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Abstract
If ✓ is a subgroup property, a group G is said to satisfy the double chain condition
on ✓-subgroups if it admits no infinite double sequences

. . . < X-n < . . . < X-1 < X0 < X1 < . . . < Xn < . . .

consisting of ✓-subgroups. This paper investigates the structure of subsoluble groups
satisfying the double chain condition on subnormal non-normal subgroups and a
complete description of these groups is given in the periodic case. It follows that for
periodic subsoluble groups the double chain condition and the minimal condition
on subnormal non-normal subgroups are equivalent.
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1 Introduction

A group G is called a T -group if all its subnormal subgroups are nor-
mal, i.e. if normality is a transitive relation in G. The structure of sol-
uble T -groups was described by W. Gaschütz [14] in the finite case
and by D.J.S. Robinson [16] for arbitrary groups. It turns out that
all soluble groups with the T -property are metabelian and hyper-
cyclic, while any finitely generated soluble T -group either is finite or
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abelian. Relevant classes of generalized T -groups can be introduced
by imposing that the set of all subnormal non-normal subgroups of
the group is small in some sense (see for instance [2],[11],[12]).

It is well-known that chain conditions play a relevant role in the
study of infinite soluble groups. In a very early stage, a complete
description of soluble groups satisfying the minimal condition on
all subgroups was obtained by S.N. Černikov [9], while it is clear
that a soluble group satisfies the maximal condition on subgroups
if and only if it is polycyclic. Afterwards, the effect of the mini-
mal and the maximal conditions on several systems of relevant sub-
groups was investigated, and this point of view was also adopted
in [11],[12], where groups satisfying either the minimal or the max-
imal condition on subnormal non-normal subgroups were consid-
ered. Even the imposition of weaker forms of the classical chain
conditions in many cases produces remarkable effects. In particu-
lar, T.S. Shores [19] and D.I. Zaicev [20] independently proved that
if G is a generalized soluble group whose subgroup lattice admits
no chains with the same order type of the set of integers, then G is
soluble-by-finite and satisfies either the minimal or the maximal con-
dition on subgroups. If ✓ is a subgroup property, we shall say that a
group G satisfies the double chain condition on ✓-subgroups if for each
double chain

. . . 6 X-n 6 . . . 6 X-1 6 X0 6 X1 6 . . . 6 Xn 6 . . .

of ✓-subgroups of G there exists an integer k such that either Xn = Xk

for all n 6 k or Xn = Xk for all n > k. Obviously, both the minimal
and the maximal condition on ✓-subgroups imply the double chain
condition on ✓-subgroups. Groups satisfying the double chain con-
dition on some relevant systems of subgroups have been recently
investigated (see [1],[3],[4],[6],[7]).

The aim of this paper is to give a further contribution to the theory
of generalized T -groups in this context, by studying soluble groups
satisfying the double chain condition on subnormal non-normal sub-
groups (DCsnn-groups). A complete description of DCsnn-groups is
obtained in the periodic case, and it follows actually from our main
result that for periodic soluble groups the double chain condition
on the system of subnormal non-normal subgroups is equivalent to
the minimal condition on the same system. The structure of soluble
non-periodic groups with the DCsnn-property will be described in
the forthcoming paper [5].
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Our notation is mostly standard and can be found in [18]; in partic-
ular, for any group G, we denote by Fit(G) the Fitting subgroup of G,
i.e. the subgroup generated by all nilpotent normal subgroups of G.

2 General properties

It is useful to point out that any infinite direct decomposition of
a group G gives rise to a double chain of subgroups which is un-
bounded on both sides. In fact, if

G1,G2, . . . ,Gn, . . . (*)

is a countably infinite collection of non-trivial subgroups of G such
that

hGn | n 2 Ni = Dr
n2N

Gn,

then G admits the double chain of subgroups

. . . < U-k < . . . < U-1 < U0 < U1 < . . . < Uk < . . . (**)

where

Uk =
⇣

Dr
n2N

G2n-1

⌘
⇥
⇣

Dr
16n6k

G2n

⌘
and U-k = Dr

n>k

G2n-1

for each non-negative integer k. We say that (**) is the double chain
associated to the collection of subgroups (*).

Lemma 2.1 Let G be a DCsnn-group admitting a subnormal section X/Y
that can be decomposed into the direct product of infinitely many cyclic non-
trivial subgroups. Then X and Y are normal in G, and all cyclic subnormal
subgroups of G/Y are G-invariant.

Proof — Clearly, X/Y contains a subgroup X⇤/Y which is the di-
rect product of a countably infinite collection (Xn/Y)n2N of cyclic
non-trivial subgroups, and

X⇤/Y = V/Y ⇥W/Y,
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where

V/Y = Dr
n2N

(X2n/Y) and W/Y = Dr
n2N

(X2n-1/Y).

As G satisfies the double chain condition on subnormal non-normal
subgroups, it follows that there exist normal subgroups V⇤ and W⇤

of G such that Y 6 V⇤ 6 V and Y 6 W⇤ 6 W. Thus also the inter-
section Y = V⇤ \W⇤ is normal in G. For each positive integer n, the
group X⇤/Xn is likewise the direct product of a countably infinite col-
lection of cyclic non-trivial subgroups, and hence each Xn is normal
in G.

Let g be any element of G such that the subgroup hg, Yi is subnor-
mal in G. Of course, there is a positive integer m such that

hg, Yi \X⇤ 6 hX1, . . . ,Xmi,

and hence
hg, Yi \ hXn | n > mi = Y.

Consider in G the double chains

. . . < V-n < . . . < V-1 < V0 < V1 < . . . < Vn < . . .

and

. . . < W-n < . . . < W-1 < W0 < W1 < . . . < Wn < . . .

respectively associated to the collections of normal subgroups

{X2m,X2m+2,X2m+4, . . .} and {X2m+1,X2m+3,X2m+5, . . .}.

Then
. . . < hg, YiV-n < . . . < hg, YiV-1 < hg, YiV0

< hg, YiV1 < . . . < hg, YiVn < . . .

and
. . . < hg, YiW-n < . . . < hg, YiW-1 < hg, YiW0

< hg, YiW1 < . . . < hg, YiWn < . . .

are double chains consisting of subnormal subgroups of G, and so
there exist integers r and s such that hg, YiVr and hg, YiWs are normal
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in G. On the other hand, hg, Yi = hg, YiVr \ hg, YiWs and hence hg, Yi
is normal in G. Finally, X is normal in G, as X/Y is generated by cyclic
subnormal subgroups of G/Y.

Lemma 2.2 Let G be a DCsnn-group, and let A be a torsion-free abelian
subnormal subgroup of G which is not finitely generated. Then all sub-
groups of A are normal in G.

Proof — Assume for a contradiction that the statement is false, so
that A contains a cyclic subgroup hui which is not normal in G.
Clearly, there exists an infinite sequence

k1, k2, . . . , kn, . . .

of positive integers such that

huk1i > huk2i > . . . > hukni > . . .

and each hukni is not normal in G. Then it follows from the double
chain condition that the set H of all finitely generated subgroups
of A which contain hui and are not normal in G satisfies the maxi-
mal condition. Let M be a maximal element of H, and let a be an
arbitrary element of A \M. Then hM,ai is normal in G, and so all
subgroups of A properly containing M are G-invariant. Furthermore,
the intersection \

n>0

hM,ani

is likewise normal in G, so that it must properly contain M and
hence M\ hai 6= {1}. It follows that the infinite group A/M is pe-
riodic, whence A and M have the same Prüfer rank r, and r > 1
since M cannot be properly contained in a cyclic subgroup of A. Of
course, any two non-trivial subgroups of A/M have a non-trivial in-
tersection, and so A/M is a group of type p1 for some prime num-
ber p. Write

M = ha1i ⇥ . . .⇥ hari,

where ha1i is not normal in G, and for each prime number q 6= p put

Mq = ha1i ⇥ haq

2
i ⇥ . . .⇥ haq

r i.

Then
A/Mq = M/Mq ⇥ Pq/Mq,
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where Pq/Mq is a group of type p1. As ha1i admits an infinite
descending chain of subgroups which are not G-invariant, we have
that Pq is a normal subgroup of G for all q 6= p, and so

P =
\

q 6=p

Pq

is likewise normal in G. Moreover,

P \M =
\

q 6=p

(Pq \M) =
\

q 6=p

Mq = ha1i

and hence the subgroup P has rank 1. It follows that ha1i lies in
a cyclic G-invariant subgroup of P, whence it is normal in G. This
contradiction completes the proof.

Let G be a group. Recall that the Baer radical of G is the subgroup
generated by all abelian subnormal subgroups of G, and G is called
a Baer group if it coincides with the Baer radical, or equivalently if
every cyclic subgroup of G is subnormal. Of course, Baer groups
are locally nilpotent. For our purposes, we also need to recall also
that a group G is minimax if it has a series of finite length each of
whose factors satisfies either the minimal or the maximal condition;
in particular, an abelian group A is minimax if and only if it contains
a finitely generated subgroup E such that A/E satisfies the minimal
condition.

Lemma 2.3 Let G be a DCsnn-group and let B be the Baer radical of G.
If G contains an abelian subnormal subgroup A which is not minimax, then
all subgroups of B are normal in G.

Proof — Assume for a contradiction that the statement is false, and
let U be a free abelian subgroup of A such that A/U is periodic. It
follows from Lemma 2.1 that U is finitely generated, and so A/U
cannot satisfy the minimal condition on subgroups. Thus the socle
of A/U2

k is infinite for each positive integer k, and hence a further
application of Lemma 2.1 yields that U2

k is normal in G and all sub-
groups of B/U2

k are G-invariant. In particular, B/U2
k is abelian for

each k > 2, and so B itself is abelian because
\

k>2

U2
k

= {1}.
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Let T be the subgroup consisting of all elements of finite order
of B. Again Lemma 2.1 shows that T satisfies the minimal condi-
tion on subgroups, so that B = T ⇥ V , where V is a torsion-free
subgroup. Of course, V is not minimax, and hence all its subgroups
are normal in G by Lemma 2.2. By assumption, there exists an ele-
ment b of B such that hbi is not normal in G. As B/V is periodic,
we have hbi \ V = hbmi for some m > 0, and hbmi is a normal sub-
group of G. Let W/hbmi be a free abelian subgroup of V/hbmi such
that V/W is periodic. Clearly, W is finitely generated by Lemma 2.1,
so that V/W does not satisfy the minimal condition on subgroups
and hence its socle S/W is infinite. Again by Lemma 2.1 all sub-
groups of B/W are G-invariant, and in particular the subgroup hb,Wi
is normal in G. Since

hb,Wi/hbmi = hbi/hbmi ⇥W/hbmi,

we have that the subgroup hbi/hbmi is characteristic in hb,Wi/hbmi
and so normal in G/hbmi. It follows that hbi is normal in G, and this
contradiction completes the proof.

A group G is called subsoluble if it has an ascending series of
subnormal subgroups whose factors are abelian. Of course, soluble
groups are subsoluble, while subsolubility is equivalent to solubility
within the universe of finite groups. Moreover, it is easy to see that a
group is subsoluble if and only if all its non-trivial homomorphic im-
ages have a non-trivial Baer radical and that in any subsoluble group
the Baer radical contains its centralizer. It is also clear that subsol-
uble T -groups are soluble, and it is even true that any subsoluble
group satisfying the maximal condition on subnormal non-normal
subgroups is soluble (see [11]). At the end of this section, we will
prove that a similar conclusion holds more in general for subsoluble
groups with the DCsnn-property.

Corollary 2.4 Let G be a periodic subsoluble group with the DCsnn-pro-
perty and let B be the Baer radical of G. Then either G is a Černikov group
or all subgroups of B are normal in G. In particular, any periodic Baer group
with the DCsnn-property is either Černikov or Dedekind.

Proof — Assume that B contains a subgroup which is not normal
in G. Then it follows from Lemma 2.3 that B satisfies the minimal con-
dition on abelian subnormal subgroups, and hence it is a Černikov
group by a result of Robinson (see [17], Theorem E). Moreover, the
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factor group G/CG(B) is likewise Černikov (see [18] Part 1, Theo-
rem 3.29) and CG(B) 6 B, so that G is a Černikov group.

Lemma 2.5 Let G be a DCsnn-group, and let X be a subnormal non-
normal subgroup of G. If X is contained in the Baer radical of G, then its
normal closure XG is either Černikov or polycyclic.

Proof — Assume first that the Baer group XG is periodic, but not
a Černikov group. Then it follows from Corollary 2.4 that XG is a De-
dekind group, so that XG contains a subgroup that can be decom-
posed into the direct product of infinitely many cyclic non-trivial
subgroups and hence all its subgroups are normal in G by Lemma 2.1.
This contradiction shows that the statement holds when XG is peri-
odic.

Suppose now that XG is not periodic, so that also X is not periodic.
Thus X is generated by elements of infinite order, and hence it con-
tains an infinite cyclic subgroup hxi which is not normal in G. Then
the DCsnn-property yields that G satisfies the maximal condition on
subnormal non-normal subgroups containing hxi. As every finitely
generated subgroup of X is subnormal in G, it follows that the set
of all finitely generated subgroups of X containing hxi which are not
normal in G has a maximal element M. If M 6= X, we have that hM,yi
is a normal subgroup of G for each element y of X \M, and so also

X = hhM,yi | y 2 X \Mi

is normal in G. This contradiction shows that X = M is finitely gen-
erated. Since G satisfies the maximal condition on subnormal non-
normal subgroups containing hxi, the group XG satisfies the maximal
condition on subnormal subgroups containing X. If

X = X0 < X1 < . . . < Xt = XG

is a finite series between X and XG, it follows that each Xi+1/Xi

satisfies the maximal condition on subnormal subgroups and hence
it is polycyclic (see [18] Part 1, Theorem 5.37). Therefore also XG is
polycyclic.

We need also the following elementary property of locally nilpo-
tent groups.

Lemma 2.6 Let G be a locally nilpotent group whose commutator sub-
group G 0 is finitely generated. Then G is nilpotent.



Groups satisfying the double chain condition 91

Proof — As G 0 is a finitely generated nilpotent group, the factor
group G/CG(G 0) is likewise finitely generated (see for instance [18]
Part 1, Theorem 3.27), and hence there exists a finitely generated
subgroup E of G such that G 0 6 E and G = ECG(G 0). Thus G is the
product of two nilpotent normal subgroups, and hence it is likewise
nilpotent.

Theorem 2.7 Let G be a Baer group with the DCsnn-property. Then G
is nilpotent.

Proof — Of course, it can be assumed that G is not a Dedekind
group or, equivalently, that it does not have the T -property. If G is
periodic, then it is a Černikov group by Corollary 2.4, and hence G is
nilpotent. Suppose now that G is not periodic, so that it is generated
by elements of infinite order, whence it must contain an infinite cyclic
non-normal subgroup hxi. Clearly, hxi admits an infinite descending
chain of subgroups which are not normal in G and so the DCsnn-pro-
perty yields that the set of all subnormal non-normal subgroups of G
containing hxi has a maximal element M. Then G/MG is a Dedekind
group and in particular its commutator subgroup is finite. Moreover,
it follows from Lemma 2.5 that the normal closure MG satisfies the
maximal condition on subgroups, so that G 0 is finitely generated and
hence G is nilpotent by Lemma 2.6.

Corollary 2.8 Let G be a DCsnn-group. Then the Baer radical of G is
nilpotent and coincides with the Fitting subgroup of G.

Corollary 2.9 Let G be a finitely generated soluble DCsnn-group. Then G
is polycyclic.

Proof — Let F be the Fitting subgroup of G. By induction on the de-
rived length of G, we may suppose that the factor group G/F is poly-
cyclic. Then there exists a finitely generated subgroup E of F such
that F = EG. Since F is nilpotent by Corollary 2.8, the subgroup E
is subnormal in G and so it follows from Lemma 2.5 that F satisfies
either the minimal or the maximal condition on subgroups. If F satis-
fies the minimal condition on subgroups, then it is covered by finite
characteristic subgroups, and so it is finite. Therefore F satisfies the
maximal condition on subgroups, so that it is polycyclic, and hence G
itself is polycyclic.

Theorem 2.10 Let G be a subsoluble group with the DCsnn-property.
Then G is soluble.
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Proof — Assume for a contradiction that the statement is false, and
let B be the Baer radical of G. Since B is nilpotent by Corollary 2.8,
the factor group G/B cannot be soluble, and so it does not satisfy
the maximal condition on subnormal non-normal subgroups. It fol-
lows that B satisfies the minimal condition on subgroups which are
not G-invariant, and so in particular all infinite cyclic subgroups of B
are normal in G.

If B is not periodic, it is generated by its elements of infinite or-
der and hence the group G/CG(B) is abelian, which is impossible
because CG(B) 6 B. Thus B is periodic and of course it must con-
tain a subgroup which is not normal in G. Application of Lemma 2.3
yields now that all abelian subgroups of B satisfy the minimal con-
dition and hence B is a Černikov group. Let T be the largest peri-
odic normal subgroup of G. Then B 6 T and T/CT (B) is Černikov
(see [18] Part 1, Theorem 3.29), so that T itself is a soluble Černikov
group. On the other hand, the Baer radical of G/T is torsion-free and
hence G/T is soluble by the first part of the proof. This contradiction
completes the proof.

It is known that there exist locally nilpotent T -groups which are
insoluble (see for instance [15]), so that in particular Theorem 2.10
cannot be extended to wider group classes, like for instance the class
of radical groups, i.e. those groups admitting an ascending (normal)
series with locally nilpotent factors.

3 Periodic DCsnn-groups

The aim of this section is to provide a complete description of peri-
odic soluble groups satisfying the double chain condition on subnor-
mal non-normal subgroups. As in many problems concerning solu-
ble T -groups and their generalizations, an important role is played
by power automorphisms. Recall here that an automorphism of a
group G is a power automorphism if it maps every subgroup of G
onto itself. The set of all power automorphisms of G is an abelian
residually finite normal subgroup of the full automorphism group
of G (see [10] for this and other basic information on power automor-
phisms of groups). Of course, if N is a normal subgroup of a group G,
all subgroups of N are normal in G if and only if each element of G
induces by conjugation a power automorphism on N, so that in par-
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ticular G/CG(N) embeds into the group of power automorphisms
of N and hence it is abelian and residually finite.

The first lemma of this section shows that the behaviour of periodic
soluble groups with the double chain condition on subnormal non-
normal subgroups is not too far from that of soluble T -groups.

Lemma 3.1 Let G be a periodic soluble group with the DCsnn-property.

(a) If G is not Černikov, then it is metabelian and hypercyclic.

(b) If G is not a T -group, then it is abelian-by-finite and G/G 0 satisfies
the minimal condition on subgroups.

Proof — Of course, it can be assumed that G neither is Černikov
nor a T -group. If F is the Fitting subgroup of G, it follows from Corol-
lary 2.4 that all subgroups of F are normal in G, so that G/CG(F) is
abelian and hence G 0 6 CG(F) = ⇣(F). Therefore G is metabelian and
it is also hypercyclic because all subgroups of G 0 are normal in G.

Let X be a subnormal non-normal subgroup of G. Then X 0 6 G 0 6 F
is normal in G and X/X 0 is an abelian subnormal non-normal sub-
group of G/X 0, so that it follows again from Corollary 2.4 that G/X 0

is Černikov. Therefore G/G 0 satisfies the minimal condition. In par-
ticular, G/⇣(F) is a Černikov group which is also residually finite, so
that G is abelian-by-finite.

Corollary 3.2 Let G be a periodic nilpotent group with the DCsnn-pro-
perty. Then G is either Černikov or a Dedekind group.

Proof — Assume that G is not Dedekind. Then G is not a T -group
and so G/G 0 satisfies the minimal condition on subgroups by Lem-
ma 3.1. Since G is nilpotent, it follows that in this case G is Černi-
kov.

Our next result shows in particular that, like Černikov groups, in
any periodic soluble DCsnn-group the conjugacy classes of subnor-
mal subgroups are finite. The structure of soluble groups in which
every subnormal subgroup has only finitely many conjugates has
been described by Casolo in [8].

Lemma 3.3 Let G be a periodic soluble DCsnn-group and let X be a
subnormal non-normal subgroup of G. Then X has only finitely many conju-
gates in G and G/XG is Černikov. Moreover, if G is not Černikov,
then XG/XG is finite.
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Proof — It is well known that each subnormal subgroup of a Černi-
kov group has finitely many conjugates (see for instance [18] Part 1,
Theorem 5.49), so that we may suppose without loss of generality
that G is not a Černikov group. It follows from Lemma 3.1 and Corol-
lary 2.4 that G is metabelian and all subgroups of G 0 are normal in G.
In particular, X 0 is normal in G and X/X 0 is an abelian subnormal
non-normal subgroup of G/X 0. Then Corollary 2.4 again yields that
the factor group G/X 0 is Černikov, so that G/XG is Černikov too
and hence X has finitely many conjugates in G. Finally, since the
Fitting subgroup of G has finite index by Lemma 3.1 and all its sub-
groups are normal in G, we have that the index |X : XG| is finite and
so XG/XG is finite.

Our next resut describes the behaviour of the lower central series
of a locally finite DCsnn-group, without any solubility assumption.
Combined with Lemma 3.1, it shows in particular that any locally
finite hypocentral DCsnn-group is nilpotent and has a finite commu-
tator subgroup.

Proposition 3.4 Let G be a locally finite DCsnn-group. Then the lower
central series of G stops after finitely many steps and its last term �(G) has
finite index in G 0.

Proof — Assume, for sake of contradiction, that the statement is
false. Clearly, the factor group G/�!(G) is also a counterexample, so
that we may suppose without loss of generality �!(G) = {1}. Then G
is locally nilpotent and �n+1(G) < �n(G) for each positive integer n.
Since any Dedekind group has class at most 2, it follows from Corol-
lary 3.2 that for each n the nilpotent group G/�n(G) is Černikov, so
that G 0/�n(G) is finite and G 0 is residually finite.

Assume now that G(n+1) < G(n) for every non-negative inte-
ger n. If G(n)/G(n+1) is finite for some n, then G(n) = EG(n+1)

for a suitable finite subgroup E and, for any normal subgroup K

of finite index of G(n), we have that G(n+1)K/K is contained in
the Frattini subgroup of G(n)/K. It follows that G(n) = EK and hen-
ce |G(n) : K| 6 |E|, which is impossible because G 0 is residually finite.
Thus the group G(n)/G(n+1) is infinite for all n. It follows that the
soluble group G/G(4) cannot satisfy the maximal condition on sub-
normal non-normal subgroups (see [11], Corollary 2.11), so that G(4)

must satisfy the minimal condition on subnormal non-normal sub-
groups and hence G(4) is soluble (see [12], Theorem 2.9). This contra-
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diction shows that the derived series of G stops after finitely many
steps and so G is soluble.

Let D be the largest divisible abelian normal subgroup of G. Then
the subgroup [D,G] is likewise divisible and so D 6 ⇣(G) because G 0

is residually finite. On the other hand, each subnormal subgroup
of G has finite index in its normal closure by Lemma 3.3, so all Sy-
low subgroups of the factor group G/D are nilpotent (see [8], The-
orem 3.2). It follows that G is a Baer group and so it is nilpotent
by Theorem 2.7. This contradiction shows that the lower central se-
ries of G terminates after finitely many steps. Then G/�(G) is nilpo-
tent, so that it is either a Černikov or a Dedekind group and hence
its commutator subgroup G 0/�(G) is finite.

Lemma 3.5 Let G be a periodic soluble DCsnn-group, and let L = �(G)
be the last term of its lower central series. If G is not a Černikov group,
then L2 = L.

Proof — The statement is known if G has the T -property, so we may
suppose that G is not a T -group. Then G/G 0 satisfies the minimal con-
dition on subgroups by Lemma 3.1, so the nilpotent group G/L is Čer-
nikov and hence L is not Černikov. Since G is metabelian by Lem-
ma 3.1, the subgroup L is abelian and all its subgroups are normal
in G by Corollary 2.4. It follows that L/L2 is contained in the centre
of G/L2, so G/L2 is nilpotent and hence L2 = L.

Next step is to study primary soluble DCsnn-groups. To this aim,
let

P1 = hc0, c1, . . . , ck, . . .i

be a group of type 21, with the usual relations c0 = 1 and c2
k
= ck-1

if k > 0, and put Pk = hcki for each non-negative integer k. De-
note by Dk the group generated by Pk and an element gk such
that cgk = c-1 for all c 2 Pk, g2

0
= 1 and g2

k
= c1 if k = 1, 2, . . . ,1.

Moreover, for any k 2 N[ {1}, let Ak be a finite abelian 2-group such
that A2

k
6= {1} if k = 0, 1, 2,1, and let J be a divisible abelian 2-group

of infinite rank. Consider the semidirect product

G(k,Ak, J) = Dkn(Ak ⇥ J),

where [Pk,Ak ⇥ J] = {1} and xgk = x-1 for all x 2 Ak ⇥ J. We have
that F = Pk ⇥Ak ⇥ J is the Fitting subgroup of G(k,Ak, J) and the
last term L of the lower central series of G(k,Ak, J) coincides with J
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for k < 1 and with P1J when k = 1. Let X be any subnormal non-
normal subgroup of G(k,Ak, J); then X cannot be contained in F,
so that [L,X] = L2 = L and hence L 6 X. Since L has finite index
in G(k,Ak, J), it follows that G(k,Ak, J) has only finitely many sub-
normal non-normal subgroups. These groups occur in the classifica-
tion of 2-groups with the DCsnn-property.

Theorem 3.6 Let p be a prime number and let G be a p-group with
the DCsnn-property which is not Černikov.

(a) If p > 2, then G is abelian;

(b) If p = 2, then either G is a T -group or it is isomorphic to a group of
type G(k,Ak, J).

Proof — By Lemma 3.3 each subnormal subgroup of G has finite in-
dex in its normal closure, so that we may apply Theorem 3.2 of [8] ob-
taining that the Fitting subgroup F of G has index at most 2. If F = G,
we have that G is nilpotent and so it is even a Dedekind group
by Corollary 3.2.

Assume now |G : F| = 2, so that in particular G is a 2-group
and G = hF, zi, where z is an element of G \ F. All subgroups of F
are normal in G by Corollary 2.4 and so z induces on F a non-trivial
power automorphism. On the other hand, it follows from Lemma 3.5
that the last term L of the lower central series of G is a divisible
abelian non-trivial subgroup of F and hence z inverts each element
of F. Thus [F, z] = F2 and so L = F2

k for some non-negative inte-
ger k. It follows that G/L has finite exponent, so that G/G 0 is finite
by Lemma 3.1 and hence G/L is finite too. Let X be any subnor-
mal non-normal subgroup of G. Then X cannot be contained in F,
whence [L,X] = L2 = L and so L 6 X. It follows that if G is not
a T -group, then G/L has a finite non-normal subgroup and hence G
is isomorphic to some G(k,Ak, J).

The above result has the following consequence that shows in par-
ticular that all primary DCsnn-groups satisfy the minimal condition
on subnormal non-normal subgroups.

Corollary 3.7 Let p be a prime number and let G be a p-group with
the DCsnn-property. Then either G is Černikov or it has only finitely many
subnormal non-normal subgroups.
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Lemma 3.8 Let G be a periodic group and let P be a Sylow p-subgroup
of G, where p is an odd prime number. If all subgroups of P are normal in G,
then either [P,G] = {1} or [P,G] = P.

Proof — Suppose [P,G] 6= {1}, so that P is not contained in ⇣(G).
Clearly, P is abelan and G/CG(P) is isomorphic to a periodic non-
trivial group of power automorphisms which has no elements of or-
der p. If g is any element of G \ CG(P), we have [P, g] = P and so
also [P,G] = P.

It is well known that if G is a periodic soluble T -group and L is
the last term of its lower central series, then the set ⇡(L) \ ⇡(G/L)
does not contain odd prime numbers (see [16], Theorem 4.2.2). In the
case of periodic soluble DCsnn-groups we have the following weaker
result.

Lemma 3.9 Let G be a periodic soluble group with the DCsnn-property
and let L = �(G) be the last term of the lower central series of G. If p is a
prime number such that the p-component Lp of L is not Černikov, then the
set ⇡(L)\ ⇡(G/L) does not contain any odd prime q > p.

Proof — Let ⇡ be the set of all prime numbers strictly larger than p.
Then the set N of all ⇡-elements of G is a normal subgroup because G
is hypercyclic by Lemma 3.1. Since Lp \N = {1}, the group G/N is
not Černikov and it follows from Lemma 3.3 that all subnormal sub-
groups of N are normal in G. Let q be any prime in the set ⇡ \ ⇡(L)
and let Q/Lq 0 be the unique Sylow q-subgroup of G/Lq 0 . Then Q/Lq 0

is abelian by Theorem 3.6; in particular QL/L lies in ⇣(G/L) and
so [Q,G] 6 L. Moreover Q 6 NLq 0 and hence all subgroups of Q/Lq 0

are normal in G/Lq 0 . On the other hand, G/Lq 0 cannot be nilpotent
because q 2 ⇡(L) and so Q = [Q,G]Lq 0 by Lemma 3.8. It follows
that Q is contained in L and so q does not belong to ⇡(G/L). There-
fore ⇡ \ ⇡(L) \ ⇡(G/L) = ; and in particular the statement is proved
if p = 2.

Suppose finally p > 2 and let P/L be the unique Sylow p-subgroup
of G/L. Since all subgroups of L are normal in G, we have that P in-
duces on Lp a p-group of power automorphisms. Then either Lp has
infinite exponent and is centralized by P or Lp has finite exponent
and P acts trivially on Lp[pn+1]/Lp[pn] for each non-negative inte-
ger n. It follows that P/Lp 0 is nilpotent and hence all its subgroups
are G-invariant by Corollary 2.4 because Lp is not Černikov. A fur-
ther application of Lemma 3.8 yields that [P,G]Lp 0 = P, whence P = L
and p /2 ⇡(G/L).
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Our last main result provides a full description of the structure of
periodic soluble groups with the DCsnn-property.

Theorem 3.10 Let G be a periodic soluble group which is neither Černikov
nor a T -group. The following statements are equivalent.

(A) G satisfies the minimal condition on subnormal non-normal subgroups.

(B) G satisfies the double chain condition on subnormal non-normal sub-
groups.

(C) If F is the Fitting subgroup of G, L = �(G) is the last term of the
lower central series of G and ⇡ = ⇡(G/L)[ {2}, then all subgroups
of F are normal in G, L2 is divisible and G = KnL⇡ 0 satisfies one of
the following conditions:
(C1) If L2 is not Černikov, then K = K1⇥K2, where K1 is a Černikov

abelian 2 0-subgroup with K1 \ L = {1}, K2 is a 2-group isomor-
phic to some G(k,Ak, J) and L2 0/[g, L2 0 ] is Černikov for each
element g of K2 \ Fit(K2).

(C2) If L2 is Černikov, then also K is a Černikov group; moreover, K is
not a T -group and the centralizer CL

⇡ 0 (Y) is Černikov for each
subnormal non-normal subgroup Y of K.

Proof — Obviously, every group satisfying the minimal condition
on subnormal non-normal subgroups has the DCsnn-property.

Suppose now that G is a DCsnn-group. Then G is metabelian and
hypercyclic by Lemma 3.1 and all subgroups of F are normal in G
by Corollary 2.4; moreover, L2 is divisible by Lemma 3.5. Since L is
contained in F, the factor group G/CG(L) is isomorphic to a group
of power automorphisms of L and hence it is residually finite. More-
over, it follows again from Lemma 3.1 that G/G 0 satisfies the mini-
mal condition on subgroups, so G/L is Černikov by Proposition 3.4
and hence G/CG(L) is even finite. Put N = L⇡ 0 , so G/CG(N) is finite
and ⇡(N)\ ⇡(G/N) = ;. It follows from the generalized Schur-Zassen-
haus theorem that there exists a ⇡-subgroup K of G such that G=KnN
(see for instance [13], Theorem 2.4.5). Here K cannot have the T -pro-
perty, because G is not a T -group (see [16], Lemma 5.2.2).

Assume that L2 is not a Černikov group, so that ⇡(L)\ ⇡(G/L) ✓ {2}
by Lemma 3.9 and hence L/N is a 2-group. Thus K ' G/N contains a
unique Sylow 2-subgroup K2, which is not Černikov because L2 6 K2.
On the other hand, it is well known that the elements of odd order
of any locally supersoluble group form a subgroup, so K = K1 ⇥K2
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where K1 is a 2 0-subgroup. Of course, K1 \ L = {1} and hence K1

is nilpotent and Černikov. But K is a DCsnn-group, so that all sub-
groups of K1 are normal in K by Corollary 2.4, and in particular K1 is
abelian. Finally, since K is not a T -group, neither K2 has the T -proper-
ty and so K2 is isomorphic to a suitable G(k,Ak, J) by Theorem 3.6.
Let now g be any element of K2 \ Fit(K2). As L2 is a divisible sub-
group of K2 ' G(k,Ak, J), we have [g, L2] = L2, so L = CL

2 0
(g)⇥ [g, L].

Moreover, hgi[g, L] is a subnormal non-normal subgroup of G, so
that hgi[g, L]/[g, L] is a non-normal subgroup of the Baer radical
of G/[g, L] and hence it follows from Lemma 2.3 that L/[g, L] is Černi-
kov. Thus L2 0/[g, L2 0 ] is likewise a Černikov group.

Assume now that L2 is Černikov, so that it follows from Lemma 3.9
that Lq is Černikov for any prime q 2 ⇡. As the set ⇡ is finite, the
subgroup L⇡ is Černikov and hence K ' G/L⇡ 0 is likewise a Černikov
group. Assume for a contradiction that K contains a subnormal non-
normal subgroup Y such that C = CL

⇡ 0 (Y) is not Černikov. Clearly,
the subgroup Y acts by conjugation on L⇡ 0 as a group of power auto-
morphisms and 2 /2 ⇡ 0, so that L⇡ 0 = C⇥M, where M = [L⇡ 0 , Y]. The
subgroup YM is subnormal in G, because it is normalized by L⇡ 0

and L⇡ 6 K; moreover, [L, Y] is contained in M, so that YM/M is
nilpotent and hence it lies in the Baer radical of G/M. Application
of Corollary 2.4 yields that YM is normal in G, whence Y = YM\K
is normal in K. This contradiction proves that G has the structure
described in (C).

Suppose that statement (C) holds and G satisfies condition (C1).
Since K2 is isomorphic to some G(k,Ak, J), the last term of the lower
central series of K = K1 ⇥K2 coincides either with J or with P1J, ac-
cording to k being either finite or infinite. Then L = JL⇡ 0 if k < 1
and L = JL⇡ 0P1 if k = 1, and in particuar G/L is a Černikov group.
Since K2/CK2

(L2 0) is isomorphic to a group of power automorphisms
of L2 0 , it is residually finite and so even finite because K2 is divi-
sible-by-finite. Thus the set

W =
�
[g, L2 0 ] | g 2 K2 \ Fit(K2)

 

is finite and hence L2 0/W is a Černikov group, where W is the in-
tersection of all members of W. Let X be any subnormal non-normal
subgroup of G. It follows from Lemma 3.8 that for each prime q 2 ⇡ 0

we have either [X, Lq] = {1} or Lq = [X, Lq] 6 X, so that L⇡ 0 6 NG(X)
and hence NG(X) = L⇡ 0NK(X\K) (replacing eventually X by a suit-
able conjugate). Thus X \ K is not normal in K, whence it cannot be
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contained in K1 ⇥ Fit(K2) and we may consider in X an element g
which belongs to K2 \ Fit(K2). Of course, g induces the inversion au-
tomorphism on the divisible subgroup L2 6 K2 and so L2=[g, L2]6X;
moreover, L2 0 =[g, L2 0 ]⇥CL

2 0
(g) and so X contains also [g, L2 0 ]. There-

fore L2W 6 X and G satisfies the minimal condition on subnormal
non-normal subgroups because G/L2W is a Černikov group.

Assume finally that G is a group satisfying condition (C2). Since all
subgroups of F are normal in G, the factor group G/CG(F) is isomor-
phic to a group of power automorphisms of F and in particular it is
residually finite; moreover, F/⇣(F) is finite and ⇣(F) = CG(F), so that
also G/F is residually finite and hence even finite. Therefore G/⇣(F)
is finite. Let Y be the set of all subnormal non-normal subgroups
of K. For each element Y of Y and for each prime q 2 ⇡ 0, the finite
group Y/CY(Lq) is isomorphic to a group of power automorphisms
of Lq and hence it is cyclic because q > 2. Thus Lq = CLq

(Y)⇥ [Lq, Y]
for each q 2 ⇡ 0, so that we have also

L⇡ 0 = CL
⇡ 0 (Y)⇥ [L⇡ 0 , Y]

and hence L⇡ 0/[L⇡ 0 , Y] ' CL
⇡ 0 (Y) is a Černikov group. Put

N =
\

Y2Y

[L⇡ 0 , Y].

Since the set �
[L⇡ 0 , Y] | Y 2 Y

 

is finite because ⇣(F) has finite index in G, the factor group G/N
is Černikov. Let X be any subnormal non-normal subgroup of G.
Then

X = (X\Kg)n(X\ L⇡ 0)

for a suitable element g of G (see for instance [13], Proposition 2.2.4).
Moreover, X is normalized by L⇡ 0 because X/X \ L⇡ 0 is a subnor-
mal ⇡-subgroup of G/X\ L⇡ 0 , and so X\Kg is a subnormal non-nor-
mal subgroup of Kg. Thus Z = Xg

-1 \ K is a subnormal non-normal
subgroup of K, so that L⇡ 0 = CL

⇡ 0 (Z)⇥ [L⇡ 0 ,Z] and hence

N 6 [L⇡ 0 ,Z] = [L⇡ 0 ,Z,Z] 6 Xg
-1

.

Therefore N is contained in each subnormal non-normal subgroup
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of G and so G satisfies the minimal condition on subnormal non-
normal subgroups.

Corollary 3.11 Let G be a periodic soluble DCsnn-group. Then G satis-
fies the minimal condition on subnormal non-normal subgroups.
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