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Abstract
Lévai and Pyber [5] proposed the following as a conjecture (see also Problem 14.53
of [9]): if G is a profinite group such that the set of solutions of the equation xn = 1
has positive Haar measure, then G has an open subgroup H and an element t such
that all elements of the coset tH have order dividing n.

We define a constant cn for all finite groups and prove that the latter conjecture is
equivalent with a conjecture saying cn < 1. Using the latter equivalence we observe
that correctness of Lévai and Pyber conjecture implies the existence of the universal
upper bound 1/1- cn on the index of generalized Hughes-Thompson subgroup Hn

of finite groups whenever it is non-trivial. It is known that the latter is widely open
even for all primes n = p > 5. For odd n we also prove that Lévai and Pyber
conjecture is equivalent to show that cn is less than 1 whenever cn is only computed
on finite solvable groups.

The validity of the conjecture has been proved in [5] for n = 2. Here we confirm
the conjecture for n = 3.

Mathematics Subject Classification (2020): 20E18, 20P05, 43A05
Keywords: profinite group; Haar measure; large subset

1 Introduction and results

Let G be a Hausdorff compact group. Then G has a unique nor-
malized Haar measure denoted by mG. In general, the question of
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weather the interior of every non-empty measurable subset of G with
positive Haar measure is non-empty has negative answer even if G is
profinite (see e.g. [5]). However the same question for subsets defined
by words is still open. In [5] the following conjecture is proposed.

Conjecture 1.1 (Conjecture 3 of [5], Problem 14.53 of [9]) Let G be a
profinite group such that the set Xn(G) of solutions of the equation xn = 1
in G has positive Haar measure. Then G has an open subgroup H and an
element t such that all elements of the coset tH have order dividing n.

The validity of Conjecture 1.1 has been proved in [5] for n = 2.
In [7] it is shown that the conjecture is valid for n = 2 even if G
is Hausdorff compact. It is also proved in [7] that if X3(G) has pos-
itive Haar measure in a compact group G, then G contains an open
normal subgroup which is 2-Engel. Here we confirm Conjecture 1.1
for n = 3. To do so, we first show that Conjecture 1.1 is equivalent to
the following one. We need the following notation in the statement
of the conjecture. For an arbitrary group K and an automorphism �
of K of order dividing a positive integer n, define

Xn,�(K) :=
⌦
x 2 K | xx�x�

2

. . . x�
n-1

= 1
↵

.

The automorphism group of K will be denoted by Aut(K). In the
following we denote by F the class of all finite groups.

Conjecture 1.2

cn := sup
✓�

|Xn,�(H)|

|H|
: H 2 F, � 2 Aut(H), �n = id

�
\ {1}

◆
< 1.

It is known that Conjecture 1.2 is valid for n = 2 and the supre-
mum c2 is 3/4 (see [8]). We shall prove that c3 < 1.

If n is odd, using Theorem 1.10 of [4], we prove that Conjecture 1.1
is equivalent to the following. Here we denote by S the class of finite
solvable groups.

Conjecture 1.3

cS
2n+1

:=sup
✓�

|Xn,�(H)|

|H|
: H2S, �2Aut(H), �2n+1= id

�
\ {1}

◆
<1.

The following easy proposition and the next remark show how dif-
ficult the above conjectures may be. Recall that for any finite group G
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and any positive integer n the generalized Hughes-Thompson sub-
group Hn(G) is defined as the subgroup hx 2 G | xn 6= 1i of G,
see Chapter 7 of [3].

Proposition 1.4 If Conjecture 1.2 is true for n i.e. cn < 1, then for any
finite group G with Hn(G) 6= 1, |G : Hn(G)| < 1/1- cn.

Proof — Since Hn(G) 6= 1, Xn(G) 6= G. Now the proof follows from
the fact that G \Hn(G) ⇢ Xn(G) and the definition of cn. ut

The problem of finding a universal bound from above depending
only on p for the index |G : Hp(G)| of the Hughes-Thompson sub-
group Hp(G) of finite p-groups G with Hp(G) 6= 1 is widely open
for all p > 5 (see Chapter 7 of [3] for the history and results on
the problem). Indeed to get that universal bound, one would have to
prove, inter alia, that L(B(1,p)) has a finite basis of multilinear iden-
tities, where B := B(1,p) is the free Burnside group of exponent p
with infinite countable rank and L(B(1,p)) is the associated Lie ring
on
L1

i=1
�i(B)/�i+1(B).

We finish this section with the following two questions.

Question 1.5 Suppose that n is a positive integer for which there exists a
positive integer kn depending only on n such that |G : Hn(G)| 6 kn for all
finite groups G with 1 6= Hn(G). Is it true that cn < 1? The same question
is open even when n > 5 is prime.

Question 1.6 Let n > 1 be a positive integer such that cd < 1 for all
prime power divisors d of n. Is it true that cn < 1?

2 Profinite groups

In the following, we denote the normalized Haar measure of a com-
pact group G by mG, and we will simply write m if there is no am-
biguity. Our first easy lemma will be used in the sequel without any
further reference.

Lemma 2.1 (cf. [2], Lemma 2.5) Let G be a compact group and A ✓ G
be a measurable subset. If m(A) > 1- ✏, then m

�T
n

k=1
gkA

�
> 1- n✏

for all g1, . . . , gn 2 G. The similar result with strict inequalities holds.
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Proof — By induction on n, we prove the result. For n = 1, it holds
as the measure is left-invariant. Assume that the result is true for n;
therefore

m

 
n+1\

k=1

gkA

!

= m

 
n\

k=1

gkA

!

+m(gn+1A)-m

  
n\

k=1

gkA

!

[ (gn+1A)

!

> (1-n✏) + (1- ✏)- 1 = 1- (n+ 1)✏

by the induction hypothesis and the statement is proved. ut

Lemma 2.2 Let G be a compact group and � be a continuous automor-
phism of G of order dividing n. Denote by Go h�i the semidirect product
of G by h�i. Then:

(i) Xn,�(G) has nonempty interior if and only if Xn(Go h�i) has non-
empty interior.

(ii) If Xn,�(G) has positive Haar measure then Xn(Go h�i) has posi-
tive Haar measure.

Proof — Since

Xn(Go h�i)\G�-1 = Xn,�(G)�-1,

both points follow. ut

Proposition 2.3 Conjecture 1.1 implies Conjecture 1.2.

Proof — If n is such that Conjecture 1.2 is not valid, then there
exist sequences (Gk) of finite groups and (�k) 2

Q1
k=1

Aut(Gk) such
that �n

k
= 1 and

0 <
1Y

k=1

|Xn,�k
(Gk)|

|Gk|
< 1.

Consider the cartesian product G =
Q

k
Gk which is clearly profi-

nite. Then � = (�k) is an automorphism of G of order dividing n.

It is clear that the measure of Xn,�(G) is equal to
Q

k

|Xn,�
k
(Gk)|

|Gk|

and its interior is empty, so by Lemma 2.2, Xn(G o h�i) has posi-
tive Haar measure and empty interior showing that Conjecture 1.1 is
not valid. ut

The following lemma will be used in the proof that “Conjecture 1.2
implies Conjecture 1.1". We write “N Eo G" whenever N is a normal
and open subgroup of G.
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Lemma 2.4 Let A be a closed subset of a profinite group with positive Haar
measure and M be any normal open subgroup of G. If X is the set of all nor-
mal open subgroups of G contained in M, then

sup
�
m(Ng\A)

m(N)
: g 2 G,N 2 X

�
= 1

Proof — Let N 2 X be such that r := |G : N|. If s is the number of
cosets of N which intersect A, then

(r- s)m(N) 6 1-m(A). (2.1)

On the other hand, assume that

m(Nx\A) = max
�
m(Ng\A) : g 2 G

 
,

so
m(A) 6 sm(Nx\A) (2.2)

It follows from inequalities (2.1) and (2.2) that

m(A)

1-m(A)

r- s

s
6 m(Nx\A)

m(N)
.

Since A is closed,

m(A) = inf
�
|AK/K|

|G/K|
: K Eo G

�
.

Now since |AK/K|/|G/K| 6 |AN/N|/|G/N|, whenever K 6 N are nor-
mal subgroups of G of finite index, it follows that

m(A) = inf
�
|AN/N|

|G/N|
: N 2 X

�
.

Since r/s = |G/N|/|AN/N|, the result now follows from the last in-
equality. ut

For any positive integer n and any class X of finite groups, we
denote by cXn the following positive real number which is at most 1:

sup
✓�

|Xn,�(H)|

|H|
: H 2 X and � 2 Aut(H), �n = id

�
\ {1}

◆
.
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Proposition 2.5 Assume cXn < 1 and suppose that G is a profinite group.
Let M be a normal open subgroup of G and � be a continuous automor-
phism of M of order dividing n such that N� ⇢ N for all normal open sub-
groups N of G contained in M and M/N 2 X. Then mM(Xn,�(M)) 6 cXn
if Xn,�(M) 6= M.

Proof — Seeking a contradiction, suppose mM(Xn,�(M)) > cXn .
Let N be a normal open subgroup of G. Consider the following auto-
morphism of M/(M\N),

� :
M

M\N
! M

M\N
, x� := x�

We have

mM

�
Xn,�(M)

�
6

|X
n,�(M/(M\N))|

|M/(M\N)|

which holds because if x 2 Xn,�(M), then x 2 X
n,�(M/(M \N)).

Since cXn < 1, it follows that

X
n,�(M/(M\N)) = M/(M\N),

whence
Q

n-1

k=0
x�

k 2 N for all x 2 M. Since
\

{N Eo G : N 6 M} = {1},

we have
Q

n-1

k=0
x�

k

= 1 for all x 2 M, i.e. Xn,�(M) = M. ut

We are now in a position to prove the following result.

Proposition 2.6 Conjecture 1.2 implies Conjecture 1.1.

Proof — Let G be a profinite group such that mG(Xn(G)) > 0.
By Lemma 2.4, there exist a normal open subgroup M and g 2 Xn(G),
such that

cn <
mG (Mg\Xn(G))

mG(M)
=

mG

�
M\Xn(G)g-1

�

mG(M)
. (2.3)

Put � : M ! M, x 7! gxg-1. Since gn = 1, then �n = 1. Moreover

M\Xn(G)g = Xn,�(M)
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and the inequality (2.3) means that mM(Xn,�(M)) > cn, so by Propo-
sition 2.5, Xn,�(M) = M, whence Mg ✓ Xn(G). ut

We use the following result in the proof of Proposition 2.8.

Theorem 2.7 (Theorem 1.10 (ii) of [4]) Let G be a profinite group and
suppose that the set of elements of G of finite odd order has positive Haar
measure. Then G has a prosolvable open normal subgroup.

Proposition 2.8 For odd n, Conjecture 1.3 implies Conjecture 1.1.

Proof — Let G be a profinite group with mG(Xn(G))> 0. By The-
orem 2.7 and Lemma 2.4, there exist a normal open subgroup M
and g 2 Xn(G) such that such that M/N is finite solvable for all open
normal subgroups N of G contained in M, and

cSn <
mG (Mg\Xn(G))

mG(M)
=

mG

�
M\Xn(G)g-1

�

mG(M)
. (2.4)

Put � : M ! M, x 7! gxg-1. Since gn = 1, then �n = 1. Moreover

M\Xn(G)g = Xn,�(M)

and the inequality (2.4) means that mM(Xn,�(M)) > cSn, so by Propo-
sition 2.5, Xn,�(M) = M, whence Mg ✓ Xn(G). ut

3 Compact groups with splitting automorphisms
of order 3

In this section we prove that c3 < 1.

Theorem 3.1 Let G be a compact group and ↵ be an automorphism of G
such that ↵3 = id and the set X = {x 2 G | xx↵x↵

2

= 1} is measurable
with m(X) > 15/16. Then X = G.

Proof — First we prove that G is 2-Engel. The proof is similar to
an argument used in the proof of Theorem 4.4 of [7]. We give the
proof for the reader’s convenience. For any a,b 2 G we must prove
that [a,b,b] = 1. Consider the set

M := X\ b-1X\ aX\ a-1X\ ab-1X\ ba-1X\ abX\ b-1a-1X.
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Since m(M) > 1/2, there exists x 2 X such that

1 = (x↵-1)3= (bx↵-1)3 = (ax↵-1)3 = (a-1x↵-1)3 = (ab-1x↵-1)3

= (ba-1x↵-1)3 = (abx↵-1)3 = (b-1a-1x↵-1)3,

where all the elements written above belong to the semidirect prod-
uct Go h↵i by noting that g 2 X if and only if (g↵-1)3 = 1 in Go h↵i.
Now Lemma 4.1 of [7] implies that [a,b,b] = 1.

In the sequel we prove that for an arbitrary element g of G, we
have gg↵g↵

2

= 1.

Let X-1 = {x-1
| x 2 X} and Y = X \ X-1. Then m(Y) > 7/8.

Consider the set Z = Y \ g-1Y. Since m(Z) > 3/4, Z 6= ? and for
all x 2 Z we have

xx↵x↵
2

= gx(gx)↵(gx)↵
2

= 1. (3.1)

It follows from gx(gx)↵(gx)↵
2

= 1 that

1 = gxg↵x↵g↵
2

x↵
2

= gg↵x[x, g↵]x↵x↵2

g↵
2

[g↵
2 , x↵2

] (using the identity XY = YX[X, Y])

= gg↵[x, g↵]xx↵x↵2

g↵
2

[g↵
2 , x↵2

] (since G is 2-Engel and[x, [x, g↵]] = 1)

= gg↵[x, g↵]g↵2

[g↵
2 , x↵2

] (since by (3.1), xx↵x↵2

= 1)

= gg↵g↵
2

[x, g↵][x, g↵, g↵2

][g↵
2 , x↵2

] (using the identity XY = YX[X, Y]).

Thus

(gg↵g↵
2

)-1 = [x, g↵][x, g↵, g↵2

][g↵
2 , x↵2

] for all x 2 Z.

Now consider W = Z\ x-1

0
Z for some x0 2 Z. Since m(W) > 1/2, W

is nonempty and for all y 2 W we have

(gg↵g↵
2

)-1 = [x0y, g↵][x0y, g↵, g↵2

][g↵
2 , (x0y)↵

2

]

= [y, g↵][y, g↵, g↵2

][g↵
2 ,y↵2

]
(3.2)

Note that G is nilpotent of class at most 3 (see e.g. [10], Corollary 3
on page 45). By expanding the commutators in the middle equality
of (3.2) and using the fact that commutators of weight 3 are central,
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we have

(gg↵g↵
2
)-1 = [x0y, g↵][x0y, g↵, g↵

2
][g↵

2
, (x0y)↵

2
]

= [x0, g↵][x0, g↵,y][y, g↵][x0, g↵, g↵
2
][y, g↵, g↵

2
][g↵

2
,y↵

2
][g↵

2
, x↵

2

0
][g↵

2
, x↵

2

0
,y↵

2
]

= [x0, g↵][x0, g↵, g↵
2
][g↵

2
, x↵

2

0
][y, g↵][y, g↵, g↵

2
][g↵

2
,y↵

2
][x0, g↵,y][g↵

2
, x↵

2

0
,y↵

2
]

= (gg↵g↵
2
)-1(gg↵g↵

2
)-1[x0, g↵,y][g↵

2
, x↵

2

0
,y↵

2
].

Therefore

gg↵g↵
2

= [x0, g↵,y][g↵
2

, x↵
2

0
,y↵

2

] for all y 2 W. (3.3)

Now consider T = W \ y-1

0
W for some y0 2 W. Since m(T) > 0,

there exists z 2 W such that y0z 2 W. It follows from (3.3) that

gg↵g↵
2

= [x0, g↵,y0z][g↵
2

, x↵
2

0
, (y0z)↵

2

] = [x0, g↵,y0][g↵
2

, x↵
2

0
,y↵

2

0
].

Since commutators of weight 3 are central in G,

[x0, g↵,y0z][g↵
2 , x↵2

0
, (y0z)↵

2

]

= [x0, g↵,y0][g↵
2 , x↵2

0
,y↵2

0
][x0, g↵, z][g↵2 , x↵2

0
, z↵2

].

Therefore,
[x0, g↵, z][g↵

2

, x↵
2

0
, z↵

2

] = 1

and so, as z 2 W, it follows from (4) that gg↵g↵2

= 1. This completes
the proof. ut

Using the first part of our proof of Theorem 3.1 and applying The-
orem 6.5 of [2] (cf. [1], Théorème 5) the number 15/16 can be reduced
to 7/8.

In [6] groups G having an automorphism � 2 Aut(G) with �n = 1
such that Xn,�(G) is a large set in the sense of [1] for n = 3, 4 are
studied. For the case n = 3 it is proved in [6] that G = X3,�(G).
For the case n = 4, it is proved that a normal solvable subgroup H

of G of derived length d > 3 is nilpotent of class at most 9
d-2+1

2
. It

is interesting to know if the same latter result is valid by replacing
“largness” of Xn,�(G) by weaker condition “k-largness" for some k
in the sense of [2]. If the latter is valid, then for compact groups G

with mG(X4,�(G)) > 1- 1

k
, where � is continuous, by Lemma 2.1 we

have that G = X4,�(G).
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Theorem 3.2 c3 < 1.

Proof — It follows from Theorem 3.1. ut
We now see that Conjecture 1.1 of Lévai and Pyber is true for n = 3.

Theorem 3.3 Let G be a profinite group such that the equation x3 = 1
holds on a set with positive Haar measure. Then the solutions set of the
equation x3 = 1 has non-empty interior.

Proof — It follows from Theorem 3.2 and Proposition 2.6. ut
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