambda Y$ are not permutation matrices for $\lambda \neq 1$.

A subgroup H of $\mathcal{P}(n)$ is called *realisable* if each element $M \in H$ is obtained by permuting the rows of the identity matrix I_n using a

permutation $\tau \in S_n$ satisfying $\tau(i) \neq i$ for all $1 \leq i \leq n$. Here S_n denotes the symmetric group of order n.

Recall that, by Cayley's theorem, any finite group G of order n is isomorphic to a realisable subgroup, denoted by C_G , of P(n) via the map

$$G = \{g_1, \ldots, g_n\} \to S_n \simeq P(n)$$

$$g_{j} \mapsto \sigma_{j} = \begin{pmatrix} g_{1} & g_{2} & \dots & g_{n} \\ g_{j} & \sigma_{j}(g_{2}) & \dots & \sigma_{j}(g_{n}) \end{pmatrix} \leftrightarrow M_{j}$$

where M_j is the matrix obtained by permuting all the rows of the identity matrix I_n using σ_j .

Following the idea developed in [1] and inspired by the works done in [4] and [2] regarding the so-called Kahn's realisability problem of groups (see [5] and [7] for more details), this paper is devoted to answer the question whether a given finite group G can occur as a group on the form Ω_B and whether G can be embedded in $\mathcal{P}(m)$, where m > n, as a realisable subgroup. For this purpose we shall assign to G a matrix B_G and a realisable subgroup \mathcal{A}_G of $\mathcal{P}((1+k)n+2)$, where k is given by the decomposition of the permutation σ_2 into product of disjoint cycles, i.e. $\sigma_2 = \tau_1 \tau_2 \dots \tau_k$ and we shall define Ω_{B_G} as a certain subgroup of $\mathcal{A}_G \times \mathfrak{C}_G$.

The group A_G and the matrix B_G are defined using the framework of rational homotopy theory [6] and the ideas developed in [3] and [1]. More precisely, A_G is defined in terms of the cohomology of a certain a free commutative cochain Q-algebra associated with the group G and B_G is related to its differential.

In this paper we establish the following result.

Theorem 1 For any finite group G of order n, there exists a matrix B_G such that G is isomorphic to the group Ω_{B_G} of the solutions of the matrix equation $XB_G = B_GY$, where the unknowns X, Y are two permutation matrices belonging to the groups A_G and C_G respectively.

Corollary 2 Any finite group G of order n is isomorphic to a realisable subgroup of $\mathcal{P}((1+k)n)$.

2 Main results

2.1 Definition of the group \mathcal{A}_G

Let us start by recalling the main construction in [1] on which this work is based. Indeed, let $G = \{g_1, g_2, \ldots, g_n\}$ be a finite group of order n and let S_n be the symmetric group. By Cayley's theorem there is a monomorphism

$$\begin{split} \Psi: G \to S_n & g_j \mapsto \sigma_j : g_k \longrightarrow g_j g_k & 1 \leqslant k \leqslant n \\ \text{For } 2 \leqslant j \leqslant n, \text{ write } \sigma_j = \begin{pmatrix} 1 & 2 & \dots & n \\ j & \sigma_j(2) & \dots & \sigma_j(n) \end{pmatrix} \text{ and let} \\ \sigma_2 = \begin{pmatrix} 1 2 \sigma_2(2) \dots \sigma_2^{\kappa_2}(2) \end{pmatrix} \begin{pmatrix} i_1 \sigma_2(i_1) \dots & \sigma_2^{\kappa_{i_1}}(i_1) \end{pmatrix} \dots \begin{pmatrix} i_k \sigma_2(i_k) \dots & \sigma_2^{\kappa_{i_k}}(i_k) \end{pmatrix} \end{split}$$

be the decomposition of σ_2 into a product of cycles.

Recall that in [1] we constructed a free commutative cochain Q-algebra

$$(\Lambda(x_1, x_2, y_1, y_2, y_3, \{z_j, w_j\}_{g_i \in G}), \partial)$$

where the degrees of the elements in this graded algebra are

$$|x_1| = 8,$$
 $|x_2| = 10,$ $|w_j| = 40$

and where the differential is given by:

$$\begin{split} \vartheta(x_1) &= \vartheta(x_2) = \vartheta(w_j) = \vartheta, \quad \vartheta(y_1) = x_1^3 x_2, \quad \vartheta(y_2) = x_1^2 x_2^2, \quad \vartheta(y_3) = x_1 x_2^3 \\ \vartheta(z_j) &= w_j^3 + w_j w_{\sigma_{j+1}(1)} x_2^4 + \sum_{\tau=1}^k w_j w_{\sigma_{j+1}(i_{\tau})} x_2^4 + u + x_1^{15}, \quad 1 \leq j \leq n-1 \end{split}$$

$$\partial(z_n) = w_n^3 + w_n w_1 x_2^4 + \sum_{\tau=1}^k w_n w_{i_\tau} x_2^4 + u + x_1^{15}$$
(2.1)

where $u = y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6$, and we proved that

$$\mathcal{E}(\Lambda(\mathbf{x}_1,\mathbf{x}_2,\mathbf{y}_1,\mathbf{y}_2,\mathbf{y}_3,\{z_j,w_j\}_{g_i\in G}))\simeq G$$

where $\mathcal{E}(\Lambda(x_1, x_2, y_1, y_2, y_3, \{z_j, w_j\}_{1 \le j \le n}))$ denotes the group of self homotopy cochain equivalences of $\Lambda(x_1, x_2, y_1, y_2, y_3, \{z_j, w_j\}_{g_i \in G})$ (see [3] and [1] for more details).

Now let $V^{119} = \mathbb{Q}\{z_1, \ldots, z_n\}$ be the vector space spanned by the set $\{z_1, \ldots, z_n\}$. Recall that $|z_i| = 119$ for every $1 \le i \le n$. In [1], Proposition 3.9, it is shown that

$$\mathcal{E}(\Lambda(x_1, x_2, y_1, y_2, y_3, \{z_j, w_j\}_{g_i \in G})) \simeq \mathcal{D}^{119}_{40},$$

where \mathcal{D}_{40}^{119} is the subgroup of

aut(
$$V^{119}$$
) × $\mathcal{E}(\Lambda(x_1, x_2, y_1, y_2, y_3, \{w_j\}_{g_i \in G}))$

consisting of the couples $(\xi, [\alpha])$ making the following diagram commutes:

where $\Gamma_G^{120}=H^{120}\big(\Lambda(x_1,x_2,y_1,y_2,y_3,\{w_j\}_{g_i\in G})\big)$ and where b is defined by

$$b(z_i) = \widehat{\partial(z_i)}, \quad 1 \le j \le n \tag{2.3}$$

Here $\widehat{\partial(z_i)}$ is the cohomology class of $\partial(z_i)$ in

$$\mathsf{H}^{120}(\Lambda(x_1, x_2, y_1, y_2, y_3, \{w_j\}_{g_i \in G})).$$

Moreover, it is shown that if $(\xi, [\alpha]) \in \mathcal{D}_{40}^{119}$, then there exists a unique permutation

$$\sigma_{s} = \begin{pmatrix} 1 & 2 & \dots & n \\ s & \sigma_{s}(2) & \dots & \sigma_{s}(n) \end{pmatrix}$$
(2.4)

such that

$$\xi(z_j) = z_{\sigma_s(j)}, \quad \alpha(w_j) = w_{\sigma_s(j)}, \alpha = id, \quad \text{on } x_1, x_2, y_1, y_2, y_3.$$
(2.5)

Thus, there is an isomorphism

$$\Psi: \mathcal{D}^{119}_{40} \to \mathbf{G}$$

defined by $\Psi((\xi, [\alpha])) = g_s$, where the element g_s corresponds to the

permutation σ_s , given in (2.4), via Cayley's theorem.

Set

$$u = y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6.$$

As the following set of generators

$$\Sigma = \left\{ w_1^3 \; ; \; \dots \; ; \; w_n^3 \; ; \; w_j w_{\sigma_{j+1}(1)} x_2^4 \; ; \\ w_j w_{\sigma_{j+1}(i_\tau)} x_2^4 \; ; \; u \; ; \; x_1^{15} \right\}$$
(2.6)

where $1\leqslant j\leqslant n$ and $1\leqslant \tau\leqslant k,$ is linearly independent in the vector space

$$\Gamma_{G}^{120} = H^{120} \big(\Lambda(x_1, x_2, y_1, y_2, y_3, \{w_j\}_{i \in G}) \big)$$

it follows that Σ can be chosen, according the formulas (2.1) and (2.3), as a basis for the vector space $b(V^{119}) \subseteq \Gamma_G^{120}$. Notice that

dim
$$b(V^{119}) = cardinal(\Sigma) = (1+k)n + 2$$
 (2.7)

Thus, if B_G denotes the matrix of order $((1 + k)n + 2) \times n$ which is associated to the linear map b defined in (2.3) with respects to the basis Σ , then we can write

$$B_{G} = \begin{bmatrix} I_{n} \\ M \\ D \end{bmatrix} \qquad \text{where} \qquad D = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \end{bmatrix},$$

where the matrix $M = [m_{ij}]$ is defined by

_

$$\mathfrak{m}_{ij} = \begin{cases} 1, & \text{if } i \in \{\sigma_{j+1}(1), \sigma_{j+1}(i_1), \dots, \sigma_{j+1}(i_k)\}, \\ 0, & \text{otherwise.} \end{cases}$$

Consequently, taking into construction (2.5), the matrices associated to the linear maps ξ and the restriction of the linear map $H^{120}(\alpha)$ to $b(V^{119})$, given in the diagram (2.2) and corresponding to the element $(\xi, [\alpha]) \in \mathcal{D}_{40}^{119}$, can be written, respectively, as

$$C_{g_s} = \sigma_s I_n$$
, $A_{g_s} = \begin{bmatrix} \sigma_s I_n & 0 & 0\\ 0 & \tilde{A}_{g_s} & 0\\ 0 & 0 & I_2 \end{bmatrix}$, (2.8)

where

$$\sigma_{s}I_{n} = [c_{i,j}]_{1 \leqslant i,j \leqslant (k+1)n}, \quad c_{i,j} = \begin{cases} 1, & \text{if } i = \sigma_{s}(j) \\ 0, & \text{otherwise} \end{cases}$$

and where

$$\widetilde{A}_{g_s} = \left[a_{n+i,n+j}\right]_{1 \leqslant i,j \leqslant (k+1)n}, \quad a_{n+i,n+j} = \begin{cases} 1, & \text{if } i = \sigma_s(j) \\ 0, & \text{otherwise} \end{cases}$$

Here σ_s is the permutation corresponding to g_s via Cayley's theorem.

From (2.8), it is clear to see that A_{g_s} is a permutation matrix. Recall that the commutativity of the diagram (2.2) implies that

$$A_{g_s}B_G = B_GC_{g_s}, \qquad \forall g_s \in G.$$
(2.9)

Let $G = \{g_1, \ldots, g_n\}$ be a group, we define the following two sets

$$\mathcal{A}_{G} = \{A_{g_{s}}, g_{s} \in G\}, \qquad \Omega_{G} = \{(A_{g_{s}}, C_{g_{s}}) \in \mathcal{A}_{G} \times \mathfrak{C}_{G}, g_{s} \in G\}.$$

Theorem 3 The sets A_G and Ω_G are groups isomorphic to G.

PROOF — First let us prove that A_G is a group. Let $A_{g_s}, A_{g_r} \in A_G$. By (2.9) there exist two matrices C_{g_s}, C_{g_r} such that

$$A_{g_s}B_G = B_GC_{g_s}$$
 and $A_{g_r}B_G = B_GC_{g_r}$

therefore

$$A_{g_s}A_{g_r}B_G = A_{g_s}B_GC_{g_r} = B_GC_{g_s}C_{g_r}$$

it follows that $A_{g_s}A_{g_r} \in A_G$. Here we use the fact that

$$A_{g_s}A_{g_r} = A_{g_sg_r}$$
 and $C_{g_s}C_{g_r} = C_{g_sg_r}$ (2.10)

Next let $A_{g_s} \in A_G$. Since A_{g_s} and C_{g_s} are invertible, we deduce that $B_G C_{g_s}^{-1} = (A_{g_s})^{-1} B_G$ implying that $(A_{g_s})^{-1} \in A_G$. Notice also that $A_{g_s}^{-1} = A_{g_s}^{-1}$.

Then, using the same arguments, it is easy to check that the set Ω_G is a group. Finally, it is clear that the two maps

$$\chi: G \to \mathcal{A}_G$$
 and $\varphi: G \to \Omega_G$,

defined by $\chi(g_s) = A_{g_s}$ and $\varphi(g_s) = (A_{g_s}, C_{g_s})$ respectively, are isomorphisms of groups.

2.2 Realisable subgroups

A subgroup H of $\mathcal{P}(n)$ is called *realisable* if each element $M \in H$ is obtained by permuting the rows of the identity matrix I_n using a permutation $\tau \in S_n$ satisfying $\tau(i) \neq i$ for all $1 \leq i \leq n$.

Let $G = \{g_1, \ldots, g_n\}$ be a group. Based on the formula (2.8) , let us define the following matrix

$$M_{g_s} = \begin{bmatrix} \sigma_s I_n & 0\\ 0 & \widetilde{A}_{g_s} \end{bmatrix} , \quad g_s \in G \quad (2.11)$$

Theorem 4 If $H_G = \{M_{g_s}, g_s \in G\}$, then H_G is a realisable subgroup of $\mathcal{P}((1+k)n)$ isomorphic to G

PROOF — According to the formula (2.8), the matrix M_{g_s} is defined in terms of the permutation σ_s corresponding to the element $g_s \in G$, so it follows that $\sigma_s(i) \neq i$ for every $1 \leq i \leq n$ implying that M_{g_s} belongs to $\mathcal{P}((1+k)n)$.

Taking into consideration the relation (2.10), the map

$$G = \{g_1, \ldots, g_n\} \rightarrow H_G$$

which assign $g_s \mapsto M_{q_s}$ is obviously an isomorphism of groups. \Box

2.3 Examples

In the following examples we illustrate our study by determining all the groups introduced in this paper for the cyclic group \mathbb{Z}_4 and the Klein group \mathbb{V} .

Example 5 If $G = \mathbb{Z}_4$, then the monomorphism

$$\mathbb{Z}_4 = \{g_1, g_2, g_3, g_4\} \to S_4$$

is given by

$$g_1 \rightarrow id, \ g_2 \leftrightarrow \sigma_2 = (1234), \ g_3 \leftrightarrow \sigma_3 = (13)(24), \ g_4 \leftrightarrow \sigma_4 = (1432)$$

therefore according to (2.1) the model associated with \mathbb{Z}_4 is

$$(\Lambda(x_1, x_2, y_1, y_2, y_3, w_1, w_2, w_3, w_4, z_1, z_2, z_3, z_4), \partial)$$

where $|x_1| = 8$, $|x_2| = 10$, $|w_1| = 40$, and the differential is given by

$$\begin{split} \vartheta(x_1) &= \vartheta(x_2) = \vartheta(w_j) = \emptyset, \ \vartheta(y_1) = x_1^3 x_2, \ \vartheta(y_2) = x_1^2 x_2^2, \ \vartheta(y_3) = x_1 x_2^3, \\ \vartheta(z_1) &= w_1^3 + w_1 w_2 x_2^4 + y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6 + x_1^{15}, \\ \vartheta(z_2) &= w_2^3 + w_2 w_3 x_2^4 + y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6 + x_1^{15}, \\ \vartheta(z_3) &= w_3^3 + w_3 w_4 x_2^4 + y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6 + x_1^{15}, \\ \vartheta(z_4) &= w_2^4 + w_4 w_1 x_2^4 + y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6 + x_1^{15}. \end{split}$$

For the above construction it is clear that $V^{119} = \mathbb{Q}\{z_1, z_2, z_3, z_4\}$ and by (2.6) the base Σ of the vector space $b(V^{119})$ is given

$$\Sigma = \left\{ w_1^3, w_2^3, w_3^3, w_4^3, w_1w_2x_2^4, w_2w_3x_2^4, w_3w_4x_2^4, \\ w_4w_1x_2^4, y_1y_2x_1^4x_2^2 - y_1y_3x_1^5x_2 + y_2y_3x_1^6, x_1^{15} \right\}$$
(2.12)

implying that the matrix $B_{\mathbb{Z}_4}$ associated with the linear map b, given in (2.3), is

and we have

$$\mathcal{C}_{\mathbb{Z}_4} = \Big\{ I_4, C_{(1234)}, C_{(13)(24)}, C_{(1432)} \Big\},\$$

where

$$C_{(1234)} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad C_{(13)(24)} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$
$$C_{(1432)} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

For instance, $C_{(1234)}$ is simply the permutation matrix obtained by permuting the rows of I₄ using the permutation (1234) and likewise $C_{(13)(24)}$ and $C_{(1432)}$.

Recall that $A_{(1234)}$ is the matrix associated to the restriction of the linear map $H^{120}(\alpha)$ to the vector space $b(V^{119})$, where the cochain map α is given by (2.5), with respects to the basis Σ in (2.12). Thus, $A_{(1234)}$ is obtained by using the permutation $\sigma_2 = (1234)$ as follows:

$$\begin{split} & w_1^3 \mapsto w_2^3 \ , \ w_2^3 \mapsto w_3^3 \ , \ w_3^3 \mapsto w_4^3 \ , \ w_4^3 \mapsto w_1^3 \ , \ w_1w_2x_2^4 \mapsto w_2w_3x_2^4 \ , \\ & w_2w_3x_2^4 \mapsto w_3w_4x_2^4 \ , \ w_3w_4x_2^4 \mapsto w_4w_1x_2^4 \ , \ w_4w_1x_2^4 \mapsto w_1w_4x_2^4 \ , \\ & y_1y_2x_1^4x_2^2 - y_1y_3x_1^5x_2 + y_2y_3x_1^6 \mapsto y_1y_2x_1^4x_2^2 - y_1y_3x_1^5x_2 + y_2y_3x_1^6 \ , \\ & x_1^{15} \mapsto x_1^{15} \ . \end{split}$$

and likewise we obtain the matrices $A_{(13)(24)}$ and $A_{(1432)}$. Notice that matrices $M_{(1234)}$, $M_{(13)(24)}$, $M_{(1432)}$ are constructed from the

matrices $A_{(1234)}, A_{(13)(24)}, A_{(1432)}$ using (2.10) and finally we have

$$\Omega_{\mathbb{Z}_4} = \left\{ (I_4, I_{12}), (A_{(1234)}, C_{(1234)}), \\ (A_{(13)(24)}, C_{(13)(24)}), (A_{(1432)}, C_{(1432)}) \right\}$$

It is also worth noting to point out that the group $M_{\mathbb{Z}_4}$, which is isomorphic to \mathbb{Z}_4 is a realisable subgroup of the group of permutation matrices $\mathcal{P}(8)$.

Example 6 In this example we use the same analysis and computation as in the example (5), but we omit all the details, to determine the groups $\mathcal{A}_{\mathbb{V}}$, $\mathcal{C}_{\mathbb{V}}$, $\mathcal{H}(\mathbb{V})$ and $\Omega_{\mathbb{V}}$ for the Klein group \mathbb{V} . Indeed, the monomorphism

$$\mathbb{V} = \{g_1, g_2, g_3, g_4\} \leftrightarrow S_4$$

is given by

$$g_2 \leftrightarrow (12)(34)$$
, $g_3 \leftrightarrow (13)(24)$, $g_4 \rightarrow (14)(23)$,

so the model associated to $\mathbb V$ is

$$(\Lambda(x_1, x_2, y_1, y_2, y_3, w_1, w_2, w_3, w_4, z_1, z_2, z_3, z_4), \partial)$$

where $|x_1| = 8$, $|x_2| = 10$, $|w_j| = 40$, and where the differential is given by

$$\begin{split} \partial(x_1) &= \partial(x_2) = \partial(w_1) = 0 , \ \partial(y_1) = x_1^3 x_2 , \ \partial(y_2) = x_1^2 x_2^2 , \ \partial(y_3) = x_1 x_2^3 , \\ \partial(z_1) &= w_1^3 + w_1 w_2 x_2^4 + w_1 w_4 x_2^4 + y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6 + x_1^{15} , \\ \partial(z_2) &= w_2^3 + w_2 w_3 x_2^4 + w_2 w_1 x_1^4 + y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6 + x_1^{15} , \\ \partial(z_3) &= w_3^3 + w_3 w_4 x_2^4 + w_3 w_2 x_2^4 + y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6 + x_1^{15} , \\ \partial(z_4) &= w_4^3 + w_4 w_1 x_2^4 + w_4 w_3 x_2^4 + y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6 + x_1^{15} \end{split}$$

If $u = y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6$, then the basis Σ is given by

$$\Sigma = \left\{ w_1^3, w_2^3, w_3^3, w_4^3, w_1w_2x_2^4, w_2w_3x_2^4, w_3w_4x_2^4, \\ w_4w_1x_2^4, w_1w_4x_2^4, w_2w_1x_2^4, w_3w_2x_2^4, w_4w_3x_2^4, u, x_1^{15} \right\}$$

implying that dim $b(V^{119}) = 14$ and the matrix $B_{\mathbb{W}}$ is

We have $C_{\mathbb{V}} = \left\{ I_4, C_{(12)(34)}, C_{(13)(24)}, C_{(14)(23)} \right\}$, where $C_{(12)(34)} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$, $C_{(13)(24)} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$ $C_{(14)(23)} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$ and $\mathcal{A}_{\mathbb{V}} = \left\{ I_{14}, \mathcal{A}_{(12)(34)}, \mathcal{A}_{(13)(24)}, \mathcal{A}_{14)(23)} \right\}$, where

Notice that $H(\mathbb{V})$ is a realisable subgroup of $\mathcal{P}(12)$. Finally, we have

$$\Omega_{\mathbb{V}} = \left\{ (I_4, I_{14}), (A_{(12)(34)}, C_{(12)(34)}), \\ (A_{(13)(24)}, C_{(13)(24)}), (A_{(14)(32)}, C_{(14)(32)}) \right\}.$$

REFERENCES

- M. BENKHALIFA: "Postnikov decomposition and the group of selfequivalences of a rationalized space", *Homology Homotopy Appl.* 19, No.1 (2017), 209–224.
- [2] M. BENKHALIFA: "Adams-Hilton model and the group of selfhomotopy equivalences of a simply connected cw-complex", *Homology Homotopy Appl.* 21, No.2 (2019), 345–362.
- [3] M. BENKHALIFA: "On the group of self-homotopy equivalences of an elliptic space", *Proc. Amer. Math. Soc.* 148 (2020), 2695–2706.
- [4] M. BENKHALIFA: "The effect of cell-attachment on the group of self-equivalences of an elliptic space", *Michigan Math. J.* (2021); doi:10.1307/mmj/20195840.
- [5] M. BENKHALIFA S.B. SMITH: "The effect of cell attachment on the group of self-equivalences of an R-local space", *J. Hom. Rel. Structures*, 4 (2015), 135–144.
- [6] Y. FÉLIX S. HALPERIN J.-C. THOMAS: "Rational Homotopy Theory", *Springer*, New York (2001).
- [7] D.W. KAHN: "Realization problem for the group of homotopy classes of self-homotopy equivalences", *Math. Annalen* 220 (1976), 37–46.

Mahmoud Benkhalifa Department of Mathematics Faculty of Sciences University of Sharjah (United Arab Emirates) e-mail: mbenkhalifa@sharjah.ac.ae