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A

A subgroup H of a group G is said to be pronormal if H and Hx are conjugate in
©H,Hxª for each element x of G. In this paper properties of pronormal subgroups of
infinite groups are investigated, and the connection between pronormal subgroups
and groups in which normality is a transitive relation is studied. Moreover, we
consider the pronorm of a group G, i.e. the set of all elements x of G such that H and
Hx are conjugate in ©H,Hxª for every subgroup H of G ; although the pronorm is not
in general a subgroup, we prove that this property holds for certain natural classes of
(locally soluble) groups.

1. Introduction

A subgroup H of a group G is said to be pronormal if for every element x of G the

subgroups H and Hx are conjugate in ©H,Hxª. Obvious examples of pronormal

subgroups are normal subgroups and maximal subgroups of arbitrary groups;

moreover, Sylow subgroups of finite groups and Hall subgroups of finite soluble

groups are always pronormal. The concept of a pronormal subgroup was introduced

by P. Hall, and the first results about pronormality appeared in a paper by Rose [13].

More recently, several authors have investigated the behaviour of pronormal

subgroups, mostly dealing with properties of pronormal subgroups of finite soluble

groups and with groups which are rich in pronormal subgroups. In the first part of

this paper some information about pronormal subgroups of infinite groups will be

obtained. In particular, we will prove that, if G is an FC-group (i.e. a group with finite

conjugacy classes of elements) and K is a locally soluble subgroup of G whose cyclic

subgroups are pronormal in G, then also K is pronormal in G ; an example shows

that such a result is no longer true for subgroups of arbitrary soluble groups.Moreover,

it will be shown that in a polycyclic-by-finite group G the pronormality of a subgroup

can be detected from its behaviour in the finite homomorphic images of G.

A group G is said to be a T-group if every subnormal subgroup of G is normal,

i.e. if normality is a transitive relation in G. It is well known that pronormal

subgroups are strictly related to T-groups, and in Section 3 some further evidence of

this connection will be given. In particular, we will prove that an FC-group is a
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soluble T-group if and only if all its subgroups are pronormal. A similar result for

finite groups was obtained by Peng [10], and here Peng’s theorem will also be

extended to locally finite groups satisfying the minimal condition on primary

subgroups.

In [1] Baer introduced the norm N(G) of a group G as the intersection of all the

normalisers of subgroups of G, i.e. N(G) is the set of all elements x of G such that

Hx ¯H for every subgroup H of G. Clearly N(G) is a characteristic subgroup of G, and

its elements induce by conjugation power automorphisms of G, so that in particular

N(G) is contained in the second term Z2(G) of the upper central series of G (see for

instance [3]). In order to define an analogue to the norm for pronormality, we shall

say that an element x of a group G pronormalises a subgroup H of G if the subgroups

H and Hx are conjugate in ©H,Hxª. Thus a subgroup H of a group G is pronormal

in G if and only if it is pronormalised by all elements of G. The pronorm of a group

G is the set P(G) of all elements of G pronormalising every subgroup of G. In

particular, P(G)¯G if and only if all subgroups of G are pronormal. The

consideration of the alternating group A5 shows that for an arbitrary finite group G

the pronorm P(G) need not be a subgroup. The last section of this article is devoted

to the study of the pronorm. Among other results it will be proved that the pronorm

of a locally soluble FC-group is a subgroup, and that in a polycyclic group with

nilpotent commutator subgroup the pronorm coincides with the Wielandt subgroup.

Most of our notation is standard and can be found in [12]. Moreover, we refer to

[11] for results concerning the structure of soluble T-groups.

2. Pronormal subgroups

Our first two lemmas provide local versions of some elementary results about

pronormal subgroups that can be found in [13].

Lemma 2.1. Let G be a group, and let H and K be subgroups of G such that HK ¯H.

If x is an element of G normalising H and pronormalising K, then x pronormalises

HK.

P. Since x pronormalises K, there exists an element z `©K,Kxª such that

Kxz ¯K. On the other hand,

©K,Kxª%©K,xª%NG(H ),

so that (HK)xz ¯HxzKxz ¯HK, and x pronormalises HK. +

Lemma 2.2. Let G be a group, and let H and K be subgroups of G such that HK ¯H.

If N is a normal subgroup of G such that K is pronormal in KN and x is an element of

N pronormalising H, then x also pronormalises HK.

P. Since x pronormalises H and

©H,Hxª¯©H,HxªfNH¯H(Nf©H,Hxª),

there exists an element y of Nf©H,Hxª such that Hxy ¯H. On the other hand, K is

pronormal in KN and so there is z `©K,Kxyª such that Kxyz ¯K. Put J¯HK. Then

H¯Hxy is a normal subgroup of ©J, J xyª, and hence Hxyz ¯Hz ¯H. Thus Jxyz ¯ J,
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where y is an element of ©J, Jxª and z belongs to ©K,Kxyª%©J, Jxª. Therefore yz is

an element of ©J, Jxª, and hence x pronormalises J. +

Lemma 2.3. Let G be a group, and let K be a subgroup of G and Ω a chain of subgroups

of G such that K¯ V
H`Ω

H. If x is an element of G pronormalising e�ery element of Ω and

the subgroup [K,x] is finite, then x also pronormalises K.

P. Put
[K,x]f©K,Kxª¯² y1,…, yt´,

and for each i¯ 1,… , t let Ωi be the subset of Ω consisting of all subgroups H `Ω such

that Hx ¯Hyi. For every H `Ω the subgroup ©H,Hxª is contained in the product

H([H,x]f©K,Kxª), and so
Ω¯Ω1 e…eΩt.

For each i% t put

Ki ¯ V
H`Ωi

H,

so that Kx
i ¯Kyi

i . If i, j are indices such that Ki is not contained in Kj, there exists an

element H of Ωi which is not contained in Kj, so that every element of Ωj is contained

in H, and hence also in Ki. Thus Kj is contained in Ki, and the finite set ²K1,…,Kt´ is

a chain. On the other hand,

K¯ V
H`Ω

H¯©K1,…,Ktª,

so that K¯Ki for some i% t, and x pronormalises K. +

It is now possible to prove that the join of any chain of pronormal subgroups of

an FC-group is likewise pronormal.

Corollary 2.4. Let G be an FC-group, and let Ω be a chain of pronormal subgroups of

G. Then also V
H`Ω

H is a pronormal subgroup of G.

P. Put

K¯ V
H`Ω

H.

Since G is an FC-group, the subgroup [K,x] is finite for each element x of G. Then

it follows from Lemma 2.3 that K is pronormalised by every element of G, and hence

it is a pronormal subgroup of G. +

Lemma 2.5. Let G be an FC-group, and let K be a locally soluble subgroup of G. If N

is a normal subgroup of G such that X is pronormal in XN for e�ery cyclic subgroup X

of K, then K is a pronormal subgroup of KN.

P. Let
²1´¯K0 %K1 %…%Kn %Kn+1 %…%Kω ¯K

be an ascending normal series with abelian factors of length at most ω of the locally

soluble FC-group K (see [15, corollary 1.15]). Assume that the lemma is false, so that
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it follows from Corollary 2.4 that Km is not pronormal in KN for some positive integer

m, and m can be chosen to be the smallest with respect to this condition, so that Km−1

is a pronormal subgroup of KN. Since Km is normal in K, we have that Km is not

pronormal in Km N. Let x be an element of N which does not pronormalise Km. As G

is an FC-group, the subgroup [Km,x] is finite, so that it follows from Lemma 2.3 that

the ordered set ,, consisting of all subgroups of Km containing Km−1 and

pronormalised by x, is inductive. Thus by Zorn’s Lemma , contains a maximal

element M. If a belongs to KmcM, the subgroup ©aª is pronormal in ©aªN, and

application of Lemma 2.2 yields that x also pronormalises ©aªM. This contradiction

proves the lemma. +

The following theorem is a special case of Lemma 2.5.

Theorem 2.6. Let G be an FC-group, and let K be a locally soluble subgroup of G. If

e�ery cyclic subgroup of K is pronormal in G, then also K is pronormal in G.

In order to show that in the above results the assumption that the group has finite

conjugacy classes is essential, we need the following lemma.

Lemma 2.7. Let π be a set of prime numbers, and let G be a periodic group and P a Sylow

π-subgroup of G. If P is pronormal in G, then G}PG is a π«-group.

P. As the subgroup P is pronormal in G, we have G¯PGNG(P), and hence the

groups G}PG and NG(P)}(PG fNG(P)) are isomorphic. On the other hand, P is the

unique Sylow π-subgroup of NG(P), and so G}PG is a π«-group. +

It follows from a result of Kovacs et al. [7] that there exists an uncountable

periodic metabelian group G, which is a non-split extension of an abelian normal

subgroup A without elements of order 2 by a group of exponent 2; moreover, the

Sylow subgroups of G are countable and all subgroups of A are normal in G. Then

every subgroup of G is a T-group (see [11, lemma 5.2.2]), and hence all finite

subgroups of G are pronormal (see [4, lemma 9]). Let P be a Sylow 2-subgroup of G.

If P is pronormal in G, it follows from Lemma 2.7 that G}PG is a 2«-group, so that

also G}PA is a 2«-group, and hence G¯PA. This contradiction proves that the

subgroup P is not pronormal in G. On the other hand, all cyclic subgroups of G are

pronormal, and P is the join of a chain of finite subgroups. Therefore in the

statements of Theorem 2.6 and Corollary 2.4 the assumption that G is an FC-group

cannot be omitted.

It was proved by Kegel [5] that a subgroup H of a polycyclic-by-finite group G is

subnormal in G if and only if Hσ is subnormal in Gσ for every finite homomorphic

image Gσ of G, and a similar result for quasinormality was later obtained by Lennox

and Wilson [9]. We prove here the corresponding statement for pronormal subgroups

of polycyclic-by-finite groups.

Theorem 2.8. Let G be a polycyclic-by-finite group, and let H be a subgroup of G. Then

an element x of G pronormalises H if and only if xσ pronormalises Hσ for e�ery finite
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homomorphic image Gσ of G. In particular, H is pronormal in G if and only if Hσ is

pronormal in Gσ for e�ery finite homomorphic image Gσ of G.

P. The condition of the statement is obviously necessary. Suppose conversely

that Hσ is pronormalised by xσ for every finite homomorphic image Gσ of G, and let

K be any normal subgroup of finite index of ©H,Hxª. As G is polycyclic-by-finite,

both ©H,Hxª and K are intersections of subgroups of finite index of G (see [14, p. 18]),

and hence there exists a subgroup of finite index L of G such that ©H,HxªfL¯K.

Let N be the core of L in G. By hypothesis the coset xN pronormalises HN}N, and

so HN}N and HxN}N are conjugate in ©H,HxªN}N. Using the natural isomorphism

between the groups ©H,HxªN}N and ©H,Hxª}(©H,HxªfN ), it follows that the

subgroups
H(©H,HxªfN )}(©H,HxªfN )

and
Hx(©H,HxªfN )}(©H,HxªfN )

are conjugate in ©H,Hxª}(©H,HxªfN ). On the other hand, ©H,HxªfN is

contained in ©H,HxªfL¯K, and hence HK}K and HxK}K are conjugate in

©H,Hxª}K. Therefore H and Hx are conjugate in every finite homomorphic image of

©H,Hxª, so that they are conjugate in ©H,Hxª (see [14, p. 69]) and H is pronormalised

by x. +

Corollary 2.9. Let G be a polycyclic-by-finite group, and let K be a soluble subgroup of

G. If e�ery cyclic subgroup of K is pronormal in G, then also K is pronormal in G.

P. If Gσ is a finite homomorphic image of G, it follows from Theorem 2.6 that

Kσ is pronormal in Gσ, so that K is a pronormal subgroup of G by Theorem 2.8. +

3. Pronormal subgroups and T-groups

Let G be a group. The Wielandt subgroup ω(G) of G is the intersection of all the

normalisers of subnormal subgroups of G. Thus a group G is a T-group if and only

if ω(G)¯G. Recall that a subgroup H of a group G is said to be ascendant if there

is an ascending series between H and G. Here we will denote by τ(G) the intersection

of all the normalisers of ascendant subgroups of G. Clearly every subnormal

subgroup is also ascendant, so that for any group G the subgroup τ(G) is contained

in ω(G). Moreover, if G is a polycyclic-by-finite group, ascendant and subnormal

subgroups of G coincide, and hence τ(G)¯ω(G). The subgroup τ(G) will play a

relevant role in our considerations.

The first lemma of this section is almost obvious.

Lemma 3.1. Let G be a group whose Fitting subgroup F is nilpotent. Then F}F« is the

Fitting subgroup of G}F «.

P. Let N}F « be a nilpotent normal subgroup of G}F «. Then NF}F « is nilpotent,

and hence also NF is nilpotent by P. Hall’s nilpotency criterion (see [12, part 1,

theorem 2.27]). Therefore N is contained in F, and F}F « is the Fitting subgroup of

G}F «. +



194 Mathematical Proceedings of the Royal Irish Academy

Let G be a group. An automorphism θ of G is called a power automorphism if

Hθ ¯H for every subgroup H of G, and θ is said to be locally uni�ersal if for every

finitely generated subgroup E of G there exists an integer n such that xθ ¯xn for every

element x of E.

Lemma 3.2. Let G be a hyperabelian group with nilpotent Fitting subgroup, and let N

be a normal subgroup of G. If N%ω(G), then [N,G] is contained in the Fitting subgroup

of N.

P. Let x be any element of N. Since N is contained in ω(G), x induces on F}F «
a power automorphism, which is locally universal (see [3, theorem 3.4.1]). Thus

[x, g] acts trivially on F}F « for every g `G. On the other hand, F}F « is the Fitting

subgroup of G}F « by Lemma 3.1, so that CG/F « (F}F «)¯F}F « and [x, g] belongs

to F. Therefore, [N,G] is contained in FfN, and so also in the Fitting subgroup

of N. +

We will often use the following result, that has already been proved by the second

author (see [16, lemma 3.3]).

Lemma 3.3. Let G be a periodic soluble group, and let N be a normal π-subgroup of G

and H a π«-subgroup of G (where π is a set of primes), and suppose that either N or H

is finite. If x is an element of G such that the subgroups HN and HxN are conjugate in

©H,HxªN, then H and Hx are conjugate in ©H,Hxª. In particular, if HN is a pronormal

subgroup of G, then also H is pronormal in G.

Lemma 3.4. Let G be a periodic soluble group, and let E be a finite p-subgroup of G (p

prime). If N is a normal subgroup of G such that N% τ(EN ), then E is pronormal

in EN.

P. Put K¯EN. Then N is contained in τ(K ) and hence K¯Eτ(K ). As the

Fitting subgroup V of τ(K ) is obviously nilpotent, we have V¯Ff τ(K ), where F is

the Fitting subgroup of K. Then F is nilpotent-by-finite, and so even nilpotent.

Application of Lemma 3.2 yields that [τ(K),K ] is contained in V, so that K}V is a

nilpotent group. In particular, the subgroup EV is subnormal in K. Consider now the

normal subgroup L¯Op«(V ) of K. Clearly EV}L is a nilpotent-by-finite p-group, so

that it is hypercentral and hence EL is ascendant in EV, and so also in K. Thus EL

is a normal subgroup of K¯Eτ(K ), and it follows from Lemma 3.3 that E is

pronormal in K. +

A group G is called a Ta -group if each subgroup of G is a T-group. It is well known

that every soluble non-periodic T- -group is abelian. We will prove that a soluble group

G is a Ta -group if and only if τ(G)¯G, i.e. if and only if all its ascendant subgroups

are normal.

Lemma 3.5. Let G be a group whose cyclic subgroups are pronormal. Then G is a

Ta -group.
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P. Let x be any element of G. Since ©xª is a pronormal subgroup of G, we have

G¯NG(©xª)©xªG,

and hence

©xªG ¯©xªNG(©xª)©xªG
¯©xª©xªG

.

Then G is a T-group (see [11, lemma 2.1.1]). As the hypotheses are inherited by every

subgroup of G, it follows that G is even a Ta -group. +

Following the notation introduced in [11] we will say that a soluble non-abelian

T-group G is of type I if the centraliser CG(G«) is not periodic, and that G is of type

II if it is not periodic and CG(G«) is periodic. Note also that for a T-group the

properties of being soluble or hyperabelian are obviously equivalent.

Theorem 3.6. Let G be a soluble group. Then G is a Ta -group if and only if all its

ascendant subgroups are normal.

P. Suppose first that G is a T- -group, and assume by contradiction that G

contains an ascendant non-normal subgroup H. Let

H¯H0 kH1k…kHτ ¯G

be an ascending series, and let α% τ be the least ordinal such that H is not normal

in Hα. Clearly α is not a limit ordinal, and H is a normal subgroup of Hα−1. On the

other hand, Hα−1 is normal in the T-group Hα, so that H is also normal in Hα. This

contradiction shows that every ascendant subgroup of G is normal.

Conversely, suppose that all ascendant subgroups of G are normal, so that

τ(G)¯G. If G is periodic, it follows from Lemma 3.4 and Lemma 2.2 that every cyclic

subgroup of G is pronormal, so that G is a T- -group by Lemma 3.5. Assume now that

the soluble T-group G is not periodic, and let F be the Fitting subgroup of G. If G is

of type I, and T is the largest periodic normal subgroup of G, the factor group G}T

is not abelian. Therefore without loss of generality it can be assumed that G has no

periodic non-trivial normal subgroups, and in particular F is a torsion-free abelian

group. Let z be an element of G such that az ¯ a−1 for all a `F (see [11, theorem 3.1.1]).

Then z4 ¯ 1 and z2 belongs to F, so that z2 ¯ 1 and F 2 ¯F 4. It follows that F

contains a subgroup L such that F}L is a group of type 2¢. Then G}L is a

hypercentral non-abelian group, contradicting the hypothesis. Assume now that G is

of type II, so that F is periodic. Clearly there exists a prime p such that G}Op«(G)

is not abelian, and the above argument proves that the Fitting subgroup of G}Op«(G) is

periodic, so that it is a p-group. Thus we may suppose that the Fitting subgroup of

G is a p-group for some prime p. For each positive integer n let Sn be the nth term of

the upper socle series of F. If x is any element of infinite order of G, we have that

y¯xp−1 acts trivially on Sn+1}Sn for all n, and hence ©y,Snª is normal in ©y,Sn+1ª. Then

©yª is an ascendant subgroup of G, so that ©yª is normal in G, and y belongs to F.

This last contradiction completes the proof of the theorem. +

It follows in particular from Theorem 3.6 that the class of soluble groups whose

ascendant subgroups are normal is subgroup-closed.
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Lemma 3.7. Let G be an FC-group. Then ω(G)¯ τ(G).

P. Let x be an element of ω(G), and let H be any ascendant subgroup of G and

h an element of H. As the normal closure N¯©h,xªG is a finitely generated FC-

group, the factor group N}Z(N ) is finite, so that in particular HfN is a subnormal

subgroup of N. Thus HfN is subnormal in G, and hence (HfN )x ¯HfN. It

follows that hx belongs to H, and so Hx %H. Therefore ω(G) is contained in the

normaliser of every ascendant subgroup of G, and hence ω(G)¯ τ(G). +

In the above lemma the assumption that G is an FC-group cannot be omitted. In

fact, if D2
¢ is the locally dihedral 2-group, the subgroup τ(D2

¢) has order 2 and

ω(D2
¢)¯D2

¢.

Corollary 3.8. Let G be a locally soluble T-group. If G is an FC-group, then it is also

a Ta -group.

P. By Lemma 3.7 we have G¯ω(G)¯ τ(G), so that every ascendant subgroup

of G is normal. Moreover, the group G is hyperabelian (see [15, corollary 1.15]), and

so even soluble, so that G is a Ta -group by Theorem 3.6. +

It was proved by Peng [10] that a finite group G is a soluble T-group if and only

if all its primary subgroups are pronormal, and this is also equivalent to the property

that all subgroups of G are pronormal (see [4, lemma 9]).

Theorem 3.9. Let G be an FC-group. The following statements are equi�alent :

(i) G is a soluble T-group;

(ii) e�ery subgroup of G is pronormal;

(iii) e�ery cyclic subgroup of G is pronormal.

P. If every cyclic subgroup of G is pronormal, it follows from Lemma 3.5 that

G is a T- -group. In particular, the locally finite group G}Z(G) is metabelian, and so

G is soluble. Thus it is enough to prove that if G is a soluble T-group, then all its

subgroups are pronormal. Let ©aª be a cyclic subgroup of G, and let x be any element

of G. As G is a T- -group by Corollary 3.8, the subgroup ©a,xª is a finitely generated

soluble T-group, so that it is either finite or abelian (see [11, theorem 3.3.1]), and in

particular all its cyclic subgroups are pronormal. Therefore ©aª and ©aªx are

conjugate in ©a, axª, and ©aª is a pronormal subgroup of G. It follows now from

Theorem 2.6 that every subgroup of G is pronormal. +

A group G is called locally graded if every finitely generated non-trivial subgroup

of G contains a proper subgroup of finite index. Since finite T- -groups are metabelian,

it follows easily that every periodic locally graded T- -group is locally finite, and so also

metabelian.

Lemma 3.10. Let G be a periodic locally graded Ta -group, and let P be a Sylow p-

subgroup of G (p prime). If P is pronormal in G, then all subgroups of P are pronormal

in G.
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P. Let A be the last term of the lower central series of G. Then G}A is a Dedekind

group, A is an abelian Hall subgroup of G and all subgroups of A are normal in G

(see [11, theorem 6.1.1]), so that without loss of generality it can be assumed that

PfA¯²1´. The subgroup N¯PA is normal in G, and the factor group G}N has no

elements of order p by Lemma 2.7, so that N is a Hall subgroup of G. Let π be the

set of all prime numbers which are orders of elements of G}N. Consider any element

x of G, and let E be the π-component of ©xª. Then x belongs to the subgroup K¯
EN. Let L¯NK(P) be the normaliser of P in K. Since LfN is a Hall normal

subgroup of L, and L}LfN is finite, it is well known that L contains a finite

π-subgroup V such that L¯V(LfN ) and VfN¯²1´. Put B¯VP, so that

BfA¯²1´ and B is a Dedekind group. As P is a pronormal subgroup of K,

we have
K¯LN¯VN¯BA,

and so x¯ ba, where b `B and a `A. Let H be any subgroup of P. Clearly H is a

Sylow p-subgroup of H©aª, and the index rH©aª :Hr is finite, so that the subgroups

H and Ha are conjugate in ©H,Haª. On the other hand, Hx ¯Hba ¯Ha since B is

a Dedekind group, and so H and Hx are conjugate in ©H,Hxª. Therefore H is a

pronormal subgroup of G. +

The last result of this section is another extension of Peng’s theorem.

Theorem 3.11. Let G be a periodic locally graded group satisfying the minimal condition

on primary subgroups. Then G is a Ta -group if and only if all its primary subgroups are

pronormal.

P. Suppose first that G is a T- -group, so that in particular it is soluble. As in any

soluble locally finite group satisfying the minimal condition on primary subgroups

there is a unique conjugacy class of Sylow p-subgroups for each prime p (see for

instance [6, corollary 3.18]), it follows that every Sylow subgroup of G is pronormal,

and hence all primary subgroups of G are pronormal by Lemma 3.10. Conversely, if

every primary subgroup of G is pronormal, then all cyclic subgroups of G are

pronormal, and G is a T- -group by Lemma 3.5. +

In the situation of Theorem 3.11 it cannot be proved that all subgroups of G are

pronormal; this can be seen from the following example due to Kuzennyi and

Subbotin [8]. Let
²pn r n `.´

and
²qn r n `.´

be infinite disjoint sets of odd prime numbers such that pn ¯ 1kn qn for all n (where

kn is a suitable integer), and let ©anª and ©bnª be groups of order pn and qn respectively.

Put

A¯ Dr
n` .

©anª

and

B¯©bª¬Dr
n`.

©bnª,
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where b has order 2. Consider now the semidirect product G¯BmA, where

[an, bm]¯ 1 if n1m and

ab
n ¯ a−1

n , abn
n ¯ a−kn

n

for all n. Clearly all Sylow subgroups of G have prime order, and hence all its primary

subgroups are pronormal. On the other hand, it is easy to prove that the direct

product

H¯ Dr
n`.

©an bnª

is a Sylow π-subgroup of G, where π¯²qn r n `.´e ²2´, and it follows from Lemma

2.7 that H is not pronormal in G, since G}HG contains elements of order 2.

4. The pronorm of a group

Let χ be a property pertaining to subgroups. The χ-pronorm of a group G is the

set Pχ(G) of all elements of G pronormalising every χ-subgroup of G. In particular, if

8 is a group class, the 8-pronorm P8(G) is the subset of G consisting of the elements

pronormalising every subgroup of G which belongs to 8. If 5 is the class of all

groups, P5(G) is just the pronorm P(G) of G. Here we will also be interested in the

pronorms relative to the classes # of all cyclic groups and & of all finite groups. The

subset P#(G) will be called the cyclic pronorm of G. The first lemma of this section

shows in particular that, if sn and asc denote the properties of being a subnormal

subgroup and an ascendant subgroup respectively, then Psn(G)¯ω(G) and Pasc(G)¯
τ(G) for any group G.

Lemma 4.1. Let G be a group, and let H be an ascendant subgroup of G. If x is an

element of G pronormalising H, then Hx ¯H.

P. Assume that Hx 1H, and let

H¯H0 !H1 !…!Hα !Hα+1 !…!Hτ ¯G

be an ascending series. By hypothesis there exists an element y of ©H,Hxª such that

Hx ¯Hy, so that y belongs to ©H,Hyª. Consider now the least ordinal µ such that

y `Hµ. Clearly µ¯α1 for some ordinal α, and H%Hα kHµ so that y `©H,Hyª%
Hα. This contradiction shows that Hx ¯H. +

The above lemma shows in particular that in a hypercentral group the pronorm

and the norm coincide. This property also holds in the case of locally nilpotent

groups. In fact, if G is a locally nilpotent group, and x is an element of G

pronormalising a subgroup H, then Hx ¯H (see [16, lemma 2.5]), and hence P(G)¯
N(G).

Lemma 4.2. Let G be a hyperabelian group, and let x be an element of G pronormalising

all indecomposable cyclic subgroups of G. Then x normalises e�ery ascendant subgroup

of G.
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P. Assume by contradiction that the lemma is false, and consider a

counterexample G containing an ascendant subgroup K such that Kx 1K and K has

an ascending normal series

²1´¯K0 !K1 !…!Kτ ¯K

with abelian factors for which the ordinal τ is minimal. Clearly τ cannot be a limit

ordinal, and hence the subgroup H¯Kτ−1 is normal in L¯©K,xª. Let C}H be any

indecomposable cyclic subgroup of L}H. Then C¯©cªH, where the cyclic subgroup

©cª of G is also indecomposable, so that x pronormalises ©cª. Application of Lemma

2.1 yields that C is pronormalised by x, and hence the coset xH pronormalises all

indecomposable cyclic subgroups of L}H. It follows now from Lemma 4.1 that xH

normalises every indecomposable cyclic subgroup of the abelian group K}H, so that

Kx ¯K. This contradiction proves the lemma. +

In the alternating group A5 all non-cyclic subgroups are pronormal, so that

P(A5)¯P#(A5). Moreover, every subgroup of order 2 of A5 is not pronormal, and it

is easy to show that P(A5) has order 40. In particular, the pronorm of A5 is not a

subgroup.

In order to prove that in certain relevant cases the pronorm and the cyclic

pronorm of a group are subgroups, we introduce for any group G two descending

normal series related to the subgroups ω(G) and τ(G).

Let G be a group. The lower Wielandt series of G is the descending normal series

whose terms ωα(G) are defined inductively by the positions

ω0(G)¯G, ωα+1(G)¯ U
K`Ωα(G)

ω(K ),

where Ωα(G) is the set of all subgroups of G containing ωα(G), and

ωλ(G)¯ U
β!λ

ωβ (G)

if λ is a limit ordinal. The last term of the lower Wielandt series of G will be denoted

by ωa (G). The lower τ-series of G is the descending normal series obtained by replacing

in the above definition the Wielandt subgroup ω(X ) by the subgroup τ(X ) for each

group X. The last term of the lower τ-series of G will be denoted by τa (G). Clearly

ω1(G)¯ω(G) and τ1(G)¯ τ(G). Our next two lemmas describe the behaviour of

τa (G) and ωa (G) with respect to subgroups and homomorphic images.

Lemma 4.3. Let G be a group, and let H be a subgroup of G. Then τa (G) is contained in

τa (H τa (G)) and ωa (G) is contained in ωa (Hωa (G)).

P. Let α be an ordinal such that τa (G)¯ τα(G), and suppose that τa (G) is contained

in τβ (H τa (G)) for some ordinal β. If K is any subgroup of G such that

τβ (H τa (G))%K%H τa (G),

then τα(G) is contained in K, and hence

τa (G)¯ τα+1(G)% τ(K ).
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Thus τa (G) lies in τβ+1(H τa (G)), and it follows that τa (G) is contained in τa (H τa (G)). A

similar argument proves the statement for the subgroup ωa (G). +

Lemma 4.4. Let G be a group, and let N be a normal subgroup of G. Then τa (G)N}N

is contained in τa (G}N) and ωa (G)N}N is contained in ωa (G}N ).

P. Assume by contradiction that τa (G)N}N is not contained in τa (G}N ), and let

α be the smallest ordinal such that τa (G)N}N is not a subgroup of τα(G}N ). Clearly

α is not a limit ordinal, and τa (G)N}N lies in τα−1(G}N ). Let K}N be any subgroup of

G}N containing τα−1(G}N ). Then τa (G)% τ(K), and hence τa (G)N}N% τ(K}N ), so that

τa (G)N}N is also contained in τα(G}N ). This contradiction proves that τa (G)N}N is a

subgroup of τa (G}N ). A similar argument can be used to prove the statement

concerning the last term of the lower Wielandt series. +

Lemma 4.5. Let G be a hyperabelian group. Then the cyclic pronorm P#(G) of G is

contained in τa (G).

P. Suppose that P#(G) is contained in τα(G) for some ordinal α, and let K be any

subgroup of G such that τα(G)%K. Then P#(G) normalises every ascendant subgroup

of K by Lemma 4.2, so that P#(G) is contained in τ(K), and hence also in τα+1(G).

Therefore P#(G) is a subset of τa (G). +

The example by Kovacs, Neumann and de Vries considered in Section 2 also

shows that in a periodic soluble group G the pronorm P(G) can be a proper subset

of the cyclic pronorm P#(G). On the other hand, it is possible to obtain the following

result, showing in particular that in every finite soluble group the pronorm is a

subgroup.

Theorem 4.6. Let G be a periodic hyperabelian group. Then P&(G)¯P#(G)¯ τa (G).

P. It follows from Lemma 4.5 that

P&(G)XP#(G)X τa (G),

so that it is enough to prove that every finite subgroup E of G is pronormalised by

all elements of τa (G). By induction on the derived length of E it can be assumed that

the commutator subgroup E « of E is pronormal in E «τa (G). Write

E}E «¯©u1 E «ªX…X©ut E «ª,

where each ui is an element of prime-power order. Since τa (G) is a hyperabelian

T-group, it is soluble, so that also ©uiª τa (G) is a soluble group. Moreover, τa (G) is

contained in τ(©uiª τa (G)) by Lemma 4.3, and hence ©uiª is a pronormal subgroup of

©uiª τa (G) by Lemma 3.4. It follows now from Lemma 2.2 that ©ui,E «ª is pronormal

in ©ui,E «ª τa (G), and so also that E is a pronormal subgroup of Eτa (G). +

Corollary 4.7. Let G be a polycyclic group. Then P(G)¯P#(G)¯ωa (G), and in

particular the pronorm of G is a subgroup.
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P. By Lemma 4.5 we have

P(G)XP#(G)X τa (G)¯ωa (G).

Let H be any subgroup of G, and let x be an element of ωa (G). If N is a normal

subgroup of finite index of G, by Theorem 4.6 we have that P(G}N)¯ωa (G}N ). On

the other hand, ωa (G)N}N is contained in ωa (G}N ) by Lemma 4.4, and hence xN

pronormalises HN}N. It follows now from Theorem 2.8 that x pronormalises H, so

that ωa (G) is contained in the pronorm of G, and so P(G)¯P#(G)¯ωa (G). +

Recall that the FC-centre of a group G is the subgroup consisting of all elements

of G having only finitely many conjugates. Thus a group is an FC-group if and only

if it coincides with its FC-centre.

Lemma 4.8. Let G be a hyperabelian group such that τa (G) is contained in the FC-centre

of G. Then the cyclic pronorm P#(G) is a subgroup of G.

P. By Lemma 4.5 the cyclic pronorm P#(G) is a subset of τa (G), and hence it is

contained in the FC-centre of G. Let X be a finite subset of P#(G), and let a be any

element of G. As the normal closure ©XªG is a polycyclic group, also ©X, aª is

polycyclic, and hence the cyclic pronorm of L is a subgroup by Corollary 4.7. Thus

©aª is pronormalised by every element of ©Xª, and ©Xª is contained in P#(G). It

follows that P#(G) is a subgroup of G. +

Theorem 4.9. Let G be a locally soluble FC-group. Then P(G)¯P#(G), and in particular

the pronorm of G is a subgroup.

P. Clearly G is hyperabelian, and hence the cyclic pronorm P#(G) is a normal

subgroup of G by Lemma 4.8. Let K be any subgroup of G. Then X is pronormal in

XP#(G) for every cyclic subgroup X of K, and it follows from Lemma 2.5 that K is

pronormal in KP#(G). Therefore P(G)¯P#(G), and in particular P(G) is a subgroup

of G. +

Note that in the symmetric group S4 the Wielandt subgroup ω(S4) has order 4 and

ω2(S4)¯²1´. Therefore the pronorm of a finite soluble group G can be properly

contained in the Wielandt subgroup of G. On the other hand, we will prove that such

subgroups coincide if G is a polycyclic group with nilpotent commutator subgroup.

A corresponding result will also be obtained for periodic FC-groups whose

commutator subgroup is locally nilpotent.

Lemma 4.10. Let G be a periodic FC-group with locally nilpotent commutator subgroup,

and let K be a subgroup of G. Then Kf τ(G) is contained in τ(K).

P. Put L¯Kf τ(G), and let X be any ascendant subgroup of K. Since G« is a

locally nilpotent FC-group, it is hypercentral (see [15, theorem 1.16]), so that

Y¯XfG« is an ascendant subgroup of G and L is contained in the normaliser of Y.

For each prime number p, let Xp}Y be the unique Sylow p-subgroup of the abelian
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group X}Y. Clearly Xp is an ascendant subgroup of K, and in order to prove that L

normalises X it is enough to show that L is contained in NG(Xp) for all p. Therefore

without loss of generality it can be assumed that X}Y is a p-group for some prime p.

Let G«¯U¬V, where U is a p-group and V has no elements of order p, and write Ga ¯
G}V. Then Ga « is a p-group, and so Ga has a unique Sylow p-subgroup Pa . Moreover,

Xa is a p-subgroup of Ga , so that Xa %Pa and so Xa is ascendant in G- . It follows that X-
is normalised by L- , and hence L%NG(XV ). Therefore LY}Y lies in the normaliser of

(XVfK )}Y¯X(VfK )}Y. On the other hand, the ascendant subgroup X}Y is a

Sylow p-subgroup of X(VfK )}Y, so that X}Y is characteristic in X(VfK )}Y and

L is contained in NG(X ). +

Theorem 4.11. Let G be a periodic FC-group with locally nilpotent commutator

subgroup. Then τa (G)¯ τ(G). In particular, if G is a finite group with nilpotent

commutator subgroup, then ωa (G)¯ω(G).

P. Let K be any subgroup of G containing τ(G). Then τ(G) is contained in τ(K)

by Lemma 4.10, so that τ2(G)¯ τ(G), and hence τa (G)¯ τ(G). +

Corollary 4.12. Let G be a periodic FC-group with locally nilpotent commutator

subgroup. Then P(G)¯ τ(G).

P. Since G is an FC-group, its locally nilpotent subgroup G« is hypercentral, and

so G is hyperabelian. Moreover, P(G)¯P#(G) by Theorem 4.9, and hence it follows

from Theorem 4.6 and Theorem 4.11 that P(G)¯ τ(G). +

If G is a group with finite commutator subgroup, then all ascendant subgroups of

G are subnormal, and hence τ(G)¯ω(G). Therefore it follows from Corollary 4.12

that, if G is a periodic group whose commutator subgroup G« is finite and nilpotent,

then P(G)¯ω(G). A similar result also holds for polycyclic groups.

Corollary 4.13. Let G be a polycyclic group with nilpotent commutator subgroup. Then

P(G)¯ω(G).

P. Let x be an element of ω(G), and let H be any subgroup of G. If Gσ is a finite

homomorphic image of G, it follows from Corollary 4.7 and Corollary 4.12 that

P(Gσ)¯ω(Gσ), so that xσ pronormalises the subgroup Hσ of Gσ. Then x pronormalises

H by Theorem 2.8, and hence x belongs to the pronorm P(G) of G. Therefore

P(G)¯ω(G) by Lemma 4.1. +

It was shown in [2] that if G is a finitely generated soluble group with finite Pru$ fer
rank, then the Wielandt subgroup ω(G) is contained in the FC-centre of G. This

property can be used to prove our last result concerning the cyclic pronorm; it turns

out in particular that the cyclic pronorm of any locally polycyclic group is a

subgroup.

Theorem 4.14. Let G be a group which is locally (soluble with finite PruX fer rank). Then

the cyclic pronorm P#(G) is a subgroup of G.
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P. Let X be any finite subset of P#(G), and let a be any element of G. Then L¯
©X, aª is a finitely generated soluble with finite Pru$ fer rank, and hence the Wielandt

subgroup ω(L) of L lies in the FC-centre of L (see [2, theorem A]). Thus the cyclic

pronorm of L is a subgroup by Lemma 4.8, and so every element of ©Xª
pronormalises ©aª. Therefore ©Xª is contained in P#(G), and P#(G) is a subgroup

of G. +
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