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Abstract
In this paper we prove that any finite group of order n can be viewed as the group
of the solutions of a certain matrix equation XB = BY, where the unknowns X, Y are
two permutation matrices of order n and (1+ k)n+ 2 respectively and where k 2 N
is given by Cayley’s theorem. Moreover, we show that G is isomorphic to a certain
subgroup formed by permutation matrices of order (1+ k)n obtained by permuting
all the rows of the identity matrix I(1+k)n.
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1 Introduction

Let P(n) denote the group of permutation matrices of degree n. For
a given matrix B, let us consider the group ⌦B of the pairs (X, Y)
in P(n)⇥ P(m) which are solutions of the matrix equation XB = BY.
Obviously, ⌦B is finite group as P(n) and P(m) are finite and it is
worth noting that if � 2 Q and (X, Y) 2 ⌦B, then the pair (�X, �Y)
needs not be in ⌦B although that we have (�X)B = B(�Y) since �X, �Y
are not permutation matrices for � 6= 1.

A subgroup H of P(n) is called realisable if each element M 2 H
is obtained by permuting the rows of the identity matrix In using a
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permutation ⌧ 2 Sn satisfying ⌧(i) 6= i for all 1 6 i 6 n. Here Sn
denotes the symmetric group of order n.

Recall that, by Cayley’s theorem, any finite group G of order n is
isomorphic to a realisable subgroup, denoted by CG, of P(n) via the
map

G = {g1, . . . , gn} ! Sn ' P(n)

gj 7! �j =

✓
g1 g2 . . . gn
gj �j(g2) . . . �j(gn)

◆
$ Mj

where Mj is the matrix obtained by permuting all the rows of the
identity matrix In using �j.

Following the idea developed in [1] and inspired by the works
done in [4] and [2] regarding the so-called Kahn’s realisability prob-
lem of groups (see [5] and [7] for more details), this paper is de-
voted to answer the question whether a given finite group G can
occur as a group on the form ⌦B and whether G can be embed-
ded in P(m), where m > n, as a realisable subgroup. For this pur-
pose we shall assign to G a matrix BG and a realisable subgroup AG

of P
�
(1+ k)n+ 2

�
, where k is given by the decomposition of the per-

mutation �2 into product of disjoint cycles, i.e. �2 = ⌧1⌧2 . . . ⌧k and
we shall define ⌦BG

as a certain subgroup of AG ⇥ CG.
The group AG and the matrix BG are defined using the frame-

work of rational homotopy theory [6] and the ideas developed in [3]
and [1]. More precisely, AG is defined in terms of the cohomology of
a certain a free commutative cochain Q-algebra associated with the
group G and BG is related to its differential.

In this paper we establish the following result.

Theorem 1 For any finite group G of order n, there exists a matrix BG

such that G is isomorphic to the group ⌦BG
of the solutions of the ma-

trix equation XBG = BGY, where the unknowns X, Y are two permutation
matrices belonging to the groups AG and CG respectively.

Corollary 2 Any finite group G of order n is isomorphic to a realisable
subgroup of P

�
(1+ k)n

�
.
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2 Main results
2.1 Definition of the group AG

Let us start by recalling the main construction in [1] on which this
work is based. Indeed, let G = {g1, g2, . . . , gn} be a finite group of
order n and let Sn be the symmetric group. By Cayley’s theorem
there is a monomorphism

 : G ! Sn gj 7! �j : gk �! gjgk 1 6 k 6 n

For 2 6 j 6 n, write �j =
✓

1 2 . . . n
j �j(2) . . . �j(n)

◆
and let

�2 =
⇣
1 2�2(2) . . .�

2

2
(2)

⌘⇣
i1�2(i1) . . . �

i
1

2
(i1)

⌘
. . .

⇣
ik �2(ik) . . .�

i
k

2
(ik)

⌘

be the decomposition of �2 into a product of cycles.

Recall that in [1] we constructed a free commutative cochain Q-al-
gebra �

⇤(x1, x2,y1,y2,y3, {zj,wj}gi2G), @
�

where the degrees of the elements in this graded algebra are

|x1| = 8, |x2| = 10, |wj| = 40

and where the differential is given by:

@(x1) = @(x2) = @(wj) = 0 , @(y1) = x3
1
x2, @(y2) = x2

1
x2
2

, @(y3) = x1x
3

2

@(zj) = w3

j
+wjw�j+1(1)x

4

2
+

kX

⌧=1

wjw�j+1(i⌧)x
4

2
+ u+ x15

1
, 1 6 j 6 n- 1

@(zn) = w3

n +wnw1x
4

2
+

kX

⌧=1

wnwi⌧
x4
2
+ u+ x15

1
(2.1)

where u = y1y2x
4

1
x2
2
- y1y3x

5

1
x2 + y2y3x

6

1
, and we proved that

E
�
⇤(x1, x2,y1,y2,y3, {zj,wj}gi2G)

�
' G

where E
�
⇤(x1, x2,y1,y2,y3, {zj,wj}16j6n)

�
denotes the group of self

homotopy cochain equivalences of ⇤(x1, x2,y1,y2,y3, {zj,wj}gi2G)
(see [3] and [1] for more details).
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Now let V119 = Q{z1, . . . , zn} be the vector space spanned by the
set {z1, . . . , zn}. Recall that |zi| = 119 for every 1 6 i 6 n. In [1], Pro-
position 3.9, it is shown that

E
�
⇤(x1, x2,y1,y2,y3, {zj,wj}gi2G)

�
' D

119

40
,

where D
119

40
is the subgroup of

aut(V119)⇥ E
�
⇤(x1, x2,y1,y2,y3, {wj}gi2G)

�

consisting of the couples (⇠, [↵]) making the following diagram com-
mutes:

(2.2)

where �120
G

= H120
�
⇤(x1, x2,y1,y2,y3, {wj}gi2G)

�
and where b is

defined by
b(zi) = [@(zi), 1 6 j 6 n (2.3)

Here [@(zi) is the cohomology class of @(zi) in

H120
�
⇤(x1, x2,y1,y2,y3, {wj}gi2G)

�
.

Moreover, it is shown that if (⇠, [↵]) 2 D
119

40
, then there exists a

unique permutation

�s =

✓
1 2 . . . n
s �s(2) . . . �s(n)

◆
(2.4)

such that
⇠(zj) = z�s(j), ↵(wj) = w�s(j),

↵ = id, on x1, x2,y1,y2,y3.
(2.5)

Thus, there is an isomorphism

 : D119

40
! G

defined by  
�
(⇠, [↵])

�
= gs, where the element gs corresponds to the



Realising a finite group as permutation matrices 45

permutation �s, given in (2.4), via Cayley’s theorem.

Set
u = y1y2x

4

1
x2
2
- y1y3x

5

1
x2 + y2y3x

6

1
.

As the following set of generators

⌃ =
⌦
w3

1
; . . . ; w3

n ; wjw�j+1(1)x
4

2
;

wjw�j+1(i⌧)x
4

2
; u ; x15

1

↵ (2.6)

where 1 6 j 6 n and 1 6 ⌧ 6 k, is linearly independent in the vector
space

�120
G

= H120
�
⇤(x1, x2,y1,y2,y3, {wj}i2G)

�

it follows that ⌃ can be chosen, according the formulas (2.1) and (2.3),
as a basis for the vector space b(V119) ✓ �120

G
. Notice that

dim b(V119) = cardinal(⌃) = (1+ k)n+ 2 (2.7)

Thus, if BG denotes the matrix of order ((1+ k)n+ 2)⇥ n which is
associated to the linear map b defined in (2.3) with respects to the
basis ⌃, then we can write

BG =

2

4
In
M
D

3

5 where D =


1 1 . . . 1
1 1 . . . 1

�
,

where the matrix M =
⇥
mij

⇤
is defined by

mij =

8
<

:

1, if i 2 {�j+1(1),�j+1(i1), . . . ,�j+1(ik)},

0, otherwise.

Consequently, taking into construction (2.5), the matrices associated
to the linear maps ⇠ and the restriction of the linear map H120(↵)
to b(V119), given in the diagram (2.2) and corresponding to the ele-
ment (⇠, [↵]) 2 D

119

40
, can be written, respectively, as

Cgs
= �sIn , Ags

=

2

4
�sIn 0 0

0 eAgs
0

0 0 I2

3

5 , (2.8)
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where

�sIn =
⇥
ci,j

⇤
16i,j6(k+1)n , ci,j =

�
1, if i = �s(j)

0, otherwise
,

and where

eAgs
=

⇥
an+i,n+j

⇤
16i,j6(k+1)n , an+i,n+j =

�
1, if i = �s(j)

0, otherwise
.

Here �s is the permutation corresponding to gs via Cayley’s theo-
rem.

From (2.8), it is clear to see that Ags
is a permutation matrix. Recall

that the commutativity of the diagram (2.2) implies that

Ags
BG = BGCgs

, 8gs 2 G. (2.9)

Let G = {g1, . . . , gn} be a group, we define the following two sets

AG = {Ags
, gs 2 G}, ⌦G =

�
(Ags

,Cgs
) 2 AG ⇥ CG , gs 2 G

 
.

Theorem 3 The sets AG and ⌦G are groups isomorphic to G.

Proof — First let us prove that AG is a group. Let Ags
,Agr

2 AG.
By (2.9) there exist two matrices Cgs

,Cgr
such that

Ags
BG = BGCgs

and Agr
BG = BGCgr

therefore
Ags

Agr
BG = Ags

BGCgr
= BGCgs

Cgr
,

it follows that Ags
Agr

2 AG. Here we use the fact that

Ags
Agr

= Agsgr
and Cgs

Cgr
= Cgsgr

(2.10)

Next let Ags
2 AG. Since Ags

and Cgs
are invertible, we deduce

that BGC-1
gs

= (Ags
)-1BG implying that (Ags

)-1 2 AG. Notice also
that A-1

gs
= A

g
-1
s

.
Then, using the same arguments, it is easy to check that the set ⌦G

is a group. Finally, it is clear that the two maps

� : G ! AG and ' : G ! ⌦G,
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defined by �(gs) = Ags
and '(gs) = (Ags

,Cgs
) respectively, are

isomorphisms of groups. ut

2.2 Realisable subgroups

A subgroup H of P(n) is called realisable if each element M 2 H is
obtained by permuting the rows of the identity matrix In using a
permutation ⌧ 2 Sn satisfying ⌧(i) 6= i for all 1 6 i 6 n.

Let G = {g1, . . . , gn} be a group. Based on the formula (2.8) , let us
define the following matrix

Mgs
=


�sIn 0

0 eAgs

�
, gs 2 G (2.11)

Theorem 4 If HG = {Mgs
, gs 2 G}, then HG is a realisable subgroup

of P
�
(1+ k)n

�
isomorphic to G

Proof — According to the formula (2.8), the matrix Mgs
is defined

in terms of the permutation �s corresponding to the element gs 2 G,
so it follows that �s(i) 6= i for every 1 6 i 6 n implying that Mgs

belongs to P
�
(1+ k)n

�
.

Taking into consideration the relation (2.10), the map

G = {g1, . . . , gn} ! HG

which assign gs 7! Mgs
is obviously an isomorphism of groups. ut

2.3 Examples

In the following examples we illustrate our study by determining
all the groups introduced in this paper for the cyclic group Z4 and
the Klein group V.

Example 5 If G = Z4, then the monomorphism

Z4 = {g1, g2, g3, g4} ! S4

is given by

g1 ! id, g2 $ �2 = (1234), g3 $ �3 = (13)(24), g4 $ �4 = (1432)

therefore according to (2.1) the model associated with Z4 is
�
⇤(x1, x2,y1,y2,y3,w1,w2,w3,w4, z1, z2, z3, z4), @

�
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where |x1| = 8, |x2| = 10, |wj| = 40, and the differential is given by

@(x1) = @(x2) = @(wj) = 0, @(y1) = x3
1
x2 , @(y2) = x2

1
x2
2

, @(y3) = x1x
3

2
,

@(z1) = w3

1
+w1w2x

4

2
+ y1y2x

4

1
x2
2
- y1y3x

5

1
x2 + y2y3x

6

1
+ x15

1
,

@(z2) = w3

2
+w2w3x

4

2
+ y1y2x

4

1
x2
2
- y1y3x

5

1
x2 + y2y3x

6

1
+ x15

1
,

@(z3) = w3

3
+w3w4x

4

2
+ y1y2x

4

1
x2
2
- y1y3x

5

1
x2 + y2y3x

6

1
+ x15

1
,

@(z4) = w4

2
+w4w1x

4

2
+ y1y2x

4

1
x2
2
- y1y3x

5

1
x2 + y2y3x

6

1
+ x15

1
.

For the above construction it is clear that V119 = Q{z1, z2, z3, z4} and
by (2.6) the base ⌃ of the vector space b(V119) is given

⌃ =
⌦
w3

1
,w3

2
,w3

3
,w3

4
,w1w2x

4

2
,w2w3x

4

2
,w3w4x

4

2
,

w4w1x
4

2
,y1y2x41x

2

2
- y1y3x

5

1
x2 + y2y3x

6

1
, x15

1

↵ (2.12)

implying that the matrix BZ4
associated with the linear map b, given

in (2.3), is

BZ4
=

0

BBBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 1

1 1 1 1

1

CCCCCA
,

and we have

CZ4
=
⌦
I4,C(1234),C(13)(24),C(1432)

↵
,

where

C(1234) =

✓
0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

◆
, C(13)(24) =

✓
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

◆
,

C(1432) =

✓
0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

◆

For instance, C(1234) is simply the permutation matrix obtained by
permuting the rows of I4 using the permutation (1234) and like-
wise C(13)(24) and C(1432).
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Next we have AZ4
=
⌦
I10,A(1234),A(13)(24),A(1432)

↵
, where

A(1234) =

0

BBBBB@

0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

1

CCCCCA
, A(13)(24) =

0

BBBBB@

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

1

CCCCCA

A(1432) =

0

BBBBB@

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

1

CCCCCA

and HZ4
=
⌦
I8,M(1234),M(13)(24),M(1432)

↵
, where

M(1234) =

0

BB@

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1

CCA , M(13)(24) =

0

BB@

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

1

CCA

M(1432) =

0

BB@

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

1

CCA .

Recall that A(1234) is the matrix associated to the restriction of the
linear map H120(↵) to the vector space b(V119), where the cochain
map ↵ is given by (2.5), with respects to the basis ⌃ in (2.12).
Thus, A(1234) is obtained by using the permutation �2 = (1234) as
follows:

w3

1
7! w3

2
, w3

2
7! w3

3
, w3

3
7! w3

4
, w3

4
7! w3

1
, w1w2x

4

2
7! w2w3x

4

2
,

w2w3x
4

2
7! w3w4x

4

2
, w3w4x

4

2
7! w4w1x

4

2
, w4w1x

4

2
7! w1w4x

4

2
,

y1y2x
4

1
x2
2
- y1y3x

5

1
x2 + y2y3x

6

1
7! y1y2x

4

1
x2
2
- y1y3x

5

1
x2 + y2y3x

6

1
,

x15
1

7! x15
1

.

and likewise we obtain the matrices A(13)(24) and A(1432). Notice
that matrices M(1234),M(13)(24),M(1432) are constructed from the
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matrices A(1234),A(13)(24),A(1432) using (2.10) and finally we have

⌦Z4
=
⌦
(I4, I12), (A(1234),C(1234)),

(A(13)(24),C(13)(24)), (A(1432),C(1432))
↵

It is also worth noting to point out that the group MZ4
, which is iso-

morphic to Z4 is a realisable subgroup of the group of permutation
matrices P(8).

Example 6 In this example we use the same analysis and computa-
tion as in the example (5), but we omit all the details, to determine
the groups AV,CV,H(V) and ⌦V for the Klein group V. Indeed, the
monomorphism

V = {g1, g2, g3, g4} $ S4

is given by

g2 $ (12)(34) , g3 $ (13)(24) , g4 ! (14)(23),

so the model associated to V is
�
⇤(x1, x2,y1,y2,y3,w1,w2,w3,w4, z1, z2, z3, z4), @

�

where |x1| = 8, |x2| = 10, |wj| = 40, and where the differential is given
by

@(x1) = @(x2) = @(wj) = 0 , @(y1) = x3
1
x2 , @(y2) = x2

1
x2
2

, @(y3) = x1x
3

2
,

@(z1) = w3

1
+w1w2x

4

2
+w1w4x

4

2
+ y1y2x

4

1
x2
2
- y1y3x

5

1
x2 + y2y3x

6

1
+ x15

1
,

@(z2) = w3

2
+w2w3x

4

2
+w2w1x

4

1
+ y1y2x

4

1
x2
2
- y1y3x

5

1
x2 + y2y3x

6

1
+ x15

1
,

@(z3) = w3

3
+w3w4x

4

2
+w3w2x

4

2
+ y1y2x

4

1
x2
2
- y1y3x

5

1
x2 + y2y3x

6

1
+ x15

1
,

@(z4) = w3

4
+w4w1x

4

2
+w4w3x

4

2
+ y1y2x

4

1
x2
2
- y1y3x

5

1
x2 + y2y3x

6

1
+ x15

1

If u = y1y2x
4

1
x2
2
- y1y3x

5

1
x2 + y2y3x

6

1
, then the basis ⌃ is given by

⌃ =
⌦
w3

1
,w3

2
,w3

3
,w3

4
,w1w2x

4

2
,w2w3x

4

2
,w3w4x

4

2
,

w4w1x
4

2
,w1w4x

4

2
,w2w1x

4

2
,w3w2x

4

2
,w4w3x

4

2
,u, x15

1

↵
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implying that dim b(V119) = 14 and the matrix BV is

BV =

0

BBBBBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 1

0 0 1 0

1 1 1 1

1 1 1 1

1

CCCCCCCA

We have CV =
⌦
I4,C(12)(34),C(13)(24),C(14)(23)

↵
, where

C(12)(34) =

✓
0 1 0 0

1 0 0 1

0 0 0 0

0 0 1 0

◆
, C(13)(24) =

✓
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

◆

C(14)(23) =

✓
0 0 0 0

0 0 1 0

0 1 0 0

1 0 0 1

◆

and AV =
⌦
I14,A(12)(34),A(13)(24),A14)(23)

↵
, where

A(12)(34) =

0

BBBBBBBBB@

0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

1

CCCCCCCCCA

,

A(13)(24) =

0

BBBBBBBBB@

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

1

CCCCCCCCCA

,
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A(14)(23) =

0

BBBBBBBBB@

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

1

CCCCCCCCCA

Next we have HV =
⌦
I12,M(12)(34),M(13)(24),M14)(23)

↵
, where

M(12)(34) =

0

BBBBBBB@

0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0

1

CCCCCCCA

,

M(13)(24) =

0

BBBBBBB@

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

1

CCCCCCCA

,

M(14)(23) =

0

BBBBBBB@

0 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

1

CCCCCCCA

.

Notice that H(V) is a realisable subgroup of P(12). Finally, we have

⌦V =
⌦
(I4, I14), (A(12)(34),C(12)(34)),

(A(13)(24),C(13)(24)), (A(14)(32),C(14)(32))
↵

.
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