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Abstract
During his lectures to the 1987 Singapore Group Theory Conference Otto H. Kegel
proposed the following question: “If every subgroup S of the locally finite group G
contains a finite p-subgroup which is singular in S, does G then satisfy the strong Sy-
low Theorem for the prime p?” In this paper we answer the question in the affirmative.
The paper formed an essential part of the author’s German Diplomarbeit of 1984 (the
“Charakterisierungssatz”) written before he left academia [4]. We present the Charakter-
isierungssatz as Theorem 3.9, and summarise then the result as Theorem 3.10, stating
that if G is a locally finite group and p is a prime, then G satisfies the strong Sylow
theorem for the prime p if and only if every subgroup S of G contains a finite p-sub-
group which is singular in S. Subsequently we present a few novel concepts for Sylow
theory in (locally) finite groups to encourage future research. The paper is divided in
four sections: Introduction; Good Sylow p-subgroups and p-uniqueness subgroups;
Basic theorems of Sylow theory in locally finite groups and our Charakterisierungssatz;
Novel concepts for Sylow theory in (locally) finite groups.
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1 Introduction

In his four workshop lectures on Sylow theory in locally finite groups
at the famed Singapore Group Theory Conference of June 1987 [10],
Otto H. Kegel stated that he could not settle the following question: if
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every subgroup S of the locally finite group G contains a finite p-subgroup
which is singular in S, does G then satisfy the strong Sylow Theorem for the
prime p? Recall that the group G of arbitrary cardinality is defined to
be locally finite if every finite subset of G is contained in a finite sub-
group of G and the finite p-subgroup P of the locally finite group G
is said to be singular in G if for every finite subgroup F of G contain-
ing P there is just a unique Sylow p-subgroup of F containing P. Here
a p-group for the prime p is a group of arbitrary cardinality each of
whose elements has order a finite power of p. Then a p-group is fi-
nite if and only if its order is a finite power of p. The locally finite
group G is said to satisfy the Sylow Theorem for the prime p (or the Sy-
low p-Theorem) if the maximal p-subgroups of G are all conjugate in G
and G satisfies the strong Sylow Theorem for the prime p if every sub-
group of G satisfies the Sylow Theorem for the prime p. Kegel’s lec-
tures present the basics of Sylow theory in locally finite groups, give
an overview of the work of Brian Hartley and Andrew Rae on Sy-
low theory in locally p-soluble groups, and reveal in great detail the
normal structure for groups satisfying the strong Sylow Theorem
for the prime p in the general case (for p > 5). Chapters 2 and 4
of [3] give a good overview as well but without appreciating Hart-
ley’s, Rae’s and Kegel’s fundamental papers properly and avoiding
all their beautiful details.

In this publication we turn Kegel’s question into a theorem: If every
subgroup S of the locally finite group G contains a finite p-subgroup which
is singular in S, then G satisfies the strong Sylow Theorem for the prime p.
Since the converse is also true (see [4] and [10]), this characterises
the locally finite groups which satisfy the strong Sylow Theorem for
the prime p. The proof of our Charakterisierungssatz is not presented
in its original form since it was written in German as the main re-
sult of the author’s Diplomarbeit during 1978–1984 (see [4]). We de-
cided against a presentation (for historical reasons) as an amalgam
of English and German and translated all employed parts into En-
glish, thereby introducing a large number of corrections and embel-
lishments, in particular Theorem 3.6.

The central discovery that enabled in those days the proof was
the relationship of p-subgroups which are singular to the good p-sub-
groups (see [12]) and the strongly local p-subgroups (see [13]) of An-
drew Rae. Let G be any locally finite group and let P be a p-subgroup
of G. A local system for G is a family ⌃ of finite subgroups such that ev-
ery element of G lies in a ⌃-group and for every two ⌃-groups there
exists another ⌃-group which contains both, for example, the local
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system of all finite subgroups of G. The p-group P is said to reduce
into a local system ⌃ for G if for every ⌃-group U we have that P \U is
a Sylow p-subgroup of U, and then P is a maximal p-subgroup of G
(see below), P is said to be good if there exists a local system for G
into which P reduces, and P is said to be strongly local or, as we pre-
fer to say, very good if given any local system ⌃ for G there exists a
subsystem of ⌃ into which P reduces. A very good p-subgroup is of
course good, and, as we show below, any singular p-subgroup P of a
locally finite group G is contained in a unique maximal p-subgroup
of G which is very good and the existence of P enforces the conjugacy
of the good Sylow p-subgroups in countable locally finite groups

We have the ambition to present not only our own results but also
important known results to offer some context and a unified depic-
tion. So when we refer to [4] it does not always mean (although it
almost always means) that we present research results of ourselves.

2 Good Sylow p-subgroups and p-uniqueness
subgroups

A maximal p-subgroup of a locally finite group G is called here a Sy-
low p-subgroup of G and we denote the set of all Sylow p-subgroups
of G by SylpG. If a p-subgroup of a locally finite group G reduces
into a local system for G, it is a maximal p-subgroup.

Lemma 2.1 (see [4]) Let p be a prime and let P be a p-subgroup of a
locally finite group G. If there exists a local system ⌃ for G into which P
reduces, then P is a Sylow p-subgroup of G.

Proof — Let S 2 SylpG with P 6 S. Suppose, P 6= S. Then there ex-
ists an element x 2 S\P. Let U 2 ⌃ with x 2 U. It follows that hP \U, xi
is a p-subgroup of U with P \U < hP \U, xi 6 S. This contradicts the
prerequisite P \U 2 SylpU. ut

Notice that the above result is proved in [3], Lemma 2.2.10, only for
nested local systems and in a more complicated way. The local sys-
tem ⌃ for the locally finite group G is said to be nested (in German
geschachtelt) if there is a sequence {Un | n 2 N} of finite subgroups
of G such that Un 6 Un+1 for all n 2 N and ⌃ = {Un | n 2 N}. If G
is a countable locally finite group and {xn | n 2 N} an enumeration
of G, let Un := hx1, x2, . . . , xni (n 2 N). Then {Un | n 2 N} is a nested
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local system for G. If the locally finite group G has a nested local sys-
tem, then G is countable. We can identify all the good Sylow p-sub-
groups of countable locally finite groups by means of nested local
systems for them.

Lemma 2.2 (see [4]) Let G be a countable locally finite group.

a) If ⌃ is a local system for G, then ⌃ contains a local subsystem ⌃1

which is nested.

b) Let ⌃ = {Un | n 2 N} be a nested local system for G. Then there
exist with respect to (w.r.t.) ⌃ good Sylow p-subgroups of G. In par-
ticular, G contains at least one good Sylow p-subgroup.

Proof — a) Let ⌃ be a local system for G and {xn | n 2 N} an
enumeration of G. For x,y 2 G, we define Ux 2 ⌃ with x 2 Ux and
hUx,Uyi 6 Uxy as follows: let Ux1

2 ⌃ with x1 2 Ux1
; if subgroups

Ux1 x2 x3 ... xn
2 ⌃ are already defined with

x1, x2, x3, . . . , xn 2 Ux1 x2 x3 ... xn
(n 2 N),

let Uxn+1
2 ⌃ with xn+1 2 Uxn+1

and Ux1 x2 x3 ... xn xn+1
2 ⌃ with

hUx1 x2 x3 ... xn
,Uxn+1

i 6 Ux1 x2 x3 ... xn xn+1
(n 2 N).

Then the countable subset ⌃1 := {Ux1 x2 x3 ... xn
| n 2 N} of ⌃ is a

nested local system for G.

b) Let P1 2 SylpU1. If

P1 6 P2 6 . . . 6 Pn

are already finite p-subgroups of G with Pi 2 SylpUi (1 6 i 6 n),
let Pn+1 2 SylpUn+1 with Pn 6 Pn+1 (n 2 N). Define S :=

S
n
Pn.

Then S is a p-subgroup of G, which reduces into ⌃, and so is good
with S 2 SylpG by Lemma 2.1. ut

Another argument for proving Lemma 2.2 b) comes from Ke-
gel’s Lemma 1.1 of [10] and is very similar to that of Lemma 2.1. Note
also that Lemmata 2.1 and 2.2 a) are (and were) well-known but we
presented slick improved proofs and did not find Lemma 2.2 a) in
the literature. For Lemma 2.2 b) see also [12], 1.11.

We can now introduce the p-uniqueness subgroups and present
the close relationship between them and the good Sylow p-subgroups.
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In [4] we call p-dominant a p-subgroup of the locally finite group G
if it is finite and is contained in a unique Sylow p-subgroup S of G,
and call then S singular (in German einzigartig or einmalig or singulär,
in a double sense). Although “dominant” in German is “dominant”
in English we now find it smarter to define such a p-subgroup of G as
a p-uniqueness subgroup (in German, quite a bit unwieldy, p-Einzigar-
tigkeitsuntergruppe or p-Einmaligkeitsunterguppe) of G for S or w.r.t. S.
We observe that there is no danger of confounding our p-uniqueness
subgroups with the p-uniqueness subgroups which play a major role
in the classification of the finite simple groups (see page 82 of [5]).

Proposition 2.3 Let G be a locally finite group and let p be a prime. Let P
be a finite p-subgroup of G. The following properties are equivalent:

1) P is a p-uniqueness subgroup of G.

2) P is singular in G.

3) Whenever P1 and P2 are finite p-subgroups of G with P 6 P1 \ P2
then hP1,P2i is a p-group.

Proof — 1) ) 2) Suppose P is not singular in G. Then we have
a finite subgroup F of G such that P is contained in at least two Sy-
low p-subgroups P1 and P2 of F. Let Si be a Sylow p-subgroup of G
which contains Pi (i = 1, 2). If S1 = S2 then hP1,P2i 6 hS1, S2i \ F is
a p-group which contradicts P1 2 SylpF and P2 2 SylpF. Thus S1 6= S2.
Therefore P is not a p-uniqueness subgroup of G.

2) ) 3) Let P 6 P1 \ P2 where P1 and P2 are finite p-subgroups
of G and suppose that F := hP1,P2i is not a p-group. Then P 6 F
and since hP1,P2i is not a p-group there are two distinct Sylow p-sub-
groups Q1 and Q2 of F containing P1 and P2, respectively. But
then P 6 Q1 \Q2 and so P is not singular in G.

3) ) 1) Suppose that 3) holds and that P is not a p-uniqueness
subgroup of G. Then there are distinct Sylow p-subgroups Q1 and Q2

of G such that P 6 Q1 \Q2. Let x 2 Q1 \Q2 and y 2 Q2 \Q1. It
follows that P1 := hP, xi and P2 := hP,yi are finite p-groups and
that hP1,P2i is not a p-group, contradicting 3). ut

Kegel discovered insight gaining equivalent conditions for the con-
jugacy of good Sylow p-subgroups in countable locally finite groups.
We expandedly restate and improvedly reprove his result in our ter-
minology thereby adding the property of the existence of a p-unique-
ness subgroup. We also notice hat Kegel’s argument for 2) ) 4) on
page 6 and following of [10] is really not fully convincing.
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Theorem 2.4 (see [10], Theorem 1.2) For the countable locally finite
group G and the prime p the following properties are equivalent:

1) There exists a nested local system {Gi | i 2 N} for G and an index i0
such that for every pair j > i > i0 of indices every Sylow p-sub-
group Pi of Gi lies in a unique Sylow p-subgroup Pj of Gj.

2) There exists a finite p-subgroup P0 of G which is singular in G.

3) There exists a p-uniqueness subgroup P0 of G.

4) Any two good Sylow p-subgroups of G are conjugate in G.

Proof — 1) ) 2) Choose Pi0 2 SylpGi0
and put P0 := Pi0 . Let F

be any finite subgroup of G containing P0. For every index j such
that F 6 Gj, the unique Sylow p-subgroup of Gj containing P0 must
contain a Sylow p-subgroup of F, and no other Sylow p-subgroup of F
can contain P0. Clearly 2) ) 1). From Proposition 2.3 follow 2) ) 3)
and 3) ) 2). To show 4) ) 1) assume that for any nested local sys-
tem {Gi | i 2 N} for G and any index i0, there are infinitely many
pairs j > i > i0 of indices for which some (and hence any by con-
jugation) Sylow p-subgroup of Gi is contained in at least two Sy-
low p-subgroups of Gj. We then can construct, similar to Theorem 3.2
or Theorem 3.8 below, 2@0 maximal p-subgroups of G which are
good by Lemma 2.2 and cannot all be conjugate in G. Thus 4) en-
tails 1), and hence 2). It remains to show 3) ) 4). Let P and Q be
good Sylow p-subgroups of G obtained as two unions of Sylow p-sub-
groups of nested local systems {Gi | i 2 N} and {Hi | i 2 N} for G
(see Lemma 2.2) and let S0 be the unique Sylow p-subgroup of G
containing P0; we show that P is conjugate to S0 and S0 is conjugate
to Q, and therefore P is conjugate to Q; if P and S0 are not conjugate
then one of them must have property (?) of Theorem 3.1 (see below)
which means in particular that it is not singular; so P has property (?);
now P reduces into {Gi | i 2 N}, that is, P \Gi 2 SylpGi for all i 2 N;
there exists an index i0 such that P0 6 Gi0

; then P0 6 Pi0 for some
unique Pi0 2 SylpGi0

; now, by Sylow’s classical theorem, let x be an
element of Gi0

such that Px

i0
= P \Gi0

; then Px

i0
is a finite p-sub-

group of P which is contained in just only one Sylow p-subgroup
of G thereby contradicting property (?) of P; for exactly the same
reasons S0 is conjugate to Q; therefore P must be conjugate to Q. ut

Let S be a Sylow p-subgroup of the locally finite group G. A fi-
nite subgroup F of G is called S-dominant if S reduces into every
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subgroup U of G which contains F, that is, S \ U 2 SylpU for all
subgroups U of G such that F 6 U.

Lemma 2.5 (see [4]) Let G be a locally finite group, p a prime, S 2 SylpG
and F a finite subgroup of G. The following properties are equivalent:

1) F is S-dominant.

2) For each finite subgroup U of G with F 6 U we have S\U 2 SylpU.

Proof — 1) ) 2) is clear, so we only need to prove that 2) implies 1).
Since F is finite, there exists a local system ⌃ for G such that for
each ⌃-group U we have F 6 U. Let V be a subgroup of G with F 6 V .
Then ⌃1 := {V \U | U 2 ⌃} is a local system for V into which S \ V
reduces. Therefore from Lemma 2.1 follows S\ V 2 SylpV . ut

Lemma 2.6 (see [4]) Let G be a locally finite group and S 2 SylpG. The
following properties are equivalent:

1) S is very good.

2) There exists an S-dominant subgroup of G.

Proof — 1) ) 2) Suppose no S-dominant subgroup of G exists.
Then, according to Lemma 2.5, to every finite subgroup F of G there
exists one finite subgroup UF of G with F 6 UF and S\UF 62 SylpUF.
Then ⌃ := {UF | F finite subgroup of G} is a local system for G that
possesses no local subsystem into which S reduces.

2) ) 1) Let F be an S-dominant subgroup of G and ⌃ a local
system for G. Let ⌃1 := {U | U 2 ⌃ and F 6 U}. Then ⌃1 is, because of
the S-dominance of F, a local subsystem of ⌃ into which S reduces. ut

Lemma 2.7 (see [4]) Let G be a locally finite group and let p be a prime.

a) If F is a p-uniqueness subgroup of G and S is the singular Sylow p-sub-
group of G with F 6 S, then F is an S-dominant subgroup of G.

b) Every singular Sylow p-subgroup of G is very good.

Proof — Since b) follows from a) and Lemma 2.6 we only need
to prove a). Let U be a subgroup of G with F 6 U. Let P 2 SylpU
and T 2 SylpG with F 6 S\U 6 P 6 T . From F 6 S and the p-unique-
ness of F follows T = S. Therefore S\U > S\ P = P. ut

The following consequence of this lemma is a relevant insight.



20 F.F. Flemisch

Theorem 2.8 (see [4]) Let p be a prime and P be a p-uniqueness subgroup
of the locally finite group G (or, equivalently by Proposition 2.3, let P be a
singular p-subgroup of G). Then the singular Sylow p-subgroup S of G
containing P is very good.

We can now summarise the relationship between good Sylow p-sub-
groups and p-uniqueness subgroups together with the Sylow p-sub-
groups containing them as follows:

• singular Sylow p-subgroups are very good;

• p-uniqueness subgroups are singular, and conversely;

• in countable locally finite groups good Sylow p-subgroups are
identified by nested local systems;

• in countable locally finite groups the existence of a p-uniqueness
subgroup compels the conjugacy of all good Sylow p-subgroups.

We end the discussion of good Sylow p-subgroups by pointing out
that there exist 1) countable locally finite groups with Sylow p-sub-
groups which are not good (see the note at page 5 of [10]: “It may be
worthwhile to point out that a countable infinite locally finite group
may have maximal p-subgroups which” are not good) and 2) locally
finite groups of cardinality 2@0 without good Sylow p-subgroups.

First, we let G be a finite group with |SylpG| > 2, e.g. the symmetric
group S2p of degree 2p for the prime p for which we know surely that

|SylpS2p| > 2p- 2 > 2.

Consider the N-fold cartesian power

G[N] :=
Q

{Gi | Gi := G for all i 2 N}

= {(x1, x2, . . . ) | xi 2 Gi for all i 2 N}

of G and notice that it satisfies the Sylow p-Theorem.
Proof — For S, T 2 SylpG[N] there are Si, Ti 2 SylpGi= SylpG (i 2 N) such that S,
resp. T , is the cartesian product of the Si’s, resp. the Ti’s. If xi 2 Gi = G with
Sxi
i

= Ti (i 2 N) and x := (xi)i2N , then Sx = T . ut

The group G[N] contains the N-fold direct power

G(N) :=
Y

0
�
(xi)i2N 2 G[N]

| xi = 1 for almost all i 2 N
 

,
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which does not satisfy the Sylow p-Theorem.
Proof — Let S, T 2 SylpG(N). If there is an x 2 G(N) with Sx = T , then Sx⇡i = T⇡i

for almost all i 2 N. Thus for P,Q 2 SylpG with P 6= Q, the groups P(N) and Q(N)

are not in G(N) — but in G[N] — conjugate Sylow p-subgroups of G(N). Alternatively,
it follows from |G(N)

| = @0 and |SylpG(N)
| = 2@0 — since |SylpG| > 2 we can refer

to Theorems 3.1 and 3.2 (see below) — that not all Sylow p-subgroups of G(N) can
be conjugate. ut

The example G(N) 6 G[N] shows that in uncountable locally finite
groups the Sylow p-Theorem is not inherited by normal subgroups.

Moreover, G[N] contains the diagonal subgroup

D :=
�
(xi)i2N 2 G[N]

| (9 x 2 G)(8 i 2 N) xi = x
 
' G

via the isomorphism

� : D �! G,
�
(xi)i2N

��
:= x,

from D onto G with D\G(N) = h1i. Since G(N) is a normal subgroup
of G[N], we have hG(N),Di = DG(N); this is a countable subgroup
of G[N]. The Sylow p-subgroups of G[N] (resp. of G(N)) are cartesian
(resp. direct) products of the Sylow p-subgroups of the Gi’s (i 2 N),
namely

Q
{S⇡i

n | i 2 N}
�
resp.

Q
0
{S⇡i

n | i 2 N}
�

for Sn2SylpG (n 2 N),
where ⇡i: G[N] ! Gi is the projection ⇡i

�
(xk)k2N

�
:= xi on the fac-

tor Gi (i 2 N). Any P 2 SylpD normalises exactly one Sylow p-sub-
group S(P) of G[N] (resp. exactly one Sylow p-subgroup S0(P) of G(N)),
namely S(P) =

Q
{P⇡i | i 2 N}

�
resp. S0(P) =

Q
0
{P⇡i | i 2 N}

�
. There-

fore every Sylow p-subgroup of D is a p-uniqueness subgroup
of DG(N), and P S0(P), for P 2 Syl

p
D ' Syl

p
G, is a singular Sy-

low p-subgroup of DG(N) and so is good, even very good, by The-
orem 2.8; these Sylow p-subgroups are conjugate: if P1,P2 2 Syl

p
D

and Px

1
= P2 with x 2 D, then

�
P1 S

0(P1)
�x

=
�
P1

Q
0
{P⇡i

1
| i 2 N}

�x

= P2
Q

0
{P⇡i

2
| i 2 N} = P2 S

0(P2)

(see also Theorem 2.4). The countable group G(N) also has by Lem-
ma 2.2 good Sylow p-subgroups, which are not conjugate, and we
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are able to designate some distinguished of them explicitly: let

Ui := G1 ⇥G2 ⇥ . . .⇥Gi (i 2 N);

then ⌃ := {Ui | i 2 N} \ G(N) is a nested local system for G(N);
if Pi 2 SylpGi = SylpG (i 2 N), then

P0 :=
�
P1 ⇥ P2 ⇥ . . .

�
\G(N)

is a p-subgroup of G(N) which reduces into ⌃ and thus is a good Sy-
low p-subgroup of G(N) by Lemma 2.1.

The group DG(N) has indeed also (many) Sylow p-subgroups,
which are not good: since |SylpG| > 2 we can construct using the
method employed in the proof of Theorem 3.2 or that employed in
the proof of Theorem 3.8 an infinitely (@0) high tree of finite p-sub-
groups of DG(N) with h1i as the root which branches properly at
each location with proper inclusions and where two immediate suc-
cessors of each point do not generate a p-group; this tree has 2@0

branches which constitute 2@0 many ascending unions of finite p-sub-
groups and thus 2@0 many p-subgroups P◆ where any two of them do
not generate a p-group; choosing for each P◆ a Sylow p-subgroup S◆
of DG(N) containing P◆ now gives 2@0 Sylow p-subgroups of DG(N)

(1 6 ◆ 6 2@0) on the treetop; since the good Sylow p-subgroups of
the countable group DG(N) are conjugate (Theorem 2.4), at most @0

of these 2@0 Sylow p-subgroups can be good; there remain (with
or without the continuum hypothesis) at least 2@0 - @0 many Sy-
low p-subgroups in the treetop which are not good and too many
to be conjugate in DG(N). We note that Rae [12] constructs, by intro-
ducing the unwieldy concept of “weakly goodness” and by referring
to another group he constructed (see [12], 5.11), a countable locally
soluble group possessing a Sylow p-subgroup which is not good (see
[12], 5.31). This example is much more complicated than ours.

Second, let p and q be primes with q ⌘ 1 (mod p) and

A := ha,b | ap = bq = (ab)p = 1i.

Then |A| = pq and A has q Sylow p-subgroups and a normal Sy-
low q-subgroup, so is metabelian. If (p,q) = (2, 3), then A = S3 is the
symmetric group of degree 3. The group A contains the elements a
and a 0 := ab of order p which are not p-consonant, that is, they do
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not generate a p-group. The N-fold cartesian power A[N] of A is
locally finite and metabelian of exponent pq. László G. Kovács, Bern-
hard H. Neumann and Hugo de Vries constructed, based on the ele-
ments a and a 0 (and exemplarily for (p,q) = (2, 3)), an N-fold interdi-
rect power H of A, that is, A(N) 6 H 6 A[N], with the following prop-
erties (see [11], Theorem 3.7): H is metabelian of exponent q and or-
der 2@0 with a countable Sylow p-subgroup and a Sylow p-subgroup
of order 2@0 (hence without Sylow Theorem for the prime p). They
also constructed, using again a and a 0, an N-fold interdirect power H
of A with the following amazing properties (see [11], Theorem 4.4,
and also [12], 1.13): H has order 2@0 , each Sylow p-subgroup of H
is countable, H has a countable normal (hence unique) Sylow q-sub-
group, which has no complement in H, and each Sylow p-subgroup
has a complement in H, which is normal in H and contains elements
of order p. No Sylow p-subgroup of H can be good: suppose a Sy-
low p-subgroup S of H reduces into a local system ⌃ for H; we then
choose a ⌃-group U containing an element x of order p of a comple-
ment of S, and a P 2 SylpU containing x; since S\U 2 SylpU there is
a y 2 U with Py = S \U; then hxiy 6 S whereas hxiy belongs to the
normal complement of S, which is a contradiction.

In the following section we shall point out that there exist count-
able locally finite groups 3) without singular Sylow p-subgroups,
4) with good Sylow p-subgroups which are not very good, and
5) with very good Sylow p-subgroups which are not singular.

3 Basic theorems of Sylow theory in locally finite
groups and our “Charakterisierungssatz”

In this section we first present — with quite considerably improved
proofs — the basics of Sylow theory in locally finite groups (The-
orem 3.1 to Theorem 3.5) and subsequently prepare and carry out
the proof of our Charakterisierungssatz (Theorem 3.6 to Theorem 3.9)
which, in turns, allows us to prove very easily our main theorem (The-
orem 3.10).

In the following statement, the property (?) means that S is not
singular; see the same property (⇤) on page 8 of [10]. This property
was for the first time discovered by Ali O. Asar [1].
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Theorem 3.1 (see [4], and Theorem 3.6 below for a generalisation)
Any locally finite group G which does not satisfy the Sylow Theorem for the
prime p contains a Sylow p-subgroup S with the following property:

(?) Every finite subgroup of S lies in at least two Sylow p-subgroups
of G.

Proof — Let S and T be two Sylow p-subgroups of G which are
not conjugate (in G). If T is not singular, that is, T does have prop-
erty (?), the result is immediate, so suppose that T is singular and
let Y be a p-uniqueness subgroup for T . We show that then S has
property (?), that is, S is not singular. To this end let X be an arbitrary
finite subgroup of S. Then hX, Yi is a finite group. According to the Sy-
low p-Theorem for finite groups there is an x 2 G such that X and Yx

lie in the same Sylow p-subgroup of hX, Yi. Then hX, Yxi is a p-group.
From the assumption on Y it now follows that hYx,Xi 6 Tx. Hence X
lies in at least the two Sylow p-subgroups S and Tx of G. Therefore X
is not a p-uniqueness subgroup for S. ut

We now prepare an alternative proof of the basic theorem of Sylow
theory known as the “Asar-Hartley theorem” (see [1] and [3], The-
orem 2.3.11, for the original proof). Our proofs of Theorem 3.2 a)
and b) with reference to a) are much clearer and more detailed than
the original proof by Asar, which may be considered rather cumber-
some. Note also that in [10], Theorem 1.3, Kegel sagely combines The-
orem 3.1 with Theorem 3.2 c).

Theorem 3.2 (see [4]) Let G be a locally finite group and let P be a p-sub-
group of G for the prime p.

a) Suppose P has the following property: (†) To every finite subgroup F
of P there exists an x = x (F) 2 G with Fx 6 P such that hP,Pxi is
not a p-group. Then there are 2@0 infinite ascending chains

Xi1
< Xi1i2

< . . . < Xi1i2...in
< . . .

of finite p-subgroups of G with indices ik 2 {0, 1} (k 2 N) such
that for all n 2 N and each choice of indices ik (1 6 k 6 n), the
group hXi1i2...in0

,Xi1i2...in1
i is not a p-group.

b) Let P 2 SylpG with the property (?). Then P has property (†).
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c) Let P 2 SylpG with the property (?) and let X be a finite subgroup
of P. Then there are 2@0 many infinite ascending chains

X < Xi1
< Xi1i2

< . . . < Xi1i2...in
< . . .

with the properties from point a).

Proof — a) Let X be a finite subgroup of P and y an element of G
such that: 1) hP,Pyi is not a p-group, and 2) Xy 6 P. Because of the
first property there exists a finite subgroup X0 of P with X 6 X0 such
that hX0,Xy

0
i is not a p-group, and because of the second property we

have hX,Xyi 6 P, hence X0 6= X 6= Xy

0
. If we substitute in the last two

sentences X by X0, we get two finite p-subgroups X00 and X01 of G
with X0 < X00 and X0 < X01 such that hX00,X01i is not a p-group.
Since Py has the property (†), too, we can quite analogously substi-
tute X by X1 := Xy

0
and so get two finite p-subgroups X10 and X11

of G with X1 < X10 and X1 < X11 such that the subgroup hX10,X11i
is not a p-group. We now have constructed four ascending chains

X < X0 < X00, X < X0 < X01, X1 < X10 and X1 < X11

of finite p-subgroups of G such that the subgroups hX0,X1i, hX00,X01i
and hX10,X11i are not p-groups. Now let n 2 N with n > 2 and let
already be constructed 2n ascending chains

Xi1
< Xi1i2

< . . . < Xi1i2...in

of finite p-subgroups of G with indices ik 2 {0, 1} (1 6 k 6 n)
such that for each m 2 N with m 6 n - 1 and each choice of in-
dices ik (1 6 k 6 m) the subgroup hXi1i2...im0,Xi1i2...im1i of G is
not a p-group. Whilst repeating the construction of the first two sen-
tences successively with the 2n groups Xi1i2...in

in place of X, we get,
because each conjugate of P possesses the property (†), in each case
two p-subgroups Xi1i2...in0

and Xi1i2...in1
of G such that

Xi1i2...in
< Xi1i2...in0

\Xi1i2...in1

and
hXi1i2...in0

,Xi1i2...in1
i

is not a p-group. Therewith we now have constructed 2n+1 ascend-
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ing chains

Xi1
< Xi1i2

< . . . < Xi1i2...in
< Xi1i2...inin+1

having the requested properties. Therefore we can w.r.t. inclusion re-
cursively construct a tree of height @0 of finite p-subgroups of G,
which branches properly at each location with proper inclusions,
hence must contain 2@0 infinite branches. Also any two immediate
successors of an arbitrary point do not generate a p-group. These
branches are just the required chains.

b) Let F be a finite subgroup of P and R be a Sylow p-subgroup
of G with F 6 R 6= P. Then there is an element x in R with x 62 P
and the group hF, xi is a finite p-group. Let Y := hF, xi \ P. Then
we have Y 6= hF, xi. It is well-known that as a finite p-group hF, xi
satisfies the normaliser condition. Therefore Y is a proper subgroup
of NhF,xi(Y). Let y be an element in hF, xi, but not in Y, which nor-
malises Y. Then y 62 P. Since y is a p-element and P by assumption
a Sylow p-subgroup of G, it follows that y 62 NG(P) and that hP,Pyi
is not a p-group. This is the property (†) from point a) for P. *

c) We combine the proofs of point a) and point b). Let R 2 SylpG
with X 6 R 6=P, x2R\P and T :=P\hX, xi. Being a finite p-group, hX, xi
satisfies the normaliser condition. Hence there exists a t 2 hX, xi\T
with t 2 NhX,xi(T). Then hP,Pti is not a p-group, since else t 2 P,
and so there exists a finite subgroup X0 of P with X 6 X0 such
that with X1 := Xt

0
the group hX0,X1i is not a p-group. Thus, we

have X0 6= X 6= X1 since hX,Xti 6 T is a p-group. Of course, X 6 X0,
but also X 6 X1 because of t 2 X. We can repeat this construction
whilst replacing X by X0 and also by its conjugate X1. Thereby we
construct subgroups X00,X01,X10,X11 and four ascending chains

X < X0 < X00, X < X0 < X01, X < X1 < X10 and X < X1 < X11

of finite p-subgroups of G. We subsequently repeat this construction
with each of the Xi1i2

’s and whilst doing this infinitely often we
construct 2@0 many chains

X < Xi1
< Xi1i2

< . . . < Xi1i2...in
< . . .

* Asar [1, Lemma 1] (unwieldy) considers instead of R a p-subgroup Y of G such
that Y < U (= P), chooses y 2 Y\ U, defines F⇤ := U\ hF,yi with F 6 U\ Y, finds
F 6 F⇤ and NhF, yi

�
F⇤

�
> F⇤, and finally concludes NG

�
F⇤

�
< NG(U), since U is

the unique maximal p-subgroup of NG(U) and NhF, yi
�
F⇤

�
< U.
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of finite p-subgroups of G with the properties from point a). So we
can, starting from an arbitrary subgroup X of P as a “minimal point”
or a “root”, recursively w.r.t. inclusion construct a tree of height @0

of finite p-subgroups of G, which branches properly at each location,
hence must contain 2@0 infinite branches. Also any two immediate
successors of an arbitrary point do not generate a p-group. These
branches are just the required chains. ut

Theorem 3.2 enables us to prove very easily the “Asar-Hartley theo-
rem” which characterises locally finite groups satisfying the strong Sy-
low Theorem for the prime p by a cardinality result without the need
to endeavour the continuum hypothesis (for a proof closer to the orig-
inal one of Asar, the reader can consult [10], pp. 8–9).

Theorem 3.3 (see Asar [1], Hartley [6],[8] *) Let G be a locally finite
group and p be a prime. Suppose that for every countable subgroup H of G
we have |SylpH| < 2@0 . Then G satisfies the strong Sylow p-Theorem.

Proof — Suppose G does not satisfy the strong Sylow Theorem for
the prime p. Then there is a subgroup U of G which does not satisfy
the Sylow Theorem for the prime p. Thus according to Theorems 3.1
and 3.2 there are 2@0 many infinite ascending chains

Xi1
< Xi1i2

< . . . < Xi1i2...in
< . . .

of finite p-subgroups of U with the properties from point a) of The-
orem 3.2. Let M be the set of all p-subgroups of U which are an
ascending union of one of these chains. Then it follows |M| = 2@0

and that any two M-groups cannot generate a p-group. Now let

Hn := hXi1i2...in
| ik 2 {0, 1}, 1 6 k 6 ni (n 2 N)

and
H :=

[

n2N

Hn.

Then H is a countable subgroup of U and so of G. Since H contains
every M-group it follows that |SylpH| = 2@0 . This contradicts the
assumption on the countable subgroups of G. ut

* The result for countable locally finite groups was obtained independently by Brian
Hartley using a quite different method which allowed him to generalise it from
the prime p to a set of primes ⇡ when the finite groups of a nested local system
have each a nilpotent Hall ⇡-subgroup (see [6]). However, Hartley has extended
his proof in [8] to uncountable locally finite groups by another beautiful method.
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The cardinality statement of Theorem 3.3 has an immediate first
corollary for countable locally finite groups.

Theorem 3.4 Let G be a countable locally finite group. The following
properties are equivalent:

1) For every (countable) subgroup H of G we have |SylpH| < 2@0 .

2) G satisfies the strong Sylow Theorem for the prime p.

3) G satisfies the Sylow Theorem for the prime p.

4) |SylpG| < 2@0 .

5) Every (countable) subset of G is contained in a subgroup U of G with
|SylpU| < 2@0 .

The second corollary of Theorem 3.3 would certainly as a conju-
gacy assertion be very difficult to be proved but is as a cardinality
statement trivial. Recall first that a class of groups X is countably recog-
nisable if, whenever all countable subgroups of a group G belong to X,
then G itself is an X-group (see Baer [2]).

Theorem 3.5 The locally finite group G satisfies the strong Sylow Theo-
rem for the prime p if and only if every countable subgroup of G satisfies
the strong Sylow Theorem for the prime p. In particular, the class Syl-p of
all locally finite groups satisfying the strong Sylow Theorem for the prime p
is countably recognisable.

We now can prove our key discovery whenever the Sylow Theorem
for the prime p is not valid in a countable locally finite group which
shows a symmetry between not conjugate Sylow p-subgroups.

Theorem 3.6 Let G be a countable locally finite group and p be a prime.
If two Sylow p-subgroups of G are not conjugate, then neither is singular.

Proof — Let S and T be Sylow p-subgroups of G which are not
conjugate. We saw in Theorem 3.1 that one of S or T is not singular.
Without loss of generality (w.l.o.g.) we may suppose that S is not
singular. To prove the result we must show that T is not singular
either. If T is not good, it cannot be singular, since by Theorem 2.8
singular Sylow p-subgroups are very good. So let T be good w.r.t. the
nested local system {Gn | n 2 N} for G and let F be an arbitrary finite
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subgroup of T . We show that F cannot be a p-uniqueness subgroup
for T and so T is not singular since F is chosen arbitrarily. Since S
and T are not conjugate, we have S 6= T .

There exists an m = m(F) 2 N with F 6 Gm. After the renumer-
ation {n 7! n +m - 1 | n 2 N}, it is possible to assume F 6 G1.
Then F 6 T \G1 2 SylpG1. If T \Gn is the unique Sylow p-subgroup
of Gn for all n 2 N then T is the unique Sylow p-subgroup of G and
we obtain the contradiction that S = T . Hence there is an n 2 N such
that Gn has a Sylow p-subgroup R with R 6= T \Gn. Renumbering
again if needed we may assume that R 2 SylpG1 with R 6= T \ G1.
Choose y 2 R\(T \G1), so in particular y 62 T . By the Sylow p-Theo-
rem for finite groups there is an x 2 G1 such that (T \G1)

x = R and
so Fx 6 R since F 6 T \G1. From hFx,yi 6 R follows that hFx,yi is a
finite p-group. Let Y :=hFx,yi \ T . Then Y 6=hFx,yi since y 62 T .

But Y satisfies, as is well-known, the normaliser condition and so
we can choose z 2 NhFx,yi(Y)\Y. Then z 62 T since otherwise z belongs
to T \ hFx,yi = Y. But z is a p-element outside of T and T 2 SylpG,
and so z 62 NG(T). Therefore hT , Tzi is not a p-group. In particu-
lar, T 6= Tz and F 6 T \ Tz. Therefore the arbitrarily chosen F is not
a p-uniqueness subgroup for T . ut

Whenever a countable locally finite group contains a singular Sy-
low p-subgroup then all good Sylow p-subgroups will be conjugate
by Theorem 2.4. Whenever every countable subgroup of a (count-
able) locally finite group contains a singular Sylow p-subgroup then
all Sylow p-subgroups are conjugate. This core insight is spelled out
by the following theorem.

Theorem 3.7 (see [4]) Let G be a locally finite group and let p be a
prime. Suppose that every countable subgroup of G contains a singular Sy-
low p-subgroup. Then G satisfies the strong Sylow Theorem for the prime p.

Proof — According to Theorem 3.5 we can assume that G is count-
able, and according to Theorem 3.4 it suffices to show that G satisfies
the Sylow Theorem for the prime p. However, this is now immediate
since by assumption G has a singular Sylow p-subgroup S. Let T
be any Sylow p-subgroup of G. If S and T are not conjugate, then
by Theorem 3.6 neither is singular. With this contradiction S and T
are conjugate and the result follows. ut

Since the above result is very significant, we provide an alternative
proof by proving the contrapositive.
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Proof — Suppose G does not satisfy the Sylow Theorem for the
prime p. Then, according to Theorem 3.1, Theorem 3.2 b), and Theo-
rem 3.2 a), there are 2@0 infinite ascending chains

Xi1
< Xi1i2

< . . . < Xi1i2...in
< . . .

of finite p-subgroups of G with the properties from Theorem 3.2 a).
Let

Un := hXi1i2...in
| ik 2 {0, 1}, 1 6 k 6 ni (n 2 N)

and

U :=
[

n2N

Un = hXi1i2...in
| ik 2 {0, 1}, 1 6 k 6 n 2 Ni.

Then U is a (countable) subgroup of G and {Un | n 2 N} is a nested
local system for U. We show that U does not contain any singular Sy-
low p-subgroup. Let F⇤ be a finite p-subgroup of U. There exists
an m = m(F⇤) 2 N with F⇤ 6 Um. By definition of Um there are
indices j1, j2, . . . , jm, . . . , k1, k2, . . . , km, . . . , l1, l2, . . . , lm with

F⇤ 6 hXj1j2...jm
,Xk1k2,...,km

, . . . ,Xl1l2...lm
i.

Then
P1 := hXj1j2...jm0,Xk1k2...km0, . . . ,Xl1l2...lm0i

and
P2 := hXj1j2...jm1,Xk1k2...km1, . . . ,Xl1l2...lm1i

are finite p-subgroups of U with F⇤ 6 P1 \ P2 such that hP1,P2i is
not a p-group. We now choose Q1,0,Q2,0 2 SylpUm with P1 6 Q1,0
and P2 6 Q2,0. If

Q1,0 6 Q1,1, 6 . . . 6 Q1,n and Q2,0 6 Q2,1 6 . . . 6 Q2,n

are already p-subgroups of U with Q1,i,Q2,i 2 SylpUm+i (0 6 i 6 n),
let Q1,n+1,Q2,n+1 2 SylpUm+n+1 such that Q1,n 6 Q1,n+1

and Q2,n 6 Q2,n+1 (n 2 N0). Let

Q1 :=
[

n2N0

Q1,n and Q2 :=
[

n2N0

Q2,n.

Then Q1 and Q2 are both p-subgroups of U with F⇤ 6 Q1 \Q2 such
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that hQ1,Q2i is not a p-group. Per construction, Q1 and Q2 reduce
into the nested local system {Um+n | n 2 N0} for U. By Lemma 2.1,
the groups Q1 and Q2 are two good Sylow p-subgroups of U con-
taining F⇤, that is, F⇤ is not a p-uniqueness subgroup of U. Thus U
does not contain any p-uniqueness subgroup. ut

Third, we supplement Theorem 3.7 with an example of a count-
able locally finite group H without the (strong) Sylow Theorem for
the prime p but with a (countable) subgroup U without singular Sy-
low p-subgroups. Let H :=DG(N) be the group from p. 21, V :=G(N)

and F be a finite subgroup of the good Sylow p-subgroup P0 of V
from p. 21. We show that F cannot be a p-uniqueness subgroup of V .
Since F is finite, there is an m = m(F) 2 N with F 6 Um. Because
of |SylpG| > 2 there is a Qm+1 2 SylpGm+1 with Qm+1 6= Pm+1.
Then

Q0 :=
�
P1 ⇥ P2 ⇥ . . .⇥ Pm ⇥Qm+1 ⇥ Pm+2 ⇥ . . .

�
\G(N)

contains the group F and we have Q0 6= P0. So V has the distin-
guished good Sylow p-subgroup P0 which is not singular (notice
that by Theorem 3.1 there must be such a Sylow subgroup since V
does not satisfy the Sylow p-Theorem). By the second part of the
proof of Theorem 3.7, there is a (countable) subgroup U of V which
does not contain any singular Sylow p-subgroup.

Fourth, let G = S(N) be the countable locally finite group of finitary
permutations on a countably infinite set (that is, which move only
finitely many elements), p a prime, and {ni | i 2 N} a sequence in N
with ni + 2p 6 ni + 1 (i 2 N). Then ⌃ := {Sni | i 2 N} is a nested lo-
cal system for G. By Lemma 2.2 b) there exists an S 2 SylpG which is
good w.r.t. ⌃. We know that |SylpS2p| > 2p-2 > 2. Let T1,T22SylpS2p
with T1 6= T2. Let i 2 N. Then

Sni 6 Sni ⇥ S2p 6 Sni+1 .

We put Fi := Sni ⇥ T2, if S \ S2p = T1, and Fi := Sni ⇥ T1 otherwise.
Then we have S\Fi 62 SylpFi and Sni 6 Fi 6 Sni+1 . Hence {Fi | i 2 N}

is a (nested) local system for G containing no local subsystem of ⌃
into which S reduces. Thus S is a good Sylow p-subgroup of G which
is not very good.

Fifth, the good Sylow p-subgroup P0 of V := G(N) provides an
example of a Sylow p-subgroup which is very good but not singular.
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Let ⌃⇤ be a local system for V ; by Lemma 2.2 a) there exists a nested
local subsystem ⌃1 = {Vn | n 2 N} of ⌃ and by Lemma 2.2 b) there is
a Sylow p-subgroup Q of V which is good w.r.t ⌃1. Since P0 is good
w.r.t. ⌃ = {Ui | i 2 N}, it will contain a conjugate of every finite p-sub-
group P of V : there is a ⌃-group U = U(P) with P 6 U; let R 2 SylpU
with P 6 R; by Sylow Theorem there is a y 2 U with Ry = P0 \U;
hence Py 6 P0. Therefore

(Q\ Vn)
xn 6 Vxn

n \ P0

for some xn 2 V (n 2 N). Thus Vxn
n \P0 is a Sylow p-subgroup of Vn

and therefore |P0 \Vn| = |Q\Vn|. It follows that P0 \Vn has the size
of a Sylow p-subgroup of Vn (n 2 N), and consequently P0 reduces
into the subsystem ⌃1 of the given local system ⌃⇤.

The following core result may be very well-known but we can
present a novel and shorter proof.

Theorem 3.8 (see [4]) Let G be a locally finite group and let p be a prime.
To any finite p-subgroup P of G shall pertain two finite p-subgroups P1
and P2 of G with P 6 P1 \ P2 such that hP1,P2i is not a p-group. Then
there will exist a countable subgroup H of G with |SylpH| = 2@0 .

Proof — We construct recursively an infinite ascending chain

F0 < F1 < . . . < Fn < . . .

of finite subgroups of G and for every n 2 N0 a set ⌃n of p-subgroups
of Fn such that for every n 2 N0 we have: (i) |⌃n| = 2n; (ii) ev-
ery two ⌃n-groups do not generate a p-group; (iii) for n > 1 ev-
ery ⌃n-1-group lies in at least two ⌃n-groups.

Let F0 := h1i and ⌃0 := {h1i}. Let n 2 N and suppose

F0 < F1 < . . . < Fn-1 and {⌃i | i < n}

have already been constructed. We let ⌃n be the set of all finite p-sub-
groups P1,P2 of G such that hP1,P2i is not a p-group and there ex-
ists exactly one ⌃n-1-group P with P 6 P1 \ P2. From the proper-
ties (i)–(iii) of ⌃n-1 and from the prerequisite on G then follow (i)–(iii)
for ⌃n. Let Fn be the span of all ⌃n-groups. Hereafter Fn is a finite
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subgroup of G with Fn-1 < Fn. Let

H :=
[

i2N0

Fi.

Then H is a countable subgroup of G. Let M be the set of all p-sub-
groups of G which are an ascending union of a chain

S0 < S1 < . . . < Sn < . . .

of finite p-subgroups Si 2 ⌃i (i 2 N0). According to (i) and (iii) we
have |M| = 2@0 and according to (ii) any two M-groups cannot gen-
erate a p-group. H contains every M-group, so from the properties
of M (and the countability of H) it follows that |SylpH| = 2@0 . We
have constructed an infinitely high (@0) tree of finite p-subgroups
of G which branches properly at each location with proper inclusions
and in which any two immediate successors of an arbitrary point do
not generate a p-group. This tree has 2@0 many infinite branches. ut

We are ready to state and prove our Charakterisierungssatz.

Theorem 3.9 (see [4]) Let G be a locally finite group and let p be a prime.
The following properties are equivalent:

1) G satisfies the strong Sylow Theorem for the prime p.

2) In every subgroup U of G every Sylow p-subgroup of U is singular.

3) Every countable subgroup H of G contains a p-uniqueness subgroup
of H.

4) Every countable subgroup H of G contains a singular Sylow p-sub-
group of H.

5) Every countable subgroup of G satisfies the Sylow Theorem for the
prime p.

6) If H is a countable subgroup of G, then |SylpH| < 2@0 .

Proof — 2) ) 3) and 3) ) 4) are clear. 4) ) 5) is valid by Theo-
rem 3.7, 5) ) 6) is valid by Theorem 3.4, and 6) ) 1) is valid by The-
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orem 3.3. It remains to show 1) ) 2).* Assume 1) holds and let U 6 G.
Then U satisfies the strong Sylow Theorem for the prime p. By The-
orems 3.5 and 3.4 we have that |SylpH| < 2@0 for any countable sub-
group H of U. By Theorem 3.8 there is a finite p-subgroup P of U
such that for all finite p-subgroups P1 and P2 of U with P 6 P1 \ P2
the group hP1,P2i is a p-group. By Proposition 2.3 it follows that P is
a p-uniqueness subgroup of U. Let S 2 SylpU with P 6 S. Moreover,
let T 2 SylpU and x = x(T) 2 U with S = Tx

-1 . Then Px is a p-uni-
queness subgroup of U with Px 6 T , and hence T is singular by
means of Px. ut

It would have been easier to show that Theorem 3.9 1) implies that
every Sylow p-subgroup S of an arbitrary subgroup U of G is very
good. In fact, let ⌃ be a local system for U. By Lemma 2.2 a) there
exists a nested local system ⌃1 of ⌃, and by Lemma 2.2 b) there is
a T 2 Syl

p
U which reduces into ⌃1. Since G satisfies the strong Sy-

low Theorem for the prime p, we find an x 2 U such that S = Tx.
Let ⌃2 := {Y | Y 2 ⌃1, x 2 Y}. Then ⌃2 is a local subsystem of ⌃ into
which S reduces: for S\ Y = Tx \ Y = (T \ Y)x 2 Syl

p
Y when Y 2 ⌃2.

Having proved our Charakterisierungssatz, we are now ready to
prove the announced main theorem characterising the locally finite
groups which satisfy the strong Sylow p-Theorem.

Theorem 3.10 Let G be a locally finite group and let p be a prime. The
following properties are equivalent:

1) G satisfies the strong Sylow Theorem for the prime p.

2) Every subgroup S of G contains a finite p-subgroup which is singular
in S.

Proof — The result follows from a combination of Proposition 2.3
and Theorem 3.9. ut

* In Theorem 1.5 of [10] (If the locally finite group G satisfies the strong Sylow Theorem for
the prime p there exists a finite p-subgroup P which is singular in G), Kegel ingeniously
constructs, by contradiction, an infinite (@0) tower of countable subgroups of G,
such that none of the finite p-subgroups of a member can be singular in the upper
next, whose union has 2@0 maximal p-subgroups and therefore contradicts Theo-
rem 3.4.
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4 Novel concepts for Sylow theory
in (locally) finite groups

We end this paper with some further thoughts, a result, and some
questions that could be quite useful for future researchers into Sylow
theory in (locally) finite groups. The status quo of Sylow theory in
locally finite groups has been beautifully summarised in [3] and [10];
here, a special place is occupied by the contributions of Brian Hartley
(see [6],[7],[8]), who also contributed prodigiously to simple locally fi-
nite groups (see [9]). Concerning [9], which appeared posthumously,
we notice that it does not cite [10] (not even in its list of 56 references).
This is regrettable since Hartley states in his 1990 Mathematical Re-
view of [10] the following: “If the simple locally finite group G sat-
isfies the strong Sylow Theorem for the (even one) prime p, then G
is linear. This depends on the classification of finite simple groups
and an assertion about singular p-subgroups of classical groups. An-
other proof of this result has since been given by the reviewer (not
yet published).” However, due to the tragic death of Brian Hartley
on October 8, 1994, aged 55, this certainly very interesting proof was
never prepared for publication. With someone of Hartley’s stature,
there is no question that his word is good enough and that in any
case he supplied a new proof with probably quite a number of new
insights. It might therefore be worthwhile and even most desirable
to inspect Hartley’s estate.

In every locally finite group G, for all subgroups U of G, the
set UniquepU of finite p-subgroups which are p-uniqueness sub-
groups of U is non-empty if G satisfies the strong Sylow Theorem
for the prime p, that is, if G belongs to the class Syl-p of locally fi-
nite groups satisfying the strong Sylow Theorem for the prime p,
and should this set be non-empty for a countable U then all the
good Sylow p-subgroups of U are conjugate. Let U be finite. Then
we have already UniquepU 6= ; because we have SylpU 6 UniquepU.
The Sylow p-subgroups of U are of course the maximal members
of UniquepU, with respect to inclusion and order. It is a very very
considerable challenge to try to determine the minimal members
of UniquepU, with respect to either inclusion or order, in case that U
and SylpU are sufficiently “known”, in particular if U is a “known” fi-
nite simple group or a p-soluble group. Note that whenever P<Q<R
are p-subgroups of U where Q is a minimal p-uniqueness subgroup,
or will be minimal singular in U, then P is contained in at least two,
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in fact in at least p + 1, Sylow p-subgroups of U and R will be an-
other p-uniqueness subgroup of U. The author is much hoping that
some progress be made to this challenge in the future. For example,
the question of whether (resp. when) the minimal p-uniqueness sub-
groups are conjugate, quite similar to the maximal ones, is surely of
some interest, or, whether minimal w.r.t. inclusion implies minimal
w.r.t. order, the converse being clearly obvious. We would then also
come to better know the p-uniqueness subgroups of locally finite
groups, in particular the simple and the locally p-soluble ones, and,
many thanks to Kegel’s Theorem 4.4, of locally finite groups in gen-
eral belonging to the lovely class Syl-p. A good starting point would
be to study minimal p-uniqueness subgroups of the finite symmetric
and alternating groups where a Sylow 2-subgroup of an alternating
group is a next to maximal 2-uniqueness subgroup of the symmetric
overgroup so that we have to study only the symmetric groups and
to show at least that their ranks are “somehow” bounded in terms
of a p-uniqueness subgroup and in ideal circumstances to determine
all the minimal ones (see what follows).

Let G be a locally finite group, S 2 SylpG and F 6 G. We call F
minimal p-unique w.r.t. S, if F is a minimal p-uniqueness subgroup
of G w.r.t. order such that F 6 S, that is, F is p-unique with F 6 S
and each (finite) subgroup P of S with |P| < |F| lies in at least two Sy-
low p-subgroups of G. If there exists an S 2 SylpG, such that F is,
w.r.t. S, minimal p-unique, then F is called minimal p-unique (in G).
Obviously, G is p-closed if and only if h1i is minimal p-unique (in G).

Theorem 4.1 (see [4]) Let G be a locally finite group satisfying the
strong Sylow Theorem for the prime p.

a) Each Sylow p-subgroup of G contains at least one minimal p-unique
subgroup of G.

b) Each two minimal p-unique subgroups of G have the same order.

Proof — a) Let S 2 SylpG and let U(G, S) be the set of all p-uni-
queness subgroups F of G such that F 6 S. According to Theorem 3.9
we have U(G, S) 6= ; and of course each U(G, S)-group has finite
order. Thus U(G, S) contains (w.r.t. S) a minimal p-unique subgroup
due to the well ordering of N.

b) Let F1 and F2 be two minimal p-unique subgroups of G. For
symmetry reasons it suffices to show |F1| 6 |F2|. Let S1, S2 2 SylpG
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with F1 6 S1 and F2 6 S2. Since G 2 Syl-p there is an x 2 G such
that S1 = Sx

2
. Then Fx

2
is a p-uniqueness subgroup of G with Fx

2
6 S1.

Thus |F1| 6 |Fx
2
| = |F2| since F1 is minimal p-unique w.r.t. S1. ut

Let G be a locally finite group satisfying the strong Sylow p-The-
orem and let S 2 SylpG. According to Theorem 4.1 a) S contains
(w.r.t. S) a minimal p-unique subgroup F. We define ap = ap(G) 2 N0

by |F| =: pap , that is, we let ap be the composition length of F. Accord-
ing to Theorem 4.1 b) this definition is independent of the special
choice of the Sylow p-subgroup S of G. Whereby consequently ap

is a (numeric) Sylow p-invariant of G. We call ap the p-uniqueness
of G. This Sylow p-invariant enqueues into the list — even is in the
vanguard — of other Sylow p-invariants which play a major role in
(locally) finite group theory, e.g. the order pbp of a Sylow p-subgroup,
its nilpotency class cp, its solubility length dp, its exponent pep ,
the composition length ip - 1 of a proper maximal (w.r.t. order) Sy-
low p-intersection and further. The real peculiarity of ap is that it is
not determined by a Sylow p-subgroup as abstract p-group alone but
depends on its embedding into the whole group and the respective
relationships to the other Sylow p-subgroups. Then (w.r.t. inclusion
or order maximal) intersections of two or several Sylow p-subgroups
are of interest and deserve further study. For example, two core ques-
tions for Sylow theory in (locally) finite groups are how the p-length
of a finite p-soluble group and the rank of a (known) finite simple
group are bounded in terms of a p-uniqueness subgroup.
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