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We consider an almost hyper-Abelian group G of a finite Abelian sectional rank that is the product of 
two subgroups A and B. We prove that every subgroup H that belongs to the intersection A N B and 
is ascending both in A and B is also an ascending subgroup in the group G. We also show that, in the 
general case, this statement is not true. 

1. Introduction 

Let a group G be the product G = A B of two subgroups A and B and let H be a subgroup from the 

intersection A N B. It is obvious that if the subgroup H is normal in both subgroups A and B, then it is also 

normal in the group G. In addition, Maier [1] and Wielandt [2] proved that if the group G is finite and the sub- 

group H is subnormal both in A and B, then the subgroup H is also subnormal in the group G. The problem of 

the validity of the corresponding result in the case of an infinite group G remains open. For some special cases, for 

example, for the case where a commutant G' of the group G is nilpotent, Stonehewer [3] gave a positive answer 

to this question and announced in [3] that a similar conclusion is also valid if G is a solvable minimax group. The 
aim of the present paper is to extend these results to wider classes of infinite groups. In the first theorem, we con- 

sider ascending subgroups of certain factorized groups of finite 0-rank. Recall that a group G has a finite 0-rank if 

it has a finite subnormal series factors of which are either periodic or infinitely cyclic, and a subgroup H of G is 

called ascending in G if it is a term of a certain ascending subnormal series of the group G. 

Theorem 1. Let a group G of finite O-rank be the product G = A B of two subgroups A and B and let 

a subgroup H from the intersection A N B be an ascending subgroup both in A and B. I f  the group G 
has an ascending series of normal subgroups factors of  which are either finite or Abelian groups without torsion, 
then the subgroup H is ascending in the group G. 

A group G is said to have a finite Abelian sectional rank if there are no infinite Abelian sections of a simple 
exponential in it. A group is called hyper-Abelian if it has an ascending series of normal subgroups with Abelian 
factors and almost hyper-Abelian if it contains a hyper-Abelian subgroup of finite index. It is easy to see that every 
almost hyper-Abelian group of a finite Abelian sectional rank has a finite 0-rank and an ascending series of normal 
subgroups whose factors are either finite or Abelian groups without torsion. For this reason, the following assertion, 
which gives a positive answer to the second part of question 16 in [4], is a direct corollary of Theorem A. 

Corollary 1. Let an almost hyper-Abelian group G of  a finite Abelian sectional rank be the product G = 

A B of  two subgroups A and B. I f  H is a subgroup o f  A N B that is ascending in both subgroups A and 
B, then H is an ascending subgroup of the group G. 

Recall that the Hirsch-Plotkin radical of a group is called its maximal locally nilpotent normal subgroup. 
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According to [5] (Theorem 2.31), this radical contains every ascending locally nilpotent subgroup of the group. 
Noting now that every locally nilpotent group containing an ascending series of normal subgroups with Abelian 
factors of finite ranks is hypercentral (see, e.g., the corollary of Theorem 6.38 in [5]) and, therefore, every subgroup 
of this group is ascending, we conclude that the following assertion is also a corollary of Theorem A: 

Corollary 2. Let a group G of  finite O-rank be the product G = A B of  two subgroups A and B and let 

H and K be the Hirsch-Plotkin radicals of the subgroups A and B, respectively. I f  the group G has an 
ascending series of  normal subgroups each factor of  which is either finite or an Abelian group without torsion, 

then the intersection H n K is contained in the Hirsch-Plotkin radical of the group G. 

The group G is called a ~ 1-group if it has a finite Abelian sectional rank and the set of normal divisors of 
orders of elements of its periodic subgroups is finite. The construction of hyper-Abelian U_~-groups is described in 
[5] (Theorem 10.33). In particular, such groups are solvable. It is also obvious that every solvable minimax group 
is a ~ r g r o u p ,  and, thus, the statement below slightly improves the result announced by  Stonehewer [3] and, in 
addition, gives a positive answer to the first part of question 16 in [4] for ~ 1-groups. 

Theorem 2. Let an almost solvable ~l-group G be the product G = A B of two subgroups A and B. 

If  H is a subgroup of A n B subnormal in A and B, then H is subnormal in G. 

The last theorem shows that, in the case of locally finite groups, a result similar to Theorem A is not true. 

Before we formulate the corresponding result, recall that a subgroup H of a group G is called a system subgroup if 
it is a member of a subnormal system of the group G. Obviously, every ascending subgroup is a system subgroup. 

Theorem 3. There exists a countable locally finite group of the form G = A B that is an extension of  an 

Abelian group by a locally nilpotent group and has the following properties: 

(i) the intersection A n B is finite; 

(i) every finite nontrivial subgroup from A n B is ascending both in A and B but it is not a system 

subgroup of  the group G. 

The notation and definitions used here are, mainly, conventional and given in [4, 6]. Note only that the terms 
"subnormal series" and "subnormal system" accepted in the Russian mathematical literature are the equivalent to the 
term "series" in [5, p. 10]. 

2. Proof of Theorem 1 

The following lemma is an elementary result about ascending and subnormal subgroups: 

Lemma 1. Let G be a group, let K and L be its normal subgroups, and let H be a subgroup of  the 

group G such that G = H K L and H is an ascending (subnormal) subgroup in H K and H L. Then H 
is an ascending (subnormal) subgroup of the group G. 

Proof. Let 

H = H o ~ H  I <I . . .mHt t<IHe~+I<I . . .<IHx = H K  



ON ASCENDING AND SUBNORMAL SUBGROUPS OF INFINITE FACTORIZED GROUPS 945 

be an ascending (finite) subnormal series of the subgroup HK. Then the subgroup H a L  is normal in Ha+IL for 

every ordinal o~ < x. For this reason, the subgroup H L  = HoL is ascending (subnormal) in G = H K L  and, 

therefore, H is an ascending (subnormal) subgroup of the group G. Lemma 1 is proved. 

Let N be a normal subgroup of a group G that is the product G = A B of two subgroups A and B. The 

factorizer of the subgroup N in the group G is the subgroup X(N)  = A N n B N which has a so-called triple fac- 

torization 

X(N)  = A ' B *  = A * N  = B ' N ,  

where A* = A O B N  and B* = B N A N  ( s e e L e m m a  1.1.4 in [4]). It is obvious that A * N B *  = A N B .  
Therefore, triple factorizations play a key role in our reasoning as well as in many other questions concerning fac- 

torized groups. 

L e m m a  2. Let a group G be the product G = A B = A K = B K of  two subgroups A and B and a fi- 

nite normal subgroup K. I f  a subgroup H from A n B is ascending in A and B, then H is an ascending 

subgroup in G. 

Proof. Since thecentralizers CA(K)and  CB(K ) are normalsubgroups in G and have finite indices A and 

B, respectively, we conclude that their product C = C A (K)CB(K) is a normal subgroup of finite index in G. 

Consider a finite quotient group G = G / C  and let an over-bar denote a homomorphic image of the corresponding 

subgroup in this quotient group. It is obvious that G = A B and H is a subgroup of the intersection A n B 

that is subnormal both in A and B.  Therefore, by the Maier-Wielandt theorem (see [4], Theorem 7.5.7), the sub- 

group H is subnormal in G- and, consequently, the subgroup H C is subnormal in G. On the other hand, it is 

clear that the subgroup H is an ascending subgroup in H Ca(K) and H CB(K) and, hence, by Lemma 1, it is 

ascending in H C. Therefore, H is an ascending subgroup in G. Lemma 2 is proved. 

L e m m a  3. Let a group G be the product G = A B = A K = B K of  two subgroups A and B and a 

periodic normal subgroup K that has an ascending G-invariant series with finite factors. I f  a subgroup H of  

A n B is ascending in both subgroups A and B, then H is an ascending subgroup in G. 

Proof. Let 

I = Ko<IKI<I . . .< tKe t<IKe+I '<I . . .<IKx  = K 

be an ascending G-invariant series with finite factors. For every ordinal r < x, we denote by X a a factorizer of a 

subgroup K a in the group G = A B. Then 

X a =  AaB a = A a K a =  BaKa, 

where Aa = A n B K a and B a = B n A K a. I f  o~ < x, then, by using Lemma 2 for the quotient group Xa+ I/Ka, we 

obtain that H K a is an ascending subgroup in Xa+ I and, thus, in H Ka+ l" Therefore, H is an ascending subgroup 

in HK. Since it is obvious that the subgroup H K is ascending in G, the same is also true for the subgroup H. 
Lemma 3 is proved. 
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Lemma 4. Let a group G have a finite O-rank and let it be representable as the product G = A B = A K = 

B K of two subgroups A and B and an Abelian normal group without torsion K. If a subgroup H of A n B 
is ascending both in A and B, then H is an ascending subgroup in G. 

Proof. Assume that A O K = B O K = 1 and let L be a proper G-invariant subgroup of K maximal with 

respect to the condition that the quotient group K/L is a group without torsion. The induction on 0-rank of a sub- 
group K allows us to assume that the lemma holds for the factorizer X(L) of a subgroup L in the group G = A B, 

so that a subgroup H is ascending in X(L) and, in particular, in HL. Therefore, it is sufficient to prove that the 

subgroup HL is ascending in G. By replacing the group G with the quotient group G/L, we can assume that G 

acts on K rationally and irreducibly. In particular, the quotient group A/C A (K) can be regarded as an irreducible 

linear group over the field of rational numbers. Since the group G has a finite 0-rank, by the Tits alternative [6], 

this quotient group is almost solvable. Therefore, if C = CA(K) Cs(K), then the quotient group G = G/C is also 

almost solvable and, obviously, satisfies the conditions of Lemma 4. 

If C A (K) = C B (K), then the quotient group G satisfies the assumptions made above and CZ (K) = 1, 

whence it follows that Cg (K) = K.  According to the Wilson result ([4], Lemma 4.1b), this is impossible. There- 

fore, Ca(K ) :# CB(K). Since CG(K)= CA(K)K = CB(K)K, we have C = C A ( K ) ( K A C ) =  C ~ ( K ) ( K N C )  

and, thus, K N  C is a nontrivial normal subgroup in G. It is clear that the quotient group G = G/(K n c )  is a 
product of the form 

= ~h = aR = ~R 

and k is its periodic Abelian normal subgroup of finite rank. Therefore, k has an ascending G-invariant series 

with finite factors and, hence, by Lemma 3, the subgroup / t  is ascending in (~. This implies that H(K n C) is 

an ascending subgroup in G. On the other hand, it is ascending in H C A (K) and H C B (K) and, hence, by virtue of 

Lemma 1, H is an ascending subgroup in H C.  In particular, the subgroup H is ascending in H ( K A  C) and, 

thus, in G. 

Let us consider a more general case. Consider the normal subgroup 

N = ( A N K ) ( B N K )  

of a group G and denote by T/N a subgroup consisting of all elements of finite order of the quotient group K/N. 

Then T/N has an ascending G-invariant series with finite factors. By using Lemma 3 for the factorizer V/N of 

the subgroup TIN in the quotient group G/N = (A N/N) (BN/N), we establish that the subgroup H N  is ascend- 

ing in the subgroup V and, in particular, in the subgroup H T. Furthermore, by Lemma 1, the subgroup H is 

ascending in HN and, therefore, in H T. Since K/T is a subgroup without torsion of the quotient group G/T  and 

(A TIT) n (K/T) = (B TIT) n (K/T) = 1, 

it follows from the first part of the proof that the subgroup H T is ascending in the group G. Therefore, H is an 

ascending subgroup in G. Lemma 4 is proved. 

Proof of Theorem 1. Let 

1 = G O < G l <...< Gc~ < Ga+ l <...< G~: = G 
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be an ascending series of normal subgroups of a group G whose factors are either finite or Abelian groups without 

torsion. For every ordinal a < x, let Xa be a factorizer of a subgroup Gc~ in the group G = A B. Then 

X a = AaB a = AaG a = BaG a, 

where A a = A n B G a and B e = B NA Gc~. If c~ < x, the quotient group Xa+I/G = has a natural triple fac- 

torization in which the factor G=+I/G a is either finite or an Abelian group without torsion. By using Lemmas 2 

and 4 for this quotient group, we conclude that the subgroup H G a is ascending in Xa+ 1 and, in particular, in 

H Ga+ l- Therefore, H is an ascending subgroup in G. Theorem 1 is proved. 

3. Proof  of  Theorems  2 and 3 

The following lemma is a special case of Theorem 2: 

L e m m a  5. Let an almost solvable ~-group G be representable as the product G = A B = A K = B K 

of two proper subgroups A and B and a periodic complete Abelian normal subgroup K whose proper G- 
invariant subgroups are finite. I f  a subgroup H of A N B is subnormalin both subgroups A and B, then H 
is a subnormal subgroup of the group G. 

Proof. First, the centralizers CA(K ) and Cs(K) are normal subgroups of the group G. Then we assume 

that C = CA(K ) C~(K) and show that the quotient group is almost polyeyclic G/C. Since by Lemma 1, the sub- 

group H is subnormal in H C and, by virtue of Theorem A, the subgroup H C is ascending in G, we conclude 

that the subgroup H C and, therefore, the subgroup H are subnormal in G. 

Let N be a nilpotent normal subgroup of G containing a subgroup K. Then the mutual commutant [K, N] 

is apropercomplete G-invariant subgroup of K, so that [K,N] = 1 and, hence, N < CG(K ). Therefore, the 

centralizer CG(K ) contains the Fitting subgroup of the group G and, hence, the quotient group G/CG(K ) is al- 

most polycyclic (see [5], Theorem 10.33). But, in this case, the quotient groups A/Ca(K)  and B/CB(K ) are also 

almost polycyclic. Since these groups are isomorphic to the subgroups A C/C and B C/C of the quotient group 

G/C = (A C/C) (B C/C), according to the Lennox-Roseblade-Zaitsev theorem, this quotient group G / C  is al- 
most polycyclic (see [4], Theorem 4.4.2). Lemma 5 is proved. 

Proof of  Theorem 2. Since, by Theorem 1, a subgroup H is ascending in the group G, we can assume that 

the group G is infinite and, therefore, its Fitting subgroup F is also infinite. 

Assume that the group G does not contain nontrivial periodic normal subgroups. Then the subgroup F is nil- 

potent and the quotient group G/F  is almost polycyctic (see [5], Theorem 10.33). Let K be the center of the sub- 

group F. Since F is a subgroup without torsion, the quotient group F/K  is also without torsion (see [5], Theorem 

2.25). This means that the quotient group G/K = (A K / K ) ( B K / K )  is a ~l-group.  The induction on the 0-rank 

of the group G allows us to assume that Theorem 2 is valid for this quotient group, so that, according to the 
induction hypothesis, the subgroup H K is subnormal in G. Therefore, it is sufficient to show that the subgroup H 

is subnormal in a factorizer X of the subgroup K in the group G. The factorizer has the triple factorization 

X = A'B* = A*K = B 'K ,  

where A" = A N B K  and B* = B N A K .  It is clear that A* n F < CA,(K ) in B* O F < Ce . (K ), so that the 

quotient groups A*/CA.(K ) and B*/CB.(K) are almost polycyclic. The subgroup C = CA.(K ) CB.(K ) is nor- 
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mal in X and the quotient group X/C  is the product of two almost polycyclic subgroups A*/C and B*/C.  For 
this reason, by the Lennox-Roseblade-Zaitsev theorem, this quotient group is also almost polycyclic and, hence, the 

subgroup H C is subnormal in X. On the other hand, by Lemma I, the subgroup H is subnormal in H C. There- 

fore, the subgroup H is subnormal in X and, hence, in G. 

Now consider a more general case and denote by T the maximal periodic normal subgroup of a group G. The 

subgroup T is a Chernikov group [5, p. 139] and, therefore, it has a complete Abelian subgroup J that is unique 

and, hence normal in G, has a finite index in T, and is the direct product of finitely many quasicyclic groups. 

Since the quotient group G / T  = (A T/T)  (B T/T)  does not have nontrivial periodic normal subgroups, it follows 

from the first part of the proof that the subgroup H T is subnormal in G. In addition, the subgroup H J, which is 

ascending in G, has a finite index in H T and, hence, H J is subnormal in H T and, thus, in G. Therefore, to 

complete the proof, it is sufficient to show that the subgroup H is subnormal in HJ. By replacing the group G by 

a factorizer of the subgroup J in G, we can assume that the group G has the triple factorization 

G = A B  = A J = B J .  

Let L be a subgroup maximal among proper complete G-invariant subgroups of J. The factorization of the sub- 

group L into the direct product of quasicyclic groups contains a smaller number of quasicyclic factors than the cor- 
responding factorization of the subgroup J. By using the induction on this number, we conclude that the theorem is 

valid for the factorizer X(L)  of the subgroup L in the group G = A B. By virtue of this assumption, the subgroup 

H is subnormal in H L  and it remains to show that the subgroup H L  is subnormal in G. By replacing the group 

G with the quotient group G/L,  we can assume that L = 1, i.e., that the subgroup J has no infinite proper G- 

invariant subgroups. But then, by Lemma 5, the subgroup H is subnormal in G. Theorem 2 is proved. 

Proof o f  Theorem 3. According to [7, Corollary 1], for every prime number p, there exists a countable local 

finite group G that has the following factorization: 

G = A B  = A K = B K ,  

where A and B are p-subgroups and K is an Abelian normal subgroup of a simple exponential q ~: p.  It is 

obvious that C A (K) is a normal subgroup in G. For this reason, passing to the quotient group G / C  A (K), we can 

assume that C A (K) = 1, which means that K is the Hirsch-Plotkin radical of the group G. Since A and B are 

countable locally nilpotent groups, every finite subgroup E of the intersection A n B is ascending both in A and 

B. Assume that E is a system subgroup of the group G. Then the subgroup E is subnormal in every finite sub- 
group of G that contains this subgroup. By virtue of this fact, this subgroup is contained in K (see [8], Theorem 

5.2.3.3). But then E = 1 and, hence, every finite nontrivial subgroup from the intersection A n B is not a system 

subgroup of G. Let us now show that the intersection A n B is infinite and, thus, complete the proof of the theo- 
rem. 

Let A o be an arbitrary finite subgroup of A and let B 0 = B n KAo. Then B 0 is a finite subgroup in B and 

KA o = K B  o because A 0 and B 0 are finite Sylow p-subgroups of the group KA o. Therefore, for an element x 

from K, we have x -  l Ao x = BO" By taking into account that x = ab for some elements a from A and b from B, 

we obtain that the subgroup a- lAo  a = b-IBo b is contained in A NB. Since the subgroup A is finite, as A 0, we 

can take a finite subgroup of arbitrarily large order and, therefore, the intersection A n B is infinite. Theorem 3 is 

proved. 
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