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Abstract
This paper is motivated by several combinatorial actions of the affine Weyl group
of type eCn. Addressing a question of David Vogan, it was shown in an earlier
paper that these permutation representations are essentially multiplicity-free [2].
However, the Gelfand trick, which was indispensable in [2] to prove this property
for types eCn and eBn, is not applicable for other classical types. Here we present a
unified approach to fully answer the analogous question for all irreducible affine
Weyl groups. Given a finite Weyl group W with maximal parabolic subgroup P 6 W,
there corresponds to it a reflection subgroup H of the affine Weyl group fW. It turns
out that while the Gelfand property of P 6 W does not imply that of H 6 fW, however
the pair Q = NW(P) 6 W has the Gelfand property if and only if K = QH 6 fW has.
Finally, for each irreducible type we describe when (W,Q) is a Gelfand pair.

Mathematics Subject Classification (2020): 20C15, 20F55
Keywords: affine Weyl group; multiplicity-freeness; Gelfand subgroup

1 Introduction

Our previous paper [2] was motivated by several natural actions
of the affine Weyl group G of type eCn on finite sets of combinato-
rial objects, see Section 2 there. We concluded that these are “essen-
tially” multiplicity-free, that is, the actions are not multiplicity-free,
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ment and Innovation Office (NKFIH) Grant No. K138596. The project leading to
this application has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 741420).



92 P. Hegedüs

but there exists a G-equivariant coupling of the underlying set such
that the G-action on the couples is multiplicity-free.

Our approach included an inflated action of G on an infinite
set Zn

3
⇥ Z with point stabilizer H. Dealing with an infinite action

led to the definition of a proto-Gelfand pair [2, Definition 3.3]: if A 6 B
for a not necessarily finite group B, we call (B,A) a proto-Gel-
fand pair if for every homomorphism ' : B 7! B1 with a finite
image,

�
'(B),'(A)

�
is a Gelfand pair. We also say that A is a proto-Gel-

fand subgroup of B.

Theorem 1.1 (see [2], Theorem 1.7) Let G be an affine Weyl group of
type eCn or eBn. For every ! 2 Zn

3
⇥ Z whose stabilizer is not all of G

(namely, ! is not G-invariant), there exists a double cover of the stabilizer
which is a proto-Gelfand subgroup of G.

The action of G on Zn

3
⇥ Z can be understood in terms of affine

permutations and also in terms of the fundamental domain. Here we
do not explore the possible actions but concentrate only on the Gel-
fand property of the stabilizer. We prove the following, analogous
theorem for all affine Weyl groups. As a reference for Coxeter groups
in general, and affine Weyl groups in particular, we use [7].

Let � be an irreducible root system with fundamental roots �.
Let W be its Weyl group, X = L(�_) the translation group with
its coroot lattice and G = fW = W nX the corresponding affine Weyl
group.

Delete a node from �, let �0 be the (typically reducible) root sys-
tem generated by the remaining fundamental roots, and let H be the
reflection subgroup of G generated by the affine reflections corre-
sponding to �0. Let P = H \W denote the corresponding parabolic
subgroup of W and Q = NW(P) its normaliser. The main result of
the paper is the following one.

Theorem 1.2 The index |Q : P| is at most 2. K = QH is a proto-Gelfand
subgroup of G if and only if Q is a Gelfand subgroup of W. In particular,
this property holds for the following types:

• An,Bn,Cn,G2 for every removed node;

• Dn for every removed node if n is odd, and for k 6 2[n/4] + 1
or k > n- 1 if n is even (for the numbering see Figure 2 below);

• E6,E7 if one of the three degree one nodes is removed;
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• E8 if one of the two farthest endnodes is removed;

• F4 if one of the two endnodes is removed.

One part of the theorem is easy. Let ' denote the natural ho-
momorphism G ! G/X ' W. If K is a proto-Gelfand subgroup
of G then Q ' QX/X = KX/X = '(K) is a Gelfand subgroup of
W ' G/X = '(G).

If P is not a Gelfand subgroup of W then, by a similar argument, H
cannot be a proto-Gelfand subgroup of G. However, even if P is Gel-
fand in W but P < Q then H is still not a proto-Gelfand subgroup
of G; that is why K is needed in the theorem instead of the reflection
subgroup H (see Remark 2.4 below). The fact that |Q : P| = |K : H| 6 2,
which appears as property (c) in Hypothesis 2.1 below, is a simple
consequence of [7, Theorem 1.12 (d)]; see in the proof of Theorem 1.2.

Our proof in [2] was based on the so called “Gelfand’s trick”: if G
has an involutive anti-automorphism (typically the group inversion)
that fixes every H-H double coset, then (G,H) is a (proto-)Gelfand
pair. In the present paper we use, instead, character theory for two
reasons. First, it enables a unified approach for all affine Weyl groups.
Second, in some cases Gelfand’s trick does not suffice. One such case
is type eAn. The following is a special case of our main theorem, re-
moving the k-th node from the Dynkin diagram of An.

Corollary 1.3 Let G be a Weyl group of type eAn. It contains naturally a
reflection subgroup Hk of type eAk-1 ⇥ eAn-k. If 2k 6= n+ 1 then Hk is a
proto-Gelfand subgroup of G. If 2k = n+ 1 then Hk has a double cover Kk

which is a proto-Gelfand subgroup of G.

It is possible to use direct calculations to show that for every ho-
momorphism ' : G ! G1 with finite image, the Hecke(double-coset)
algebra H

�
'(G),'(Hk)

�
(or H

�
'(G),'(Kk)

�
for 2k = n+ 1) is com-

mutative. Still, the simplest Gelfand’s trick does not work, not even
for 2k 6= n+ 1: the double coset HkxHk = xHk 6= Hk (with x 2 X)
does not contain involutions. Albeit, Hk is not a parabolic subgroup,
this phenomenon also indicates why in the theorem of Curtis, Iwa-
hori and Kilmoyer (see Theorem 1.4, below) finiteness is required.

The study of the Gelfand property for subgroups of Coxeter groups
goes back to at least half a century. To our knowledge, [3] and [10] are
among the first general results. Saxl [10] gave a list of potential can-
didates of Gelfand subgroups G 6 Sn for n > 18. His list was later
made exact by Godsil and Meagher [6] who also dealt with n 6 18.
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Curtis, Iwahori and Kilmoyer considered parabolic subgroups of fi-
nite Coxeter groups. The following is abridged from [3, Theorem 3.1].
Theorem 1.4 Let (W,R) be a Coxeter system with W finite, J ✓ R
and WJ = hsj | j 2 Ji the corresponding parabolic subgroup. The Hecke
algebra (double coset algebra) H(W,WJ) over an algebraically closed field
of characteristic 0 is commutative if and only if the shortest element of each
double coset WJwWJ ✓ W is an involution.

A complete classification of commutative Hecke algebras of Cox-
eter groups over parabolic subgroups was given by Abramenko, Par-
kinson and Van Maldeghen [1]. Let Xn,i denote the case of the Cox-
eter system (W, S) of type Xn with I = S \ {i}, removing node i from S

according to the standard numbering of the nodes. Similarly eXn,i de-
notes the case of the affine Weyl group of type eXn with I = S \ {i}.
Theorem 1.5 (see [1], Theorem 2.1) Let (W, S) be an irreducible Cox-
eter system, I ✓ S be spherical (that is, WI is finite), and let fi = (⌧s) be a
specialization with ⌧s > 1 for each s 2 S. The I-parabolic Hecke algebra H

I

and its specialization H
I
⌧ are noncommutative if |S \ I| > 1. If I = S \ {i}

then H
I and H

I
⌧ are commutative in the cases

• An,i (1 6 i 6 n) , Bn,i (1 6 i 6 n) , Dn,i (1 6 i 6 n/2 or i =
n - 1,n), E6,1, E6,2, E6,6, E7,1, E7,2, E7,7, E8,1, E8,8, F4,1, F4,4,
H3,1, H3,3, H4,1, I2(p)i(i = 1, 2), and

• all affine cases eXn,i with i a special node (that is, the removed node i
and the extra node of the affine Coxeter diagram are in the same orbit
under graph automorphisms),

and noncommutative otherwise.
We will use the list of this theorem for exceptional Weyl groups

in the following short form. The parabolic subgroup is a Gelfand
subgroup if and only if the deleted node is an endnode (“leaf”) of
the Dynkin diagram, but not the middle leaf of E8. See Figure 2 for
the labelling of the diagrams.

We finish the Introduction by a natural question. Beyond parabolic
subgroups one may consider all reflection subgroups. Dyer and Leh-
rer gave a complete description of reflection subgroups of finite Cox-
eter groups and affine Weyl groups [4]. Our subgroup H is always a
reflection subgroup. The following is a slight modification of Ques-
tion 6.2 of [2].
Question 1.6 Which reflection subgroups (or their finite covers) of
affine Weyl groups are proto-Gelfand?
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2 Gelfand pairs for affine Weyl groups

We prove first a general result, and then show that its assumptions
hold for all affine Weyl groups. These assumptions are collected
in Hypothesis 2.1 about a group G. Note that the definition of Q in (e)
is different from the definition of Q preceding Theorem 1.2. That they
are equivalent will become clear in the proof of the theorem: when
we establish property (c) we also prove that NW(Y) = NW(P). For
the proof of Proposition 2.3 the version in Hypothesis 2.1 is more
convenient.

Hypothesis 2.1 Let G = W n X be a semidirect product of a finite
group W and a free Abelian group X. Further, let H 6 G be a subgroup
for which the following (a), (b), (c), (d), (e) or (a), (b), (c’), (d’), (e’) hold:

(a) X\H = Y and X = Y ⇥ hxi for some x 2 X, which we fix;

(b) H / L = Hhxi; (c) |NG(Y) : L| 6 2;

(d) if g2G\NG(Y), then yg = xmz for some y, z 2 Y and m 2 {±1,±2};

(e) Q = NW(Y) is a Gelfand subgroup of W; (c’) |NG(Y) : L| = 2;

(d’) if g2G\NG(Y), then yg=xmz for some y, z2Y and m2 {±1,±2,±3};

(e’) P = H\W is a Gelfand subgroup of W.

G

W KL

K

LQ

X

H

Y

P

1

Figure 1: Part of the subgroup lattice of G
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Remark 2.2 The (c’), (d’), (e’) version is needed in the sole case
when � is a root system of type G2 and we remove the short fun-
damental root. Here (d) does not hold, so we somewhat relax it and
strengthen (c) and (e). After the proof of the main case of Proposi-
tion 2.3 we briefly cover the necessary changes for this special case.

Proposition 2.3 With the assumptions of Hypothesis 2.1, K = NW(Y)Y
is a proto-Gelfand subgroup of G.

Proof — We use all the notations of Hypothesis 2.1.
First we prove that H / K of index at most 2. Suppose that gv 2 H

with g 2 W of order n and v 2 xiY for some integer i. By (b), H
trivially acts on X/Y, so xg 2 xY. Hence

(gv)n = gnvg
n-1

vg
n-2

. . . vgv 2 xinY,

but also (gv)n 2 H. By (a), in = 0 and i = 0. It follows that

H = (H\W)Y = PY 6 QY = K.

Observe that L = HX = PX and NG(Y) = QX = KX = KHX = KL.
Also Q\ L = P and K\ L = H so, by (c), P /Q and H /K are of index
at most 2, as claimed (see Figure 1).

We also have L/H / KL/H infinite cyclic. If K/H is also normal
in KL/H then all the assumptions hold for K in place of H. (If (e’)
holds for H then it also holds for K because overgroups of Gelfand
subgroups are also Gelfand subgroups.) So, in the following we as-
sume that either K = H, or K > H and K 6 KL. In other words, KL/H
is either cyclic or infinite dihedral. Similarly, the action of KL
on X/Y = Yhxi/Y is the same as its action on L/H = Hhxi/H. That
is,

xgY =

�
xY, if g 2 L;
x-1Y, if g 2 KL \ L.

(1)

We need show that the permutation character of �(G) on the �(K)-
cosets is multiplicity-free in every finite quotient �(G) of G. Let
N / G be any normal subgroup of finite index. It contains N \ X,
of finite index in X. Given this finite index we can pick h suffi-
ciently large so that N \ X ◆ X(h) = {yh | y 2 X}, which is still
a normal subgroup of finite index in G. If ZX(h)/X(h) is a Gelfand
subgroup of G/X(h) then all the more so is ZN/N a Gelfand sub-
group of G/N, because ZN/N 6 G/N are the homomorphic images
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of ZX(n)/X(h) 6 G/X(h) under the natural homomorphism with ker-
nel N/X(h). So it is enough to consider factors by the normal sub-
groups X(h). For ease of notation we use the same symbol for sub-
groups of the factor group as for subgroups of G. In other words,
instead of being a free Abelian group, X is assumed to be isomorphic
to the homogeneous Abelian group Zn

h
. The rest of Hypothesis 2.1

remains intact.
In particular,

L/H ' Zh and if K > H, then KL/H ' D2h is dihedral

of order 2h.
(2)

As 1G
K

=
�
1KL

K

�G, first we treat the irreducible constituents of 1KL

K

separately.

Claim 1: Suppose ' 2 Irr(KL) is a linear constituent of 1KL

K
. Then 'G is

multiplicity free.
Note that for a linear character ' of KL Frobenius reciprocity im-

plies 0 6
�
', 1KL

K

�
=

�
'K, 1K

�
6 1. Hence 'K = 1K is equivalent

to ' being a constituent of 1KL

K
. As G = WKL, we may use a special

case of Mackey’s theorem [8, Problem (5.2)] for the restriction of the
induced character 'G

#W = ('#Q)W = 1W
Q

which is multiplicity free
by (e), since KL\W = K\W = Q. Hence 'G itself is also multiplicity
free.

Let " be a primitive h-th root of 1 and ⌘ a linear character of L

with kernel H and ⌘(x) = ". We consider 1L
H

=
P

h

s=1
⌘s, a sum of

linear characters, each a power of ⌘. For any 1 6 t 6 h, an integer i
and g 2 H we have ⌘t(gxi) = "ti. Let �t = ⌘t#X 2 Irr(X).

Recall that if Z /G, ⇣ a character of Z and g 2 G then ⇣g is the
conjugate character of Z defined by ⇣g(zg) = ⇣(z) for every z 2 Z.

Claim 2: If for some g 2 G, �t = �gs , where t 6= h,h/2 then g 2 KL, and
either s = t, or s = h- t and K > H.

Indeed, if g /2 KL = NG(Y) then, by assumption (d), there ex-
ist y, z 2 Y such that yg = xmz with m 2 {±1,±2}. So

1 = �s(y) = �
g

s (x
mz) = �t(x

m) = "mt,

impossible. If g 2 L and v = xiy 2 X (y 2 Y) then vg = xiz (z 2 Y), so,
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by (1),

�t(x
iy) = �gs (x

iy) = �gs (x
iz) = �gs (v

g) = �s(x
iy).

Hence s = t.
On the other hand, if g 2 KL \ L and v = xiy 2 X (y 2 Y) then

vg = x-iz (z 2 Y), so, by (1),

�t(x
-iy) = �gs (x

-iy) = �gs (x
-iz) = �gs (v

g) = �s(x
iy) = �h-t(x

iy).

Hence s = h- t, but this is possible only if KL > L, that is, if K > H.
Claim 3: If (⌘t)G 6= (⌘s)G then they share no common irreducible con-
stituent. Of course, if K > H and s = h - t then (⌘s)KL = (⌘t)KL

so (⌘t)G = (⌘s)G.
Note that the irreducible constituents of (⌘t)G lie above �t. So,

by Clifford’s theorem (see [8], (6.2)), it is enough to prove that �t
and �s are not G-conjugate, unless s = t or s = h - t and K > H.
By Claim 2, we have to check only s, t 2 {h,h/2}. But then s = t
as Ker(�h) = X 6= Ker(�h/2).

If K = H then KL = L and, by Claim 1, all (⌘s)G are multiplicity free
and, by Claim 3, the (⌘s)G (s = 1, . . . ,h) share no common irreducible
constituent. Hence 1G

H
=
P

h

s=1
(⌘s)G is multiplicity free, indeed.

So let K > H. If t = h,h/2 (the second only for even h) then there
are unique linear extensions 1KL of ⌘h = 1L and µ of ⌘h/2 (for h
even) to KL that are trivial on K. So, using Claim 1 again, we con-
clude that 1G

KL
and µG are multiplicity free with all constituents lying

above �h = 1X and �h/2, respectively.
Assume now t 6= h,h/2. Let It = IG(�t) = {g 2 G | �g

t
= �t} > L

denote the inertia subgroup of �t. By Claim2, It ✓ KL. If g 2 K \H
then, by (1), �g

t
= �h-t 6= �t so It = L and (⌘s)G is irreducible as it

is induced from the inertia subgroup [8], (6.11).
Now 1KL

K
is a sum of irreducible, degree 2 characters (⌘s)KL,

1 6 s < h/2, of 1KL, and if h is even then of an additional linear char-
acter µ extending ⌘h/2. For 1 6 s < h/2 (⌘s)G are distinct irreducible
while µG (for h even) and 1G

KL
are multiplicity free. By Claim 3, there

are no shared constituents among these, so 1G
K

is multiplicity free.
If together with (a) and (b), the alternatives (c’), (d’), (e’) hold in-

stead of (c), (d) and (e), then we make the following modifications.
For Claim 1: if ' 2 Irr(L) is a linear constituent of 1L

H
then 'G is

multiplicity free. The proof is the same, using (e’) and that G = WL
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and P = W \ L. For Claim 2, the above proof still works, using (d’),
unless m = ±3 and t = h/3, 2h/3. But even in that case either s = t
or s = h- t. So, if for some g 2 G, �t = �gs then s = t or s = h- t,
even if g /2 KL.

Claim 3 holds, that is (⌘t)G, (⌘s)G share no common irreducible
summand unless s = t, s = h - t but in these cases they are the
same, as K > H by (c’). The conclusion of the proof is the same: we
use Claim 1 (and (c’)) to show that for t 6= h,h/2

(⌘t)G =
�
(⌘t)KL

�G

are all multiplicity free. Hence, by Claim 3 as above, 1G
K

is multiplicity
free. ut

Remark 2.4 If H < K then (G,H) is not a proto-Gelfand pair. Indeed,
let

' : G ! W nZn

3

be the natural homomorphism with kernel X(3). Then the image

'(KL)/'(H) ' D6,

the dihedral group of order 6, by (2). However, in D6 the regular
character is not multiplicity free, so

�
'(KL),'(H)

�
is not a Gelfand

pair, nor is then
�
'(G),'(H)

�
. Proposition 2.3 claims that even if H

itself is not a proto-Gelfand subgroup, a double cover of H is.

Proof of Theorem 1.2 — To finish the proof we have to confirm the
assumptions of Hypothesis 2.1 for the subgroup H defined before the
statement of Theorem 1.2 and described below in more detail.

Let � be an irreducible root system of rank n, W be its Weyl group
and G be the corresponding affine Weyl group. Let � = {↵i}i=1,...,n
denote the fundamental roots and

�_ =
⌦
↵_ =

2↵

(↵,↵)
| ↵ 2 �

↵

the corresponding coroot system. Then the normal subgroup of trans-
lations X is naturally identified with L

�
�_

�
, the coroot lattice. We

record some properties of the root systems in Figure 2, see [7, Sec-
tions 2.9, 2.10, 4.9].
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Figure 2: Coefficients of the highest root in irreducible root sytems

Dynkin diagram coefficients of e↵

An
↵1 ↵2 ↵n-1 ↵n

1, . . . , 1

Bn
↵1 ↵2 ↵n-2 ↵n-1 ↵n

1, 2, . . . , 2

Cn
↵1 ↵2 ↵n-2 ↵n-1 ↵n

2, . . . , 2, 1

Dn
↵1 ↵2 ↵n-3

↵n-2

↵n-1

↵n

2, . . . , 2, 1, 1

E6
↵1

↵2

↵3 ↵4 ↵5 ↵6

1, 2, 2, 3, 2, 1

E7
↵1

↵2

↵3 ↵4 ↵5 ↵6 ↵7

2, 2, 3, 4, 3, 2, 1

E8
↵1

↵2

↵3 ↵4 ↵5 ↵6 ↵7 ↵8

2, 3, 4, 6, 5, 4, 3, 2

F4
↵1 ↵2 ↵3 ↵4

2, 3, 4, 2

G2
↵1 ↵2

3, 2
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Pick ↵ from among the fundamental roots. Let�0 be the (reducible)
root system generated by the remaining fundamental roots � \ {↵}.
Finally, let H denote the reflection subgroup of G generated by the
affine reflections corresponding to �0. Note that P = W \H is the
parabolic subgroup W�\{↵} 6 W generated by the fundamental re-
flections corresponding to � \ {↵}.

Of course, H is the direct product of the affine reflection groups on
the (usually two) connected components of � \ {↵}. Namely,
if � = {↵i | i 2 I} is one component then H� = hg, si | i 2 Ii is one
direct factor of H, where g = s�,1 is an affine reflection flipping �,
the highest root in �� , the root system generated by � . Let Y = H\X,
naturally isomorphic to L

�
�_

0

�
6 L

�
�_

�
, and let x = t

�
↵_

�
, the

translation by the coroot in the direction of the missing fundamental
root, ↵. Of course, X = Y ⇥ hxi. So Property (a) follows.

If s = s↵i
2 H is among the ordinary reflections generating H then

x-1sxs = t(-↵_)s↵i
t
�
↵_

�
s↵i

= t
�
-↵_

�
t
�
s↵i
↵_

�

= t
�
-↵_

�
t
�
↵_ -

�
↵_,↵i

�
↵_
i

�
2 Y.

As all of the generators of H/Y commute with xY, we get that H/Y
and X/Y commute. In other words, H / L = Hhxi. So Property (b)
follows.

Recall, that P = W \ H. Let U denote the intersection of the re-
flecting hyperplanes corresponding to the n- 1 fundamental roots
in � \ {↵}. So

U = h�0i? =
\

g2P

Ker(g- 1)

is a line. Let

M = {w 2 W | wU = U} = {w 2 W | w�0 ✓ h�0i} = NW(Y).

So the elements of M either reflect U through the origin or fix U
pointwise. In this latter case w is in the isotropy group of U,
which is P, by [7, Theorem 1.12 (d)]. Hence |M : P| 6 2, in parti-
cular M 6 NW(P). If w 2 W then

wU =
\

g2P

Ker(wgw-1 - 1)
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therefore U is NW(P)-invariant. That is, NW(P) 6 M, so

NW(Y) = M = NW(P)

and Property (c) follows.
To prove Property (d) we will use that the coefficient of the deleted

fundamental root ↵ in the highest root e↵ is 1 or 2. For types A,B,C
and D the highest root has coefficients 1, 2 only, while for the ex-
ceptional types this holds for the endnodes, the “leaves” (see our
remark after Theorem 1.5 in the introduction). There are two excep-
tions: the middle leaf of E8 (for which the parabolic subgroup itself
is not a Gelfand subgroup) and the short fundamental root of G2

(whose coefficient in the highest root is 3). For the middle leaf of E8

the parabolic subgroup is self-normalizing so (e) does not hold. For
the short root of G2, (c’), (d’) and (e’) do hold, see below.

Suppose that w 2 W does not normalize L
�
�_

0

�
, hence there is a

root � 2 �0 such that in the decomposition of the root w� 2 � the
coefficient of ↵ is non-zero. As both e↵ -w� and w� + e↵ are non-
negative combinations of the fundamental roots, the coefficient of ↵
in w� is between -2 and 2. As it is also non-zero, Property (d) fol-
lows.

For classical types Property (e) follows from Theorem 1.5 save
the case of Dn,i n/2 < i < n - 1, which requires special atten-
tion. To obtain Q in each of the exceptional cases E6, E7, E8, F4 we
used GAP [5]. We conclude that if the node is not a leaf then Q is not
a Gelfand subgroup.

An,Bn,Cn By Theorem 1.5, P is a Gelfand subgroup, so (e) holds.

Dn By Theorem 1.5, if we remove ↵k then P is a Gelfand subgroup,
so (e) holds, unless n/2 < k < n- 1. However, Q = NW(P) is
a Gelfand subgroup of W if and only if n is odd or n is even
and k 6 2[n/4] + 1 or k > n- 1 (see Theorem 3.1 below for a
proof). Hence (e) holds unless n is even and 2[n/4]+1<k<n- 1.

E6 If ↵ is one of the three endnodes then P is a Gelfand subgroup,
by Theorem 1.5, so (e) holds. For the other three nodes even Q
is not a Gelfand subgroup (among these, Q > P holds only for
the middle node).

E7 If ↵ is an endnode then P is a Gelfand subgroup, by Theorem 1.5,
so (e) holds. For the other four nodes even Q is not a Gelfand
subgroup (even though Q > P always).



Gelfand pairs for affine Weyl groups 103

E8 If ↵ is one of the two farthest endnodes then P is a Gelfand sub-
group, by Theorem 1.5, so (e) holds. For the other six nodes
even Q is not a Gelfand subgroup (even though Q > P always).

F4 If ↵ is an endnode then P is a Gelfand subgroup, by Theorem 1.5,
so (e) holds. For the two middle nodes even Q is not a Gelfand
subgroup (even though Q > P always).

G2 The natural action of the dihedral group on the vertices of a
hexagon is multiplicity-free, so (e’) holds. As Q = NW(P) is
of order 4, a double cover, (c’) holds. The coefficients of e↵ are 2
and 3, so (d’) holds.

The statement is proved. ut

3 Type D

This section is devoted to the statement and proof of Theorem 3.1,
which completes the proof of Theorem 1.2 for the classical type Dn.
It seems that Lehrer [9] was the first to determine which parabolic
subgroups of Dn are Gelfand subgroups. His list was incomplete,
later Abramenko, Parkinson and Van Maldeghem [1] provided the
complete answer.

We need (and prove) the claim for the double cover of the reflec-
tion subgroup P but for completeness we also state the claim for
the parabolic subgroup itself. The proof resembles the proof of The-
orem 1.2.

Theorem 3.1 Let n > 3 and W a Weyl group of type Dn. Let 1 6 k 6 n
and P 6 W the maximal parabolic subgroup corresponding to removing
the k-th node.

(1) P is a Gelfand subgroup of W if and only if either 1 6 k 6 n/2
or n- 1 6 k.

(2) Suppose n/2 < k < n-1. The double cover Q = NW(P) is a Gelfand
subgroup of W if and only if either n is odd, or n is divisible by 4
and k = n/2+ 1.
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Proof — We use the isomorphism W ' V o Sn, where V = Fn-1

2
.

This V is the 1-codimensional submodule {
P

aiei |
P

ai = 0} of the
natural F2Sn module he1, . . . , eni. Let a basis of V consist of

{vi = ei + en | i = 1, . . . ,n- 1}

on which � 2 Sn acts by

vi� =

8
><

>:

vi�, if n� = n,
vn�, if i� = n, while
vi� + vn�, if i�, n� < n.

(3)

The claim about the Gelfand property of P is covered by Theo-
rem 1.5. From now on we assume n/2 < k < n- 1. Then P is the Weyl
group of the decomposable root system of type Ak-1 �Dn-k (with
minor notational changes due to degeneration if k = n- 3,n- 2) and

P ' Sk ⇥ (V0 o Sn-k),

where V0 = hvk+1, . . . vn-1i. Let Q = NW(P). As k > n/2,

Q = NV (P)P = hv1 + v2 + . . .+ vkiP.

So let

V1 = Q\ V = hv1 + v2 + . . .+ vk, vk+1, . . . , vn-1i.

To determine 1W
Q

we first decompose 1VQ

Q
. Using a special case

of Mackey’s theorem (see [8, Problem (5.2)]), 1VQ

Q
#V= 1V

V1
, whose

constituents correspond to E✓ {1, . . . , k} of cardinality |E|⌘k (mod 2).
Namely, for each such E let

⌘E(vf) =

�
1, if f 2 E[ {k+ 1, . . . ,n- 1};
-1, if f /2 E[ {k+ 1, . . . ,n- 1}.

(4)

Then
⌘E 2 Irr(V) and 1V

V1
=
X

E

⌘E.

By (3), vi� = vi� for � in Sk ⇥ Sn-k, hence the orbit of a sub-
set E ✓ {1, . . . , k} under the action of Sk⇥Sn-k consists of the subsets
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of the same cardinality. So

1VQ

Q
=

[k/2]X

i=0

�i,

where �iV =
P

|E|=k-2i
⌘E. Fix E = Ei = {2i+1, . . . , k} and the inertia

subgroup of ⌘E in VQ is

M = V(S2i ⇥ Sk-2i ⇥ Sn-k) = IVQ(⌘E).

If ⌫E 2 Irr(M) denotes the extension of ⌘E to M which is trivial
on S2i ⇥ Sk-2i ⇥ Sn-k, then �i = ⌫

VQ

E
is irreducible by [8, (6.11)].

Claim: For every 0 6 i 6 [k/2], �W
i

is multiplicity free and
�
�W
i

,�W
j

�
> 0

if and only if i = j or 2i+ 2j = n.
By the claim, 1W

Q
is multiplicity free unless n can be written a sum

of two distinct even integers between 0 and k. This latter possibility
can occur only for even n. But if n is divisible by 4 then k = n/2+ 1 is
odd and the largest distinct 2i, 2j are k - 1, k - 3, whose sum
is 2k- 4 = n- 2 < n. Let now n be even. If k > n/2 is also even then
for i = k/2 > (n- k)/2 = j we get 2i+ 2j = n, while if k > 2[n/4] + 1
is odd then i = (k - 1)/2 > (n - k + 1)/2 = j implies 2i + 2j = n.
These confirm the theorem.

We now prove the claim. To show multiplicity freeness, let i 6 k/2
be fixed, E = Ei = {2i+ 1, . . . , k} and N = S2i ⇥ VSn-2i = IW(⌘E).
Then ⌘E extends to µE 2 Irr(N) such that S2i ⇥ Sn-2i ✓ Ker(µE).
Of course, µE also extends ⌫E. The other constituents of ⌘N

E
are µE',

such that ' 2 Irr(N) and Ker(') ◆ V , in particular, all the irreducible
constituents of ⌫N

E
are of this form. By [8, (6.11)], each (µE')

W is
irreducible. Now, �W

i
= (⌫VQ

E
)W = ⌫W

E
= (⌫N

E
)W and, by Frobenius

reciprocity,
�
⌫N
E

,µE'
�
=
�
⌫E, (µE')M

�
=(⌫E,⌫E'M)=(1M,'M)=

�
1N
M

,'
�
6 1,

because M 6 N is a Gelfand subgroup (consider

M/VS2i ' Sk-2i ⇥ Sn-k 6 Sn-2i ' N/VS2i).

That is, ⌫L
E

is multiplicity free. Each of its irreducible constituents
is of form µE' and these induce irreducibly to W, so we obtain
that �W

i
= ⌫W

E
is multiplicity free, indeed.
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By Clifford Theory [8, (6.2)], if ⌘ 2 Irr(V) and  is an irreducible
summand of ⌘W then the constituents of  V are conjugates of ⌘.
Therefore, if i 6= j then the characters �W

i
and �W

j
share no common

irreducible summand unless the underlying ⌘Ei
and ⌘Ej

are W-con-
jugates for Ei = {2i+ 1, . . . , k}, Ej = {2j+ 1, . . . , k}. Suppose � 2 W
is such that ⌘�

Ei
= ⌘Ej

. As V is Abelian, we may assume � 2 Sn.
If n� = n then, by (3) and (4)

{1�, . . . , (2i)�} =
�
f | vf /2 Ker(⌘�

Ei
)
 
=
�
f | vf /2 Ker(⌘Ej

)
 
= {1, . . . , 2j}

have the same cardinality, so i = j. If m� = n, 2i < m < n, then

vn� = vm� 2 Ker(⌘�
Ei
),

so

{1�, . . . , (2i)�}=
�
f | vf /2 Ker(⌘�

Ei
)
 
=
�
f | vf /2 Ker(⌘Ej

)
 
= {1, . . . , 2j},

again and i = j. Finally, if m� = n, m 6 2i then

vn� = vm� /2 Ker(⌘�
Ei
),

so
{n�, (2i+ 1)�, . . . (n- 1)�} =

�
f | vf /2 Ker(⌘�

Ei
)
 

=
�
f | vf /2 Ker(⌘Ej

)
 
= {1, . . . , 2j}

have the same cardinality n- 2i = 2j, that is n = 2i+ 2j, as required.

For the converse, let n be even, j > i = n/2 - j (and i > 0 be-
cause k < n- 1). Then

Ei = {2i+ 1, . . . , k}, Ej = {2j+ 1, . . . , k}.

Let � be the transposition

(1, 2j+ 1)(2, 2j+ 2) . . . (2i,n).

By (3), v2i� = v2i and vf� = vf� + v2i for f 6= 2i. As v2i /2 Ker(⌘Ei
),

so v2i /2 Ker(⌘�
Ei
) and

vf 2 Ker(⌘Ei
) , vf� /2 Ker(⌘�

Ei
)
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for f 6= 2i. Therefore ⌘�
Ej

= ⌘Ei
by (4) as

{1, . . . , 2i- 1}� = {2j+ 1, . . . ,n- 1}.

If Mi = IVQ(⌘Ei
) and Mj = IVQ(⌘Ej

) then

⌫Ei
#M�

j
\M= ⌫�

Ej
#M�

j
\M .

Using Mackey’s theorem (see [8, Problem (5.6)]), we get
�
�W
i

,�W
j

�
=

�
⌫W
Ei

,⌫W
Ej

�
=

�
⌫Ei

,⌫W
Ej

#Mi

�

=
X

W=[MjgMi

�
⌫Ei

, (⌫g
Ej

#
M

g

j
\Mi

)Mi

�
.

Among the summands is
�
⌫Ei

, (⌫�
Ej

#M�

j
\Mi

)Mi

�
=

�
⌫Ei

, (⌫Ei
#M�

j
\Mi

)Mi

�

=
�
⌫Ei

#M�

j
\Mi

,⌫Ei
#M�

j
\Mi

�
= 1,

as required. ut
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