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Abstract
We present an algorithm for solving the multiple conjugacy search problem in virtu-
ally nilpotent polycyclic groups.
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1 Introduction

In cryptography one of the first attempts to use non-abelian groups
was the key exchange protocol of Anshel-Anshel-Goldfeld [1], AAG
for short, which we briefly describe here.

Let G be a non-abelian group and let a1, . . . ,ak,b1, . . . ,bm 2 G.
The group G as well as the elements ai,bj are public. For arbitra-
ry x, g 2 G, we write xg for g-1xg.

(1) Alice chooses a private x 2 G as a word in a1, . . . ,ak, and sends
bx
1

, . . . ,bxm to Bob.

(2) Bob chooses a private y 2 G as a word in b1, . . . ,bm, and sends
ay

1
, . . . ,ay

k
to Alice.
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(3) Alice computes xy and Bob computes yx.

(4) Alice and Bob can use [x,y] = x-1y-1xy as a shared key: in
fact, [x,y] = x-1xy = (yx)-1y.

This protocol requires that the Word Problem can be solved
efficiently in G: given a finitely presentation hX |Ri for G and a
word w in the elements of X, decide whether w = 1 in G. On the
other hand, the security relies on the Multiple Conjugacy Search Prob-
lem: given x1, . . . , xn, y1, . . . ,yn 2 G such that xi = yg

i
for any i

in {1, . . . ,n} and some g 2 G, find such an element g.
As shown in [2], the multiple conjugacy search problem can be re-

duced to the (single) conjugacy search problem (i = 1), provided that
the centralizer corresponding to conjugating element can be com-
puted. Indeed, from x1 = yg1

1
and x1 = yg2

1
, it follows that

x
g
-1

1

1
= x

g
-1

2

1
,

that is, g-1

1
g2 = c 2 CG(x1).

By induction, suppose that an element gj 2 G is such that xk = y
gj

k

for any k 2 {1, . . . , j}, and let

Gj = CGj-1
(xj) = CG(x1, . . . , xj)

where G1 = CG(x1). Then an element gj+1 2 G with xk = y
gj+1

k
for

all k and xj+1 = y
gj+1

j+1
is of the form gj+1 = gjc with c 2 Gj. Hence

one can determine c 2 Gj such that xj+1 = (y
gj

j+1
)c and, simulta-

neously, Gj+1 = CGj
(xj+1). This process yields an element g = gn

eventually.
In [2], Eick and Kahrobaei proposed the use of polycyclic groups

as a platform for the AAG protocol. Recall that a group G is said
to be polycyclic if G admits a cyclic series, that is, a (finite) series of
subgroups

G = G1 BG2 B . . .BGn+1 = 1

whose factors are cyclic; in particular the group G is called supersol-
uble if each Gi is a normal subgroup of G. The class of polycyclic
groups is an important subclass of soluble groups. In fact, a group
is polycyclic if and only if it is soluble and satisfies the maximal
condition [9, 5.4.12]. Hence all subgroups of a polycyclic group are
finitely generated [9, 3.1.6]. Conversely, finite soluble groups as well
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as finitely generated nilpotent groups [9, 5.2.17] are polycyclic.
Unlike an arbitrary group, a polycyclic group allows effective com-

putations within the group. For example, an induced presentation for
any subgroup of a polycyclic group can be computed from a gener-
ating set. Thus, for polycyclic groups, the multiple conjugacy search
problem reduces to n applications of the conjugacy search problem
with the determination of the corresponding centralizers. For this
purpose there exists an algorithm due to Eick and Ostheimer [4],
which makes use of finite orbits and stabilizer computations. The sit-
uation is much easier for finitely generated nilpotent groups. In [10],
for such groups, Sims proposed two efficient algorithms for solving
the conjugacy search problem and computing centralizers. These al-
gorithms depends on some techniques which are used to find the
image, the kernel and the inverse images of elements of a homo-
morphism between polycyclic groups with a polycyclic presentation
(see Section 2). An analysis of the computational complexity of the
algorithms can be found in [8].

The aim of this note is to show that Sim’s algorithms can be ex-
tended to polycyclic groups which are virtually nilpotent, namely
with a nilpotent subgroup of finite index. This is in part motivated
by the fact that supersoluble groups are virtually nilpotent [9, 5.2.17].
On the other hand, it is known that the growth rate of a polycyclic
group is polynomial if and only if the group is virtually nilpotent [11].
Thus, in our context, the existence of practical algorithms for virtu-
ally nilpotent groups confirms that these groups are not good candi-
dates for the AAG protocol using polycyclic groups. We refer to [5]
for the definition of growth rate and an account on polycyclic group-
based cryptography.

2 Computational properties of polycyclic groups

Let G be a polycyclic group with a cyclic series

G = G1 BG2 B · · ·BGn+1 = 1

and a polycyclic (generating) sequence of elements X = (x1, . . . , xn),
that is, such that

xi 2 Gi and hxiGi+1i = Gi/Gi+1.
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Denote by I=I(x1, . . . , xn) the set of all i2 {1, . . . ,n} such that Gi/Gi+1

is finite, and let ri = |Gi : Gi+1| for any i 2 I. Then every g 2 G can
be expressed uniquely as

x
ej1

1
· · · xejn

n ,

where ejk is an integer and 0 6 ejk < rk if k 2 I (see, for instance, [6,
Lemma 8.3]). Moreover, the polycyclic sequence X induces a set of
conjugate relations and powers relations, which give rise to the so-
called (standard) polycyclic presentation for G relative to X (see [6, Lem-
ma 8.6]). The Word Problem in a polycyclic presentation can be solved
effectively using the collection to the left (see [10, p. 395]). This method
consists in rewriting an element g 2 G moving left to the begin-
ning of the word all occurrences of x1; next, all occurrences of x2 are
moved left until they are adjacent to the x 0

1
s, and so on.

Following [10], we say that the sequence U = (g1, . . . , gm) of el-
ements of G is in standard form if the m-by-n matrix A = (ejk)
satisfies the following properties:

- all rows of A are nonzero (i.e., no gj is the identity);

- A is in row Hermite normal form;

- if ejk is the leading entry in the j-th row and k 2 I, then ejk
divides rk.

Suppose that U is in standard form. An admissible sequence of ex-
ponents for U is a sequence (a1, . . . ,am) of integers such that, if ejk
is the leading entry in the j-th row and k 2 I, then 0 6 aj < rk/ejk.
Let S(U) be the set of all products ga1

1
· · ·gam

m , where (a1, . . . ,am)
is an admissible sequence of exponents for U. According to Proposi-
tion 5.2 of [10], S(U) is a subgroup of G if and only if U is full, namely
the following conditions hold:

- for 1 6 j1 < j2 6 m the set S(U) contains g-1

j1
gj2gj1 ;

- if ejk is a leading entry of A and k 2 I, then S(U) contains gq
j

,
where q = rk/ekj.

In particular, if U is full then (g1, . . . , gm) is a polycyclic generating
sequence for S(U). We also recall that for any subgroup H of G there
is a unique full sequence U of elements of G such that H = S(U), and
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this sequence can be determined by the POLY_SUBGROUP algorithm
(see [10, Section 9.5] for more details).

The following result is taken from [10, Section 9.6].

Proposition 2.1 Let G and H be polycyclic groups, and let x1, . . . , xn
and y1, . . . ,yn 0 be polycyclic sequences for G and H, respectively. Suppose
further to know the polycyclic presentations of G and H. If f is a homomor-
phism from G to H then:

(i) there are h1, . . . ,hl 2 H such that the sequence U = (h1, . . . ,hl) is
full and S(U) coincides with the image of f;

(ii) there are gl+1, . . . , gm2G such that the sequence V=(gl+1, . . . , gm)
is full and S(V) coincides with the kernel of f;

(iii) given h = ha1

1
· · · hal

l
2 S(U) there exist g1, . . . , gl 2 G such that

f(g) = h, where g = ga1

1
· · · gal

l
.

We mention that the sequences U and V of Proposition 2.1 can be
obtained with one application of the POLY_SUBGROUP algorithm.
More precisely, assuming that K is the subgroup of the cartesian
product H ⇥ G generated by the elements f(x1)x1, . . . , f(xn)xn, the
algorithm provides the unique full sequence W = (w1, . . . ,wm) of
elements of H ⇥ G such that K = S(W), where m depends only
on n. Then each wj can be written uniquely as hjgj, where hj 2 H
and gj 2 G, and one can take l to be the largest integer in {1, . . . ,m}

such that hl is not trivial.

3 The algorithm

In what follows we assume that, for a homomorphism f from a poly-
cyclic group to a finitely generated abelian group, one can appeal
to Proposition 2.1 for determining the image and the kernel of f.

Proposition 3.1 Let G be a polycyclic group which has a nontrivial nor-
mal subgroup H such that H is nilpotent and G/H is finite.

(i) Let x and y be elements of G. Then there is an algorithm which decides
if x and y are conjugate in G and, if so, finds g 2 G such that x = yg.

(ii) Given an element x of G, there is an algorithm which determines a
full sequence U such that S(U) = CG(x).
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Proof — Let n be the nilpotency class of H and consider the map-
ping

f1 : h�2(H) 2 H/�2(H) 7! [x,h]�2(H) 2 H/�2(H).

where �i(H) denotes the ith term of the lower central series of H.
As H/�2(H) is abelian, arguing modulo �2(H), for any h, k 2 H, we
have

[x,h-1k] = [x, k][x,h-1]k = [x, k][x,h]-hk

= [x,h]-hk[x, k] = [x,h]-1[x, k].

Therefore, if h�2(H) = k�2(H), from the previous equation it follows
that f1 is well-defined. Similarly, [x,hk] = [x,h][x, k], and f1 is a ho-
momorphism. For any i 2 {1, . . . ,n}, we use induction to define the
homomorphism

fi : h�i+1(H) 2 Li/�i+1(H) 7! [x,h]�i+1(H) 2 �i(H)/�i+1(H),

where L1 = H and, for i > 2, Li is the inverse image in Li-1 of the
kernel of fi-1.

(i) Let T = {t1, . . . , tr} be a left transversal to H in G. Then x and y
are conjugate in G if and only if there exists g 2 G = [r

j=1
tjH such

that x = yg. This is equivalent to say that x and ytj are conjugate
in H for some j 2 {1, . . . , r} or, equivalently, that

x-1ytj 2 fn(Ln).

Indeed, xh = ytj for some h 2 H if and only if [x,h] = x-1ytj . Using
the subgroup membership problem (see [10, Section 9.5]), we can
decide if x-1ytj 2 fn(Ln). Furthermore, in the affirmative case, we
can apply (iii) of Proposition 2.1 to find an element z 2 Ln such
that fn(z) = x-1ytj . Then [x, z] = x-1ytj yields xz = ytj , showing
that tjz-1 conjugates y into x.

(ii) For any i 2 {1, . . . ,n}, consider Li and fi as above. Thus the
kernel of fn is Ln+1, which coincides with CH(x). Let T = {t1, . . . , tr}
be a left transversal to H in G. Using (i), we can determine the set

S = {j 2 {1, . . . , r} | x = xtjhj for some hj 2 H}.

Notice that, if x = xtjhj = xtjh for some hj,h 2 H, then tj(hjh
-1)t-1

j

belongs to CH(x). For any j 2 S, taking an element hj 2 H such
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that x = xtjhj , it follows that

CG(x) = hCH(x), tjhj | j 2 Si.

Finally, using the POLY_SUBGROUP algorithm, the full sequence U
such that S(U) = CG(x) is determined, and we are done. ut

Let G = T(4, Z) be the group of upper triangular 4⇥ 4 matrices
over the set Z of integers, and let H = U(4, Z) be the subgroup
of G consisting of all upper unitriangular matrices. Then H is nor-
mal in G [9, p. 128] and we have H = ha1,a2,a3,a4,a5,a6i, where

a1 =

0

BB@

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA , a2 =

0

BB@

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

1

CCA , a3 =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

1

CCA ,

a4 =

0

BB@

1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA , a5 =

0

BB@

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

1

CCA , a6 =

0

BB@

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA .

Also, �2(H) = ha4,a5,a6i, �3(H) = ha6i and �4(H) = 1 [9, Exerci-
se 5.1.13]. So H is nilpotent of class 3. A left transversal to H in G is
given by T = ht1, t2, t3, t4i, where

t1 =

0

BB@

-1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA , t2 =

0

BB@

1 0 0 0
0 -1 0 0
0 0 1 0
0 0 0 1

1

CCA ,

t3 =

0

BB@

1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 1

1

CCA , t4 =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1

1

CCA .

Obviously, t2
i
= 1 for i = 1, 2, 3, 4. Thus T = ht1i ⇥ ht2i ⇥ ht3i ⇥ ht4i

is an elementary abelian 2-group of order 16, and G = Ho T is the
semidirect product of H and T . In particular, G is supersoluble.

Example 3.2 Let G and H as above, x = t1a1a
-1

6
and y=t1a

-1

1
.

According to (i) of Proposition 3.1, x and y are conjugate if and only
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if x-1yt1 2 f3(L3). Notice that t1 inverts a1, so x-1yt1 = a6. Now
consider the map

f1 : h�2(H) 2 H/�2(H) 7! [x,h]�2(H) 2 H/�2(H).

Since

[x,a1] = a2

1
, [x,a2] = a4, [x,a3] = 1, [x,a4] = 1, [x,a5] = a6,

the kernel of f1 is generated by a2�2(H) and a3�2(H). Then

L2 = ha2,a3,a4,a5,a6i.

Similarly, the kernel of the map

f2 : h�2(H) 2 L2/�3(H) 7! [x,h]�3(H) 2 g2(H)/�3(H)

is generated by a3�3(H), a4�3(H) and a5�3(H). Hence

L3 = ha3,a4,a5,a6i.

Next, for
f3 : h 2 L3 ! [x,h] 2 �3(H),

we have f3(a5) = a6. Thus x and y are conjugate, and t1a
-1

5
is the

conjugating element.

Example 3.3 Let G and H as above, and let x = a1a
2

3
. In Example 7.1

of [10], Sims applied his algorithm to compute

CH(x) = ha1,a3,a4a
2

5
,a6i.

In order to determine CG(x), by (ii) of Proposition 3.1 it is enough to
find t 2 T such that x-1xt 2 f3(L3) 6 �3(H) = ha6i. Since

x-1xt =

8
>>>>>><

>>>>>>:

1 if t = 1, t1t2, t3t4, t1t2t3t4

a-2

1
if t = t1, t2, t1t3t4, t2t3t4

a-4

3
if t = t3, t4, t1t2t3, t1t2t4

a-2

1
a-4

3
if t = t1t3, t1t4, t2t3, t2t4
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we obtain that

CG(x) = ha1,a3,a4a
2

5
,a6, t1t2, t3t4i.

4 Conclusion

The security of the key agreement AAG relies on the good choice
of the platform group, in which the multiplication and comparison
of elements must be easy but the computation of conjugating ele-
ments is required to be difficult. The algorithmic properties of poly-
cyclic groups suggest to use such a group as a platform. However,
although the word problem can be solved in an efficient way in these
groups, the conjugacy search problem is not so hard in some cases.
For instance, Sims [10] provided an algorithm to solve the conjugacy
search problem for finitely generated nilpotent groups, whose com-
putational complexity was analyzed in [8]. In Proposition 3.1 we ex-
tended this algorithm to virtually nilpotent polycyclic groups, show-
ing that AAG is inviable for this class of polycyclic groups, too. Nev-
ertheless, it remains unclear whether it runs in polynomial time.
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