Realising a Finite Group as a Subgroup of a Product of Two Groups of Permutation Matrices

Mahmoud Benkhalifa
(Received May 24, 2021; Accepted Sept. 12, 2021 — Communicated by I.Ya. Subbotin)

Abstract

In this paper we prove that any finite group of order n can be viewed as the group of the solutions of a certain matrix equation $X B=B Y$, where the unknowns X, Y are two permutation matrices of order n and $(1+k) n+2$ respectively and where $k \in \mathbb{N}$ is given by Cayley's theorem. Moreover, we show that G is isomorphic to a certain subgroup formed by permutation matrices of order $(1+k) n$ obtained by permuting all the rows of the identity matrix $I_{(1+k) n}$.

Mathematics Subject Classification (2020): 15A24, 55P10
Keywords: permutation matrix; graded commutative Q-algebra;
group of homotopy self-equivalences

1 Introduction

Let $\mathcal{P}(n)$ denote the group of permutation matrices of degree n. For a given matrix B, let us consider the group Ω_{B} of the pairs (X, Y) in $\mathcal{P}(n) \times \mathcal{P}(m)$ which are solutions of the matrix equation $X B=B Y$. Obviously, Ω_{B} is finite group as $\mathcal{P}(n)$ and $\mathcal{P}(m)$ are finite and it is worth noting that if $\lambda \in \mathbb{Q}$ and $(X, Y) \in \Omega_{B}$, then the pair $(\lambda X, \lambda Y)$ needs not be in Ω_{B} although that we have $(\lambda X) B=B(\lambda Y)$ since $\lambda X, \lambda Y$ are not permutation matrices for $\lambda \neq 1$.

A subgroup H of $\mathcal{P}(n)$ is called realisable if each element $M \in H$ is obtained by permuting the rows of the identity matrix I_{n} using a
permutation $\tau \in S_{n}$ satisfying $\tau(\mathfrak{i}) \neq \mathfrak{i}$ for all $1 \leqslant \mathfrak{i} \leqslant n$. Here S_{n} denotes the symmetric group of order n.

Recall that, by Cayley's theorem, any finite group G of order n is isomorphic to a realisable subgroup, denoted by \mathcal{C}_{G}, of $\mathrm{P}(\mathrm{n})$ via the map

$$
\begin{gathered}
G=\left\{g_{1}, \ldots, g_{n}\right\} \rightarrow S_{n} \simeq P(n) \\
g_{j} \mapsto \sigma_{j}=\left(\begin{array}{cccc}
g_{1} & g_{2} & \ldots & g_{n} \\
g_{j} & \sigma_{j}\left(g_{2}\right) & \ldots & \sigma_{j}\left(g_{n}\right)
\end{array}\right) \leftrightarrow M_{j}
\end{gathered}
$$

where M_{j} is the matrix obtained by permuting all the rows of the identity matrix I_{n} using σ_{j}.

Following the idea developed in [1] and inspired by the works done in [4] and [2] regarding the so-called Kahn's realisability problem of groups (see [5] and [7] for more details), this paper is devoted to answer the question whether a given finite group G can occur as a group on the form Ω_{B} and whether G can be embedded in $\mathcal{P}(\mathfrak{m})$, where $m>n$, as a realisable subgroup. For this purpose we shall assign to G a matrix B_{G} and a realisable subgroup \mathcal{A}_{G} of $\mathcal{P}((1+k) n+2)$, where k is given by the decomposition of the permutation σ_{2} into product of disjoint cycles, i.e. $\sigma_{2}=\tau_{1} \tau_{2} \ldots \tau_{\mathrm{k}}$ and we shall define $\Omega_{B_{G}}$ as a certain subgroup of $\mathcal{A}_{G} \times \mathfrak{C}_{G}$.
The group \mathcal{A}_{G} and the matrix B_{G} are defined using the framework of rational homotopy theory [6] and the ideas developed in [3] and [1]. More precisely, \mathcal{A}_{G} is defined in terms of the cohomology of a certain a free commutative cochain Q -algebra associated with the group G and B_{G} is related to its differential.
In this paper we establish the following result.
Theorem 1 For any finite group G of order n , there exists a matrix B_{G} such that G is isomorphic to the group $\Omega_{\mathrm{B}_{\mathrm{G}}}$ of the solutions of the matrix equation $\mathrm{XB}_{\mathrm{G}}=\mathrm{B}_{\mathrm{G}} \mathrm{Y}$, where the unknowns X, Y are two permutation matrices belonging to the groups \mathcal{A}_{G} and C_{G} respectively.

Corollary 2 Any finite group G of order n is isomorphic to a realisable subgroup of $\mathcal{P}((1+k) n)$.

2 Main results

2.1 Definition of the group \mathcal{A}_{G}

Let us start by recalling the main construction in [1] on which this work is based. Indeed, let $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ be a finite group of order n and let S_{n} be the symmetric group. By Cayley's theorem there is a monomorphism

$$
\Psi: G \rightarrow S_{n} \quad g_{j} \mapsto \sigma_{j}: g_{k} \longrightarrow g_{j} g_{k} \quad 1 \leqslant k \leqslant n
$$

For $2 \leqslant \mathfrak{j} \leqslant n$, write $\sigma_{j}=\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ \mathfrak{j} & \sigma_{\mathfrak{j}}(2) & \ldots & \sigma_{\mathfrak{j}}(n)\end{array}\right)$ and let
$\sigma_{2}=\left(12 \sigma_{2}(2) \ldots \sigma_{2}^{K_{2}}(2)\right)\left(\mathfrak{i}_{1} \sigma_{2}\left(\mathfrak{i}_{1}\right) \ldots \sigma_{2}^{{ }^{i_{1}}}\left(\mathfrak{i}_{1}\right)\right) \ldots\left(\mathfrak{i}_{k} \sigma_{2}\left(\mathfrak{i}_{k}\right) \ldots \sigma_{2}^{{ }^{i_{k}}}{ }^{i_{k}}\left(\mathfrak{i}_{k}\right)\right)$
be the decomposition of σ_{2} into a product of cycles.
Recall that in [1] we constructed a free commutative cochain Q-algebra

$$
\left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3},\left\{z_{j}, w_{j}\right\}_{g_{i} \in G}\right), \partial\right)
$$

where the degrees of the elements in this graded algebra are

$$
\left|x_{1}\right|=8, \quad\left|x_{2}\right|=10, \quad\left|w_{j}\right|=40
$$

and where the differential is given by:
$\partial\left(x_{1}\right)=\partial\left(x_{2}\right)=\partial\left(w_{j}\right)=0, \quad \partial\left(y_{1}\right)=x_{1}^{3} x_{2}, \quad \partial\left(y_{2}\right)=x_{1}^{2} x_{2}^{2}, \quad \partial\left(y_{3}\right)=x_{1} x_{2}^{3}$
$\partial\left(z_{j}\right)=w_{j}^{3}+w_{j} w_{\sigma_{j+1}(1)} x_{2}^{4}+\sum_{\tau=1}^{k} w_{j} w_{\sigma_{j+1}\left(i_{\tau}\right)} x_{2}^{4}+u+x_{1}^{15}, \quad 1 \leqslant j \leqslant n-1$
$\partial\left(z_{n}\right)=w_{n}^{3}+w_{n} w_{1} x_{2}^{4}+\sum_{\tau=1}^{k} w_{n} w_{\mathfrak{i}_{\tau}} x_{2}^{4}+u+x_{1}^{15}$
where $u=y_{1} y_{2} x_{1}^{4} x_{2}^{2}-y_{1} y_{3} x_{1}^{5} x_{2}+y_{2} y_{3} x_{1}^{6}$, and we proved that

$$
\mathcal{E}\left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3},\left\{z_{j}, w_{j}\right\}_{g_{i} \in G}\right)\right) \simeq G
$$

where $\mathcal{E}\left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3},\left\{z_{j}, w_{j}\right\}_{1 \leqslant j \leqslant n}\right)\right)$ denotes the group of self homotopy cochain equivalences of $\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3},\left\{z_{j}, w_{j}\right\}_{g_{i} \in G}\right)$ (see [3] and [1] for more details).

Now let $\mathrm{V}^{119}=\mathbb{Q}\left\{z_{1}, \ldots, z_{n}\right\}$ be the vector space spanned by the set $\left\{z_{1}, \ldots, z_{n}\right\}$. Recall that $\left|z_{i}\right|=119$ for every $1 \leqslant i \leqslant n$. In [1], Proposition 3.9, it is shown that

$$
\varepsilon\left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3},\left\{z_{j}, w_{j}\right\}_{g_{i} \in G}\right)\right) \simeq \mathcal{D}_{40}^{119},
$$

where \mathcal{D}_{40}^{119} is the subgroup of

$$
\operatorname{aut}\left(V^{119}\right) \times \varepsilon\left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3},\left\{w_{j}\right\}_{g_{i} \in G}\right)\right)
$$

consisting of the couples $(\xi,[\alpha])$ making the following diagram commutes:

where $\Gamma_{G}^{120}=H^{120}\left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3},\left\{w_{j}\right\}_{g_{i} \in G}\right)\right)$ and where b is defined by

$$
\begin{equation*}
\mathrm{b}\left(z_{\mathfrak{i}}\right)=\widehat{\partial\left(z_{\mathfrak{i}}\right)}, \quad 1 \leqslant \mathfrak{j} \leqslant \mathrm{n} \tag{2.3}
\end{equation*}
$$

Here $\widehat{\partial\left(z_{\mathfrak{i}}\right)}$ is the cohomology class of $\partial\left(z_{\mathrm{i}}\right)$ in

$$
H^{120}\left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3},\left\{w_{j}\right\}_{g_{i} \in G}\right)\right) .
$$

Moreover, it is shown that if $(\xi,[\alpha]) \in \mathcal{D}_{40}^{119}$, then there exists a unique permutation

$$
\sigma_{s}=\left(\begin{array}{cccc}
1 & 2 & \ldots & n \tag{2.4}\\
s & \sigma_{s}(2) & \ldots & \sigma_{s}(n)
\end{array}\right)
$$

such that

$$
\begin{align*}
& \xi\left(z_{\mathfrak{j}}\right)=z_{\sigma_{\mathrm{s}}(\mathfrak{j})}, \quad \alpha\left(w_{\mathfrak{j}}\right)=w_{\sigma_{s}(\mathfrak{j})}, \tag{2.5}\\
& \alpha=\mathrm{id}, \quad \text { on } \quad x_{1}, x_{2}, y_{1}, y_{2}, y_{3} .
\end{align*}
$$

Thus, there is an isomorphism

$$
\Psi: \mathcal{D}_{40}^{119} \rightarrow \mathrm{G}
$$

defined by $\Psi((\xi,[\alpha]))=g_{s}$, where the element g_{s} corresponds to the
permutation σ_{s}, given in (2.4), via Cayley's theorem.

Set

$$
u=y_{1} y_{2} x_{1}^{4} x_{2}^{2}-y_{1} y_{3} x_{1}^{5} x_{2}+y_{2} y_{3} x_{1}^{6}
$$

As the following set of generators

$$
\begin{align*}
& \Sigma=\left\{w_{1}^{3} ; \ldots ; w_{n}^{3} ; w_{j} w_{\sigma_{j+1}(1)} x_{2}^{4} ;\right. \tag{2.6}\\
& \\
& \left.w_{\mathfrak{j}} w_{\sigma_{j+1}\left(\mathfrak{i}_{\tau}\right)} x_{2}^{4} ; u ; x_{1}^{15}\right\}
\end{align*}
$$

where $1 \leqslant j \leqslant n$ and $1 \leqslant \tau \leqslant k$, is linearly independent in the vector space

$$
\Gamma_{\mathrm{G}}^{120}=H^{120}\left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3},\left\{w_{j}\right\}_{\mathfrak{i} \in G}\right)\right)
$$

it follows that Σ can be chosen, according the formulas (2.1) and (2.3), as a basis for the vector space $b\left(V^{119}\right) \subseteq \Gamma_{G}^{120}$. Notice that

$$
\begin{equation*}
\operatorname{dim} b\left(V^{119}\right)=\operatorname{cardinal}(\Sigma)=(1+k) n+2 \tag{2.7}
\end{equation*}
$$

Thus, if B_{G} denotes the matrix of order $((1+k) n+2) \times n$ which is associated to the linear map b defined in (2.3) with respects to the basis Σ, then we can write

$$
B_{G}=\left[\begin{array}{c}
I_{n} \\
M \\
D
\end{array}\right] \quad \text { where } \quad D=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right],
$$

where the matrix $M=\left[m_{i j}\right]$ is defined by

$$
m_{i j}= \begin{cases}1, & \text { if } \mathfrak{i} \in\left\{\sigma_{j+1}(1), \sigma_{j+1}\left(i_{1}\right), \ldots, \sigma_{j+1}\left(\mathfrak{i}_{k}\right)\right\} \\ 0, & \text { otherwise }\end{cases}
$$

Consequently, taking into construction (2.5), the matrices associated to the linear maps ξ and the restriction of the linear map $H^{120}(\alpha)$ to $b\left(V^{119}\right)$, given in the diagram (2.2) and corresponding to the element $(\xi,[\alpha]) \in \mathcal{D}_{40}^{119}$, can be written, respectively, as

$$
C_{g_{s}}=\sigma_{s} I_{n}, \quad A_{g_{s}}=\left[\begin{array}{ccc}
\sigma_{s} I_{n} & 0 & 0 \tag{2.8}\\
0 & \tilde{A}_{g_{s}} & 0 \\
0 & 0 & I_{2}
\end{array}\right],
$$

where

$$
\sigma_{s} I_{n}=\left[c_{i, j}\right]_{1 \leqslant i, j \leqslant(k+1) n}, \quad c_{i, j}= \begin{cases}1, & \text { if } i=\sigma_{s}(j) \\ 0, & \text { otherwise }\end{cases}
$$

and where

$$
\widetilde{A}_{9_{s}}=\left[a_{n+i, n+j}\right]_{1 \leqslant i, j \leqslant(k+1) n}, \quad a_{n+i, n+j}= \begin{cases}1, & \text { if } \mathfrak{i}=\sigma_{s}(j) \\ 0, & \text { otherwise }\end{cases}
$$

Here σ_{s} is the permutation corresponding to g_{s} via Cayley's theorem.

From (2.8), it is clear to see that $A_{g_{s}}$ is a permutation matrix. Recall that the commutativity of the diagram (2.2) implies that

$$
\begin{equation*}
A_{g_{s}} \mathrm{~B}_{\mathrm{G}}=\mathrm{B}_{\mathrm{G}} \mathrm{C}_{\mathrm{g}_{\mathrm{s}}}, \quad \forall \mathrm{~g}_{\mathrm{s}} \in \mathrm{G} \tag{2.9}
\end{equation*}
$$

Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$ be a group, we define the following two sets

$$
\mathcal{A}_{\mathrm{G}}=\left\{\mathcal{A}_{\mathrm{g}_{s}}, \mathrm{~g}_{\mathrm{s}} \in \mathrm{G}\right\}, \quad \Omega_{\mathrm{G}}=\left\{\left(\mathcal{A}_{\mathrm{g}_{s}}, \mathrm{C}_{\mathrm{g}_{\mathrm{s}}}\right) \in \mathcal{A}_{\mathrm{G}} \times \mathcal{C}_{\mathrm{G}}, \mathrm{~g}_{\mathrm{s}} \in \mathrm{G}\right\} .
$$

Theorem 3 The sets \mathcal{A}_{G} and Ω_{G} are groups isomorphic to G .
Proof - First let us prove that \mathcal{A}_{G} is a group. Let $\AA_{\mathrm{g}_{s}}, \mathrm{~A}_{\mathrm{g}_{\mathrm{r}}} \in \mathcal{A}_{\mathrm{G}}$. By (2.9) there exist two matrices $C_{g_{s}}, C_{g_{r}}$ such that

$$
A_{g_{s}} B_{G}=B_{G} C_{g_{s}} \quad \text { and } \quad A_{g_{r}} B_{G}=B_{G} C_{g_{r}}
$$

therefore

$$
A_{g_{s}} A_{g_{r}} B_{G}=A_{g_{s}} B_{G} C_{g_{r}}=B_{G} C_{g_{s}} C_{g_{r}},
$$

it follows that $A_{g_{s}} A_{g_{r}} \in \mathcal{A}_{G}$. Here we use the fact that

$$
\begin{equation*}
A_{g_{s}} A_{g_{r}}=A_{g_{s} g_{r}} \quad \text { and } \quad C_{g_{s}} C_{g_{r}}=C_{g_{s} g_{r}} \tag{2.10}
\end{equation*}
$$

Next let $A_{g_{s}} \in \mathcal{A}_{G}$. Since $A_{g_{s}}$ and $C_{g_{s}}$ are invertible, we deduce that $\mathrm{B}_{\mathrm{G}} \mathrm{C}_{\mathrm{g}_{s}}^{-1}=\left(\mathrm{A}_{\mathrm{g}_{s}}\right)^{-1} \mathrm{~B}_{\mathrm{G}}$ implying that $\left(\mathcal{A}_{\mathrm{g}_{s}}\right)^{-1} \in \mathcal{A}_{\mathrm{G}}$. Notice also that $A_{g_{s}}^{-1}=A_{g_{s}^{-1}}$.

Then, using the same arguments, it is easy to check that the set Ω_{G} is a group. Finally, it is clear that the two maps

$$
\chi: \mathrm{G} \rightarrow \mathcal{A}_{\mathrm{G}} \quad \text { and } \quad \varphi: \mathrm{G} \rightarrow \Omega_{\mathrm{G}},
$$

defined by $\chi\left(g_{s}\right)=A_{g_{s}}$ and $\varphi\left(g_{s}\right)=\left(A_{g_{s}}, C_{g_{s}}\right)$ respectively, are isomorphisms of groups.

2.2 Realisable subgroups

A subgroup H of $\mathcal{P}(n)$ is called realisable if each element $M \in H$ is obtained by permuting the rows of the identity matrix I_{n} using a permutation $\tau \in S_{n}$ satisfying $\tau(i) \neq i$ for all $1 \leqslant i \leqslant n$.

Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$ be a group. Based on the formula (2.8), let us define the following matrix

$$
M_{g_{s}}=\left[\begin{array}{cc}
\sigma_{s} I_{n} & 0 \tag{2.11}\\
0 & \widetilde{A}_{g_{s}}
\end{array}\right] \quad, \quad g_{s} \in G
$$

Theorem 4 If $\mathrm{H}_{\mathrm{G}}=\left\{\mathrm{M}_{\mathrm{g}_{s}}, \mathrm{~g}_{\mathrm{s}} \in \mathrm{G}\right\}$, then H_{G} is a realisable subgroup of $\mathcal{P}((1+k) n)$ isomorphic to G

Proof - According to the formula (2.8), the matrix $M_{g_{s}}$ is defined in terms of the permutation σ_{s} corresponding to the element $g_{s} \in G$, so it follows that $\sigma_{s}(i) \neq i$ for every $1 \leqslant i \leqslant n$ implying that $M_{g_{s}}$ belongs to $\mathcal{P}((1+k) n)$.

Taking into consideration the relation (2.10), the map

$$
\mathrm{G}=\left\{\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}}\right\} \rightarrow \mathrm{H}_{\mathrm{G}}
$$

which assign $g_{s} \mapsto M_{g_{s}}$ is obviously an isomorphism of groups.

2.3 Examples

In the following examples we illustrate our study by determining all the groups introduced in this paper for the cyclic group \mathbb{Z}_{4} and the Klein group \mathbb{V}.

Example 5 If $G=\mathbb{Z}_{4}$, then the monomorphism

$$
\mathbb{Z}_{4}=\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\} \rightarrow S_{4}
$$

is given by

$$
\mathrm{g}_{1} \rightarrow \mathrm{id}, \quad \mathrm{~g}_{2} \leftrightarrow \sigma_{2}=(1234), \quad \mathrm{g}_{3} \leftrightarrow \sigma_{3}=(13)(24), \quad \mathrm{g}_{4} \leftrightarrow \sigma_{4}=(1432)
$$

therefore according to (2.1) the model associated with \mathbb{Z}_{4} is

$$
\left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, w_{1}, w_{2}, w_{3}, w_{4}, z_{1}, z_{2}, z_{3}, z_{4}\right), \partial\right)
$$

where $\left|x_{1}\right|=8,\left|x_{2}\right|=10,\left|w_{j}\right|=40$, and the differential is given by

$$
\begin{gathered}
\partial\left(x_{1}\right)=\partial\left(x_{2}\right)=\partial\left(w_{j}\right)=0, \partial\left(y_{1}\right)=x_{1}^{3} x_{2}, \partial\left(y_{2}\right)=x_{1}^{2} x_{2}^{2}, \partial\left(y_{3}\right)=x_{1} x_{2}^{3}, \\
\partial\left(z_{1}\right)=w_{1}^{3}+w_{1} w_{2} x_{2}^{4}+y_{1} y_{2} x_{1}^{4} x_{2}^{2}-y_{1} y_{3} x_{1}^{5} x_{2}+y_{2} y_{3} x_{1}^{6}+x_{1}^{5}, \\
\partial\left(z_{2}\right)=w_{2}^{3}+w_{2} w_{3} x_{2}^{4}+y_{1} y_{2} x_{1}^{4} x_{2}^{2}-y_{1} y_{3} x_{1}^{5} x_{2}+y_{2} y_{3} x_{1}^{6}+x_{1}^{15}, \\
\partial\left(z_{3}\right)=w_{3}^{3}+w_{3} w_{4} x_{2}^{4}+y_{1} y_{2} x_{1}^{4} x_{2}^{2}-y_{1} y_{3} x_{1}^{5} x_{2}+y_{2} y_{3} x_{1}^{6}+x_{1}^{15}, \\
\partial\left(z_{4}\right)=w_{2}^{4}+w_{4} w_{1} x_{2}^{4}+y_{1} y_{2} x_{1}^{4} x_{2}^{2}-y_{1} y_{3} x_{1}^{5} x_{2}+y_{2} y_{3} x_{1}^{6}+x_{1}^{15} .
\end{gathered}
$$

For the above construction it is clear that $\mathrm{V}^{119}=\mathbb{Q}\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ and by (2.6) the base Σ of the vector space $b\left(V^{119}\right)$ is given

$$
\begin{align*}
& \Sigma=\left\{w_{1}^{3}, w_{2}^{3}, w_{3}^{3}, w_{4}^{3}, w_{1} w_{2} x_{2}^{4}, w_{2} w_{3} x_{2}^{4}, w_{3} w_{4} x_{2}^{4},\right. \tag{2.12}\\
&\left.w_{4} w_{1} x_{2}^{4}, y_{1} y_{2} x_{1}^{4} x_{2}^{2}-y_{1} y_{3} x_{1}^{5} x_{2}+y_{2} y_{3} x_{1}^{6}, x_{1}^{15}\right\}
\end{align*}
$$

implying that the matrix $B_{\mathbb{Z}_{4}}$ associated with the linear map b, given in (2.3), is

$$
\mathrm{B}_{\mathbb{Z}_{4}}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right),
$$

and we have

$$
\mathrm{C}_{\mathbb{Z}_{4}}=\left\{\mathrm{I}_{4}, \mathrm{C}_{(1234)}, \mathrm{C}_{(13)(24)}, \mathrm{C}_{(1432)}\right\},
$$

where

$$
\begin{gathered}
C_{(1234)}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 \\
0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad C_{(13)(24)}=\left(\begin{array}{llll}
0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \\
C_{(1432)}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

For instance, $\mathrm{C}_{(1234)}$ is simply the permutation matrix obtained by permuting the rows of I_{4} using the permutation (1234) and likewise $\mathrm{C}_{(13)(24)}$ and $\mathrm{C}_{(1432)}$.

Next we have $\mathcal{A}_{\mathbb{Z}_{4}}=\left\{I_{10}, A_{(1234)}, A_{(13)(24)}, A_{(1432)}\right\}$, where

$$
\begin{aligned}
& A_{(1234)}=\left(\begin{array}{llllllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{lllllllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& A_{(1432)}=\left(\begin{array}{llllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

and $H_{\mathbb{Z}_{4}}=\left\{I_{8}, M_{(1234)}, M_{(13)(24)}, M_{(1432)}\right\}$, where

$$
\begin{aligned}
& M_{(1234)}=\left(\begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right), M_{(13)(24)}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
& & & & & & & 0
\end{array}\right) \\
& M_{(1432)}=\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Recall that $A_{(1234)}$ is the matrix associated to the restriction of the linear map $H^{120}(\alpha)$ to the vector space $b\left(V^{119}\right)$, where the cochain map α is given by (2.5), with respects to the basis Σ in (2.12). Thus, $A_{(1234)}$ is obtained by using the permutation $\sigma_{2}=(1234)$ as follows:

$$
\begin{aligned}
& w_{1}^{3} \mapsto w_{2}^{3}, w_{2}^{3} \mapsto w_{3}^{3}, w_{3}^{3} \mapsto w_{4}^{3}, w_{4}^{3} \mapsto w_{1}^{3}, w_{1} w_{2} x_{2}^{4} \mapsto w_{2} w_{3} x_{2}^{4} \\
& w_{2} w_{3} x_{2}^{4} \mapsto w_{3} w_{4} x_{2}^{4}, w_{3} w_{4} x_{2}^{4} \mapsto w_{4} w_{1} x_{2}^{4}, w_{4} w_{1} x_{2}^{4} \mapsto w_{1} w_{4} x_{2}^{4} \\
& y_{1} y_{2} x_{1}^{4} x_{2}^{2}-y_{1} y_{3} x_{1}^{5} x_{2}+y_{2} y_{3} x_{1}^{6} \mapsto y_{1} y_{2} x_{1}^{4} x_{2}^{2}-y_{1} y_{3} x_{1}^{5} x_{2}+y_{2} y_{3} x_{1}^{6} \\
& x_{1}^{5} \mapsto x_{1}^{15} .
\end{aligned}
$$

and likewise we obtain the matrices $A_{(13)(24)}$ and $A_{(1432)}$. Notice that matrices $M_{(1234)}, M_{(13)(24)}, M_{(1432)}$ are constructed from the
matrices $A_{(1234)}, A_{(13)(24)}, A_{(1432)}$ using (2.10) and finally we have

$$
\begin{aligned}
& \Omega_{\mathbb{Z}_{4}}=\left\{\left(\mathrm{I}_{4}, \mathrm{I}_{12}\right),\left(A_{(1234)}, \mathrm{C}_{(1234)}\right)\right. \\
&\left.\left(A_{(13)(24)}, \mathrm{C}_{(13)(24)}\right),\left(A_{(1432)}, \mathrm{C}_{(1432)}\right)\right\}
\end{aligned}
$$

It is also worth noting to point out that the group $M_{\mathbb{Z}_{4}}$, which is isomorphic to \mathbb{Z}_{4} is a realisable subgroup of the group of permutation matrices $\mathcal{P}(8)$.

Example 6 In this example we use the same analysis and computation as in the example (5), but we omit all the details, to determine the groups $\mathcal{A}_{\mathbb{V}}, \mathcal{C}_{\mathbb{V}}, \mathrm{H}(\mathbb{V})$ and $\Omega_{\mathbb{V}}$ for the Klein group \mathbb{V}. Indeed, the monomorphism

$$
\mathbb{V}=\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\} \leftrightarrow S_{4}
$$

is given by

$$
\mathrm{g}_{2} \leftrightarrow(12)(34), \mathrm{g}_{3} \leftrightarrow(13)(24), \mathrm{g}_{4} \rightarrow(14)(23)
$$

so the model associated to \mathbb{V} is

$$
\left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, w_{1}, w_{2}, w_{3}, w_{4}, z_{1}, z_{2}, z_{3}, z_{4}\right), \partial\right)
$$

where $\left|x_{1}\right|=8,\left|x_{2}\right|=10,\left|w_{j}\right|=40$, and where the differential is given by

$$
\begin{aligned}
& \partial\left(x_{1}\right)=\partial\left(x_{2}\right)=\partial\left(w_{j}\right)=0, \partial\left(y_{1}\right)=x_{1}^{3} x_{2}, \partial\left(y_{2}\right)=x_{1}^{2} x_{2}^{2}, \partial\left(y_{3}\right)=x_{1} x_{2}^{3} \\
& \partial\left(z_{1}\right)=w_{1}^{3}+w_{1} w_{2} x_{2}^{4}+w_{1} w_{4} x_{2}^{4}+y_{1} y_{2} x_{1}^{4} x_{2}^{2}-y_{1} y_{3} x_{1}^{5} x_{2}+y_{2} y_{3} x_{1}^{6}+x_{1}^{15}, \\
& \partial\left(z_{2}\right)=w_{2}^{3}+w_{2} w_{3} x_{2}^{4}+w_{2} w_{1} x_{1}^{4}+y_{1} y_{2} x_{1}^{4} x_{2}^{2}-y_{1} y_{3} x_{1}^{5} x_{2}+y_{2} y_{3} x_{1}^{6}+x_{1}^{15}, \\
& \partial\left(z_{3}\right)=w_{3}^{3}+w_{3} w_{4} x_{2}^{4}+w_{3} w_{2} x_{2}^{4}+y_{1} y_{2} x_{1}^{4} x_{2}^{2}-y_{1} y_{3} x_{1}^{5} x_{2}+y_{2} y_{3} x_{1}^{6}+x_{1}^{15}, \\
& \partial\left(z_{4}\right)=w_{4}^{3}+w_{4} w_{1} x_{2}^{4}+w_{4} w_{3} x_{2}^{4}+y_{1} y_{2} x_{1}^{4} x_{2}^{2}-y_{1} y_{3} x_{1}^{5} x_{2}+y_{2} y_{3} x_{1}^{6}+x_{1}^{5}
\end{aligned}
$$

If $u=y_{1} y_{2} x_{1}^{4} x_{2}^{2}-y_{1} y_{3} x_{1}^{5} x_{2}+y_{2} y_{3} x_{1}^{6}$, then the basis Σ is given by

$$
\begin{aligned}
& \Sigma=\left\{w_{1}^{3}, w_{2}^{3}, w_{3}^{3}, w_{4}^{3}, w_{1} w_{2} x_{2}^{4}, w_{2} w_{3} x_{2}^{4}, w_{3} w_{4} x_{2}^{4}\right. \\
&\left.w_{4} w_{1} x_{2}^{4}, w_{1} w_{4} x_{2}^{4}, w_{2} w_{1} x_{2}^{4}, w_{3} w_{2} x_{2}^{4}, w_{4} w_{3} x_{2}^{4}, u, x_{1}^{15}\right\}
\end{aligned}
$$

implying that $\operatorname{dim} b\left(V^{119}\right)=14$ and the matrix $B_{\mathbb{V}}$ is

$$
\mathrm{B}_{\mathbb{V}}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

We have $\mathcal{C}_{\mathbb{V}}=\left\{I_{4}, C_{(12)(34)}, C_{(13)(24)}, C_{(14)(23)}\right\}$, where

$$
\begin{gathered}
C_{(12)(34)}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), C_{(13)(24)}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
C_{(14)(23)}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

and $\mathcal{A}_{\mathbb{V}}=\left\{\mathrm{I}_{14}, A_{(12)(34)}, A_{(13)(24)}, A_{14)(23)}\right\}$, where

$$
A_{(12)(34)}=\left(\begin{array}{llllllllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),
$$

$$
A_{(13)(24)}=\left(\begin{array}{llllllllllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$$
A_{(14)(23)}=\left(\begin{array}{llllllllllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Next we have $H_{\mathbb{V}}=\left\{I_{12}, M_{(12)(34)}, M_{(13)(24)}, M_{14)(23)}\right\}$, where

$$
\begin{aligned}
& M_{(12)(34)}=\left(\begin{array}{llllllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right), \\
& M_{(13)(24)}=\left(\begin{array}{llllllllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right), \\
& M_{(14)(23)}=\left(\begin{array}{llllllllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Notice that $H(\mathbb{V})$ is a realisable subgroup of $\mathcal{P}(12)$. Finally, we have

$$
\begin{aligned}
\Omega_{\mathbb{V}}=\left\{\left(I_{4}, I_{14}\right),\right. & \left(A_{(12)(34)}, C_{(12)(34)}\right) \\
& \left.\left(A_{(13)(24)}, C_{(13)(24)}\right),\left(A_{(14)(32)}, C_{(14)(32)}\right)\right\}
\end{aligned}
$$

REFERENCES

[1] M. Benkhalifa: "Postnikov decomposition and the group of selfequivalences of a rationalized space", Homology Homotopy Appl. 19, No. 1 (2017), 209-224.
[2] M. Benkhalifa: "Adams-Hilton model and the group of selfhomotopy equivalences of a simply connected cw-complex", Homology Homotopy Appl. 21, No. 2 (2019), 345-362.
[3] M. Benkhalifa: "On the group of self-homotopy equivalences of an elliptic space", Proc. Amer. Math. Soc. 148 (2020), 2695-2706.
[4] M. Benkhalifa: "The effect of cell-attachment on the group of self-equivalences of an elliptic space", Michigan Math. J. (2021); doi:10.1307/mmj/20195840.
[5] M. Benkhalifa - S.B. Smith: "The effect of cell attachment on the group of self-equivalences of an R-local space", J. Hom. Rel. Structures, 4 (2015), 135-144.
[6] Y. Félix - S. Halperin - J.-C. Thomas: "Rational Homotopy Theory", Springer, New York (2001).
[7] D.W. Kahn: "Realization problem for the group of homotopy classes of self-homotopy equivalences", Math. Annalen 220 (1976), 37-46.

Mahmoud Benkhalifa
Department of Mathematics
Faculty of Sciences
University of Sharjah (United Arab Emirates)
e-mail: mbenkhalifa@sharjah.ac.ae

