
S i ~ a n  Mathematical Jotrnal, Vol. 38, No. 2, 1997 

T R I P L E  F A C T O R I Z A T I O N S  B Y  L O C A L L Y  

S U P E R S O L U B L E  G R O U P S  
s .  l ~ a n c i o s i  a n d  F.  de  G i o v a n n i  UDC 519.45 

1. I n t r o d u c t i o n  

It was shown by Kegel [1] that every finite group G = A B  = A C  = B C ,  factorized by two 
nilpotent subgroups A and B and a supersoluble subgroup C, is supersoluble too. The authors 
extended this result in [2] to the case of a trifactorized soluble-by-finite group G = A B  = A C  = B C  
with finite abelian section rank, proving that if A and B are nilpotent and C is locally supersoluble 
then G itself is locally supersoluble. Here a group G is said to have finite abelian section rank if it 
lacks infinite abelian sections of prime exponent. Even in the case of finite groups, it is clearly not 
enough to assume that the subgroups A, B, and C all are supersoluble. In fact, there exists a finite 
nonsupersoluble group G = A B  = AC = B C  written as the product of two supersoluble normal 
subgroups A and B and a nilpotent subgroup C (see, for instance, [13, p. 152]). On the other hand, 
Baer [4] proved that,  if G is a finite group with nilpotent commutator subgroup and H and K are 
supersoluble normal subgroups of G, then the product H K  is supersoluble. This result suggests that 
the behavior of the commutator subgroup is the main obstacle in studying the groups factorized by 
supersoluble subgroups. In fact, we prove in this article that, if G = A B  = A C  = B C  is a group 
with finite abelian section rank factorized by three locally supersoluble subgroups A, B, and C and 
the commutator subgroup G' of G is locally nilpotent, then G is locally supersoluble. An analogous 
result holds for groups with finite abelian section rank having a triple factorization by locally nilpotent 
subgroups. These results are proved in Section 2, where an extension of Baer's theorem to infinite 
groups can also be found. Finally, in Section 3 we consider groups with a triple factorization by 
subgroups having (generalized) nilpotent commutator subgroups. 

Most of our notation is standard and can be found in [3]. We refer to [5] for the main properties 
of factorized groups. 

The authors are grateful to an anonymous referee for useful comments in particular concerning 
the proof of Theorem 3.8. 

2. G r o u p s  w i th  a Supe r so lub le  Tr ip le  F a c t o r i z a t i o n  

Our first result generalizes Baer's theorem on products of supersoluble normal subgroups to the 
case of infinite groups. Recall that a group G is FC-hypercentral if it has an ascending normal series 

1 = Go _< G1 _<... < GT = G 

such that every element of G~,+1/G~, has finitely many conjugates in G/Go for each ordinal a < r. 

L e m m a  2.1. Let G be a group with locally nilpotent commutator subgroup and let H and K 
be normal subgroups of G. 

(a) If H and K are supersolub]e then H K  is supersoluble. 
(b) If H and K are locally supersoluble then H K  is locally supersoluble. 
(c) If H and K are hypercyclic then H K  is hypercyclic. 

PROOF. (a) Clearly, the group L = H K  is polycyclic and all its finite homomorphic images are 
supersoluble (see [4, p. 186]). It follows that L itself is supersoluble by a result .of Baer (see [6]). 
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(b) Let E be a finitely generated subgroup of L = HK. Then there exist finitely generated 
subgroups H0 of H and K0 of K such that E is contained in M = (H0, K0), and clearly M = 
(H N M)(K N M). Since L is locally polycyclic (see [7, Part 1, Theorem 2.31]), the group M is 
polycyclic, so that H N M and K N M are supersoluble, and so M is supersoluble by (a). Therefore, L 
is locally supersoluble. 

(c) Let L = HK. As the hypotheses are inherited by homomorphic images, it is enough to show 
that, if L :fi 1, then L contains a cyclic nontrivial normal subgroup. The subgroups H and_/(  are 
FC-hypercentral,  so that  L is FC-hypercentral too (see [7, Part 1, p. 130). Let z # 1 be an element 
of L having only finitely many conjugates. Then (z) L is finitely generated, and C - CI,((z) L) is 
a normal subgrou]~ of finite index in L. Therefore, there exists a finitely generated subgroup E of 
L, containing (z) , such that  L = CE.  Since L is locally supersoluble by (b), the subgroup E is 
supersoluble, and so it contains a cyclic nontrivial normal subgroup N such that N _< (x)/;. Clearly, 
C ~_ Cr.(N), and hence N is normal in L. [] 

Lemma 2.2. Let G be a group with locally nilpotent commutator subgroup and let H be a locally 
supersoluble ascendant subgroup of G. Then the normal closure H G is locally supersoluble. 

PROOF. Let 
H = Ho '~ HI '~'" ~ Hr = G 

be an ascending series with smallest ordinal type r. By induction on r we may suppose that the 
subgroup H H~ is locally supersohble for each ordinal a < r. If r is a limit ordinal, then 

and hence 

G= U 
a<r 

HG= U HH~ 
a < r  

is obviously locally supersoluble. Suppose that r is not a limit ordinal, and put K = Hr-1. As H K 
is locally supersoluble, on replacing H by H K we can assume without loss of generality that H is 
a normM subgroup of K. Then H" is a ]ocMly supersoluMe normal subgroup of K for every element 
z of G. From Lemma 2.1 it follows now that H G is locally supersoluble. [] 

Theorem 2.3. Let G be a group with locally nilpotent commutator subgroup and let H and K 
be ascendant subgroups of G. 

(a) If H and K are supersoluble then (H, k) is supersoluble. 
(b) f f  H and K are locally supersoluble then (H, k) is locally supersoluble. 
PROOF. Suppose first that H and K of G are locally supersoluble ascendant subgroups of G. 

Then the normal subgroups H a and K G are locally supersoluhle by Lemma 2.2, and Lemma 2.1 
implies that HGK g is locally supersoluble. In particular, (H, K) is a locally supersoluble subgroup 
of G. Assume now that H and K are supersoluble. Then the locally supersoluble subgroup (H, K) is 
finitely generated and hence supersoluble. [] 

Note that a result similar to statements (a) and (b) of Theorem 2.3 does not hold for the join 
of hypercyclic ascendant subgroups of a group. In fact, there exists a locally finite 2-group not 
hypercentral but generated by two abelian subnormal subgroups (see [8, p. 22]). 

A group G is called parasoluble if it has a normal series of finite length 

1 = Go fi G1 ~ . - - ~  Gt = G 

such that for every i _< t - 1 the group Gi+l/Gi is abelian and all its subgroups are normal in G/Gi. 
Clearly, a group is supersoluble if and only if it is parasoluble and finitely generated. Moreover, 
the commutator subgroup of a parasoluble group is nilpotent. The following result on products of 
parasoluble normal subgroups in particular provides an alternative proof of Baer's theorem for finite 
groups. 
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Proposition 2.4. Let G be a group with nilpotent commutator subgroup and let H and K be 
parasoluble normal subgro,ps of G. Then H K is parasoluble. 

PROOF. Clearly, we may suppose that (7 = HK. If the factor group (7/(7" is paxasoluble, then 
also (7 is parasoluble [9, Lemma 2.1], so that without loss of generality G ~ can be assumed ahelian. 
Then there exist finite (7-invariant series with abelian factors 

I = Ho < H~ <_ . . .  <_ H,  = H 

and 
I = Ko <_ KI < - . .  < K t  = K 

such that all subgroups of Hi+l/Hi are normal in H/Hi if i _< s - 1 and all subgroups of r j + l / K j  
are normal in K / K j  if j _< t - 1 [9, Lemma 2.4). By induction on s + t we infer that  the factor group 
G/HI is parasoluble. Moreover, every subgroup of (H1 n Kj+I )/(H1 n Kj)  is normal in K/(H1 n Kj) 
and so in G/(HI n Ki) for each j _< t - 1. On the other hand, H~/(H1 n K) is centralized by K, so 
that all its subgroups are normal in G/(HI /K) .  It follows that the group G is parasoluble. [] 

Our next two lemmas deal with the behavior of self-centralizing radicable abelian normal subgroups 
of a group. 

Lemma 2.5. Let G be a group and let J be a radicable abelian normal subgroup of G. If N is 
a normal subgroup of G such that N n J is finite, then N < Uc(J) and Cc/ jv(JN/N)  = Uc(J) /N.  
In particular, is Cc( J) = J, ~hen Co/~v(J/N) = J /N .  

PROOF. Let C / N  = Co/~(JN/N) .  Then [J, C] is contained in N n J ,  and so it is finite. On the 
other hand, [J, C'] is a radicable subgroup of G, so that [3', C] = 1 and C = Co(J ) .  [] 

L e m m a  2.6. Let O be a group, K a locally nilpotent normal subgroup of G, and J a periodic 
radicable abelian normal subgroup of G contained in K and whose proper O-invariant subgroups are 
~nite. Zf Co(J) = J, then : - z ~ ( r ) .  

PROOF. Clearly, J satisfies the minimal condition on subgroups, and hence it is contained in 
Z~,(K). If n is any positive integer then the subgroup JZn(K) is nilpotent, so that [J, zn(r ) ]  is 
a proper O-invariant subgroup of J. Thus, [:,z.(r)] is finite On the other hand, [J, Zn(K)] is 
a radicable subgroup of G, and hence [3, Z,~(K)] 1. Therefore, z , ( r )  <_ Co(J)  = J, and J = 

[] 

Let N be a normal subgroup of a group (7. We say that N is hypercyclically embedded in (7 if 
N has an ascending (7-invariant series with cyclic factors. Clearly, every group (7 contains a largest 
hypercyclically embedded normal subgroup N, and the factor group (7/N has no cyclic nontrivial 
normal subgroups. Recall also that, if (7 = AB is a factorized group and N is a normal subgroup of 
G, the factorizer X ( N )  of N in (7 is the subgroup AN n BN.  Sesekin [10] proved that this subgroup 
has the triple factorization 

X ( N ) = A * B * = A * N = B * N ,  

where A* = AN B N  and B = B N AN. 

T h e o r e m  2.7. Let the group G = AB = AC = BC be the product o[ three locally supersoluble 
subgroups A, B, and C. If C has finite abelian section rank and the commutator subgroup G ~ of G 
is locally nilpotent then (7 is locally supersoluble. 

PROOF. Suppose first that the commutator subgroup G ~ of G is nilpotent. Then it is enough to 
prove that the factor group G/(7" is locally supersoluble. Hence, G I can be assumed abelian without 
loss of generality. Let U be the largest hypercyclically embedded normal subgroup of AG ~, and put 

= (7/U. Clearly A n  (71 is a hypercyclically embedded normal subgroup of AG I, so that ,4N ~l = 1, 
and in particular t he  su_bgroup A is abelian. Consider now the largest hypercyclically e__mbedded 
normal subgroup V of BG' and the largest hypercyclically embedded normal subgroup W of C(7 ~, 
and put (7 = (7/V and G = G/W.  Then BN(~ '  = 1 and C A G '  = 1, so "that the groups ,4, B, 
.4, and C are abelian. It follows that the factorized groups G and G are locally supersoluble (see [5, 
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Theorem 6.6.11]). Therefore, the normal subgroups BG ~ and C ~  of G are locally supersoluble as well, 
and hence G = (B~)( 'CG ~ )  is locally supersoluble by Lemma 2.I. Then AG ~ is a locally supersoluble 
normal subgroup of G. The same argument shows that BG ~ is a locally supersoluble normal subgroup 
Of G, so that G = (AG~)(BG ') is locally supersoluble by Lemma 2.1. 

Suppose now that G ~ is locally nilpotent and let T be the subgroup consisting of all elements of 
finite order of G ~. Then G~/T is nilpotent (see [7, Part 2, Theorem 6.36]), and the first part of the proof 
implies that the factor group G/T  is locally supersoluble. It is clearly enough to show that all Sylow 
subgroups of T are hypercyclicaUy embedded in G, so that on replacing G by G / T f  we can assume that 
T is a p-group for some prime p, and in particular T is a (~ernikov group. Let J be the finite residual 
of T. Then T / J  is finite, so that G~/J i s nilpotent, and G / J  is locally supersoluble by the first part of 
the proof. Assume that the theorem is false, and let G be a counterexample such that J has minimal 
rank. Consider an infinite minimal G-invariant subgroup J0 of J. Then G/Jo is locally supersoluble, 
and J0 is a radicable subgroup of G whose proper G-invariant subgroups are finite. Clearly, we may 
suppose that G has no cyclic nontrivial normal subgroups. Then there exists a subgroup L of G such 
that G = L ~ J0 (see [5, Theorem 5.3.14), and L is locally supersoluble. The subgroup CL(Jo) is 
normal in G and the factor group G/CI,(Jo) is a counterexample with Jo ~- JoCL(Jo)/CL(Jo). Since 

CL/e,.(Jo)(JoCL(Jo)/CL(JO)) = 1, 

it can be assumed without loss of generality that CL(Jo) = 1. Hence, CG(Jo) = Jo. In particular 
Jo = J, and J = Z,,,(G ~ < G ~ by Lemma 2.6. Since G is not locally supersoluble, it follows from 
Lemma 2.1 that at most one of the normal subgroups AG "~, BG', and CG ~ is locally supersoluble. 
Suppose that AG ~ is not locally supersoluble, and let U be the largest G-invariant subgroup of J which 
is hypercyclically embedded in AG ~. Clearly, the factor group G = G/U is not locally supersoluble, 
so that U is finite, and it follows from Lemma 2.5 and Lemma 2.6 that .I = C~(J) = Z~,(G"). Assume 
that ~. N ] -~ 1. Then 7. N J contains a cyclic nontrivial sub__group (~) which is normal in A. Let 
n be the smallest positive integer such that a belongs to Zn(GI), and consider the normal subgroup 
H = (~, Z,,_I(G'~)) of A.G'. Since G = L J, we also have AG' = LoJ, where L0 = AG ~ N L. Since 
7.G I has no cyclic nontrivial normal subgroups which are contained in ] ,  the subgroup Zn_I(G l) 
does not contain cyclic nontrivial L0-invariant subgrou__Rs. On the other hand, (H, Lo~/Zr,-1 (GI)_ is 
locally supersoluble, and so there exists a subgroup M of G such tha t  (H, Lo) = M ~ Zn-l(G') 
(see [5, Theorem 5.3.14). Then 

P = (nn ) x 

and R n .~ is a cyclic nontrivial normal subgroup of . ~ J  = 7.(~ '. This contradiction shows that 
A N J -" 1. Since G is not locally supersoluble, it follows from Lemma 2.1 that the normal subgroups 
BG"_and C(~' cannot be both locally supersoluble. Suppose that B(~' is not locally su_persoluble, and 
let V be the largest G-invariant subgroup of J that is hypercyclically embedded in BG p. The factor 
group G = G/V is not locally supersoluble, so that V is finite, and the same argument used above 
proves that B n Y= 1. Since v is contained in J and 7,n ] =  1,we also have ,4n 37= 1. Moreover, 
eft(J)  = ] by Lemma 2.5. Let )( be the factorizer of 5 in G = AB. Then 

= A1B1 = A1J = B1J, 

where A, = A n B J  and B, = ~n.~JC Since  ,nY=  ,nY= 1 and c Z ( Y )  = Y, it follows that Y = 

(see [5, Lemma 6.5.8]). Then 5 is a factorized subgroup of G = AB, and so ] = (A N J)(B n ])  = 1. 
This last contradiction completes the proof of the theorem. E1 

Theorem 2.7 hat the following obvious consequence. 

Corol lary 2.8. Let t~. group G = AB = AC = BC be the product, of three supersoluble 
subgroups A, B and C. [f G has l~nite abelian section rank and the commutator subgroup G' of G is 
locally nilpotent, then G is supersoluble. 
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In [2] it was also shown that,  if G = A B  = A C  = B C  is a soluble-by-finite group with finite 
abelian section ra~k factorized by two nilpotent subgroups A and B and a locally nilpotent subgroup 
C, then G is locally nilpotent. Here we prove the following 

Theorem 2.9. Let the group G = A B  = AC = B C  be the product of three locally nilpotent 
subgroups A, B,  and C. If  G has finite abelian section rank and the commutator subgroup G' of G 
is locally nilpotent then G is locally nilpotent. 

PROOF. For G ~ nilpotent, the result can be obtained on using an argument similar to that of 
the first part of the proof of Theorem 2.7. Suppose now that G ~ is locally nilpotent and that  the 
theorem is false. In the same way as in the proof of Theorem 2.7 (using Theorem 5.3.7 of [5] instead 
of Theorem 5.3.14 of [5]) we can reduce the matter to the case of a semidirect product G = L g J ,  
where J = CG(J) is a radica.ble abelian normal p-subgroup of finite rank in G whose proper G- 
invariant subgroups are finite and L is locally nilpotent. Clearly, L is isomorphic with a group of 
automorphisms of J .  Hence, L is linear over the field of p-adic numbers and so it is nilpotent (see [7, 
Part 2, Theorem 6.32]). In particular G is soluble. Consider the_normal subgroup U = _J A__Z(AG') 
of G (_where Z(AG t) denotes the hypercenter of AG') and p u t G  y G / U -  If V = J n Z(BG' )  and 

G = G / V ,  it can be derived as in the proof of Theorem 2.7 that A N J  = B N J  = 1, so that  in particular 
,4 and /~  are nilpotent subgroups of G. Thus, G is locally nilpotent (see [5, Theorem 6.6.6]), and so 
B ~  is locally nilpotent. It follows that 

= = = 

is locally nilpotent (see [5, Theorem 6.3.8]). Then AG t is locally nilpotent, and the same result implies 
that 

G = B C  = B ( A G ' ) =  C(AG S) 

is locally nilpotent. This contradiction completes the proof. [] 
An example of Sysak (see [11] or [5, Theorem 6.1.2]) shows that in the above theorems the 

hypothesis that  the group has finite abelian section rank cannot be omitted. In fact, there exists 
a group G that is not locally polycyclic but has a triple factorization G = A B  = A K  = B K ,  where 
A, B, and K are abelian and K is normal in G. On the other hand, Robinson and Stonehewer [12] 
proved that,  if G = A B  = AC = B C  is a group with a triple factorization by abelian subgroups then 
all chief factors of G are central. 

3. G r o u p s  w i th  a N i l p o t e n t - b y - A b e l i a n  Tr ip le  F a c t o r i z a t i o n  

Let the group G - A B  -- A K  = B K  be the product of two subgroups A and B and a locally 
nilpotent normal subgroup K. Assume further that either G has finite abelian section rank or K is 
a minimax group. If A and B are locally nilpotent or locally supersoluble, then the group G has the 
same property (see [5, Chapter 6]). Here we obtain similar results when A and B have (generalized) 
nilpotent commutator subgroups. Note that the example, considered in the introduction, of a finite 
nonsupersoluble group factorized by three supersoluble subgroups also shows that in such statements 
it is not enough to assume that the factors A, B, and K all have (generalized) nilpotent commutator 
subgroups. 

A group G is called an 61-group if it has finite abelian section rank and the set of primes 7r(G) 
is finite. It is well known that the Fitting subgroup of every 61-group is nilpotent. In our proofs we 
need the following result which has been proved in [13]. 

L e m m a  3.1 Let the soluble group G = A B  be the product of two subgroups A and B and let H 
and F be the Hirsch-Plotkin radical and the Fitting subgroup of G. 

(a) If G has finite abelian section rank and Ao and Bo are tl,e Ilirsch-Plotkin radicals of A and 
B, then H = AoH N Boll .  

(b) I[ G is an 61-group and AI and B1 are the Fitting subgroups of A and B,  then F -- AI F A B I  F. 
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T h e o r e m  3.2. Let the group G = AB = AK = B K with finite abelian section rank be the 
product o[ two subgroups A and B and a locally nilpotent normal subgroup K. If A ~ and B ~ are 
locally nilpotent then the commutator subgroup G r of G is locally nilpotent. 

PROOF. Suppose first that G is soluble and let H be the Hirsch-Plotkin radical of G. Then K is 
contained in H, so that AH = BH = G and A~H = B'H. If A0 is the Hirsch-Plotkin radical of A 
and B0 is the Hirsch-Plotkin radical of B then by Lemma 3.1 we have 

G' <_ A'H < AoH N Boll = H. 

Hence, G ~ is locally nilpotent. In the general case, if T is the largest periodic normal subgroup of G 
then the factor group G/T is soluble (see [7, Part 2, Lemma 9.34]). The periodic radical group T 
satisfies the minimal condition on primary subgroups, so that for every prime p the group T/Op,(T) 
is a finite extension of a p-group (see [14, Theorem 3.17]), and hence is a (~ernikov group. Thus 
G/Op,(T) is soluble, and so its commutator subgroup G'Op,(T)/Op,(T)is locally nilpotent. Let Kp be 
the unique Sylow p-subgroup of K. Since Kp N Of(T)  = 1, it follows that Kp tq G' is contained in the 
hypercenter of G'. As G'/(G' N K N T) is locally nilpotent, the subgroup (7' is also locally nilpotent. [] 

T h e o r e m  3.3. Let the 61-group G = AB = AK = B K  be the product of two subgroups A and 
B and a nilpotent normal subgroup K. If A ~ and B ~ are nilpotent, then the ,'ommutator subgroup G' 
of G is nilpotent too. 

PROOF. Since K is contained in the Fitting subgroup F of G, we have AF = B F  = G so that 
A~F = B'F. If AI and B1 axe the Fitting subgroups of A and B, then it follows from Lemma 3.1 that 

G ~ <_ A'F <_ AIF N BIF = F. 

Hence, G' is nilpotent. [] 

L e m m a  3.4 Let G be a locally nilpotent group and let N be a minimax normal subgroup of G. 
Then N is contained in the hypercenter of G. 

Paoov .  The subgroup T consisting of all elements of finite order of N is a (~ernikov group, and 
so it is contained in the hypercenter of the locally nilpotent group G. Moreover, NIT is a torsion-free 
nilpot_ent group, and hence it lies in the hypercenter of G/T (see [7, Part 2, [,emma 6.37]). Therefore, 
N <_ Z(G). 

L e m m a  3.5. Let G be a group whose finite homomorphic images have nilpotent commutator 
subgroup and let N be a finite normal subgroup of G such that the commutator subgroup of G/N is 
locally nilpotent. Then the commutator subgroup of G is locally nilpotent. 

PROOF. Clearly, it can be assumed that N is a minimal normal subgroup of G. Since all finite 
homomorphic images of G are soluble, the subgroup N is abelian of prime exponent. Assume that 
G' is not locally nilpotent, so that [N, G'] = N. Thus, Ho(G'/N, N) = 0, and so H2(G/N, N) = 0 
(see [15, Theorem 3.4]). Therefore, G contains a subgroup L such that G = L ~< N. The centralizer 
CL(N) is a normal subgroup of G, and the factor group G/CL(N) is finite, so that G'CL(N)/CL(N) 
is nilpotent. As G'/N is locally nilpotent, also G ~ is locally nilpotent, and this contradiction proves 
the lemma. VI 

Our next lemma can be proved in the same way as Lemma 6.5.8 of [5]. 

L e m m a  3.6. Let the group G = AB = AK = B K  be the product of two nilpotent-by-finite 
subgroups A and B and a radicable abelian proper normal p-subgroup of finite rank K. I[ A n K = 
B N K = 1 then K is properly contained in its centralizer Co(K). 

Let G be a soluble minimax group. Then G has a series of finite length whose factors either are 
finite or infinite cyclic or of type pOO for some prime p. The number of infinite factors in such a series 
is an invariant of G which is called the minimaz rank of G. 
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T h e o r e m  3.7. Let the group G = A B  = A K  = B K  be the product of two subgroups A and B 
and a minimax normal subgroup K. 

(a) I f  A', B ~, and K are locally nilpotent then G ~ is locally nilpotent. 
, I  p. (b) I f . . ,  B', and K are hypercentral then G' is hypercentral. 

(c) If A', B',  and K are nilpotent then G ~ is nilpotent. 
PROOF. (a) Assume the result false and choose a counterexample G such that  K has minimal 

minimax rank. Suppose first that K is torsion-free and so nilpotent. Then G / K  is no t ioca l ly  
nilpotent. Hence, K' = 1 by the minimal choice of K, so that K is abelian. The intersection A' n K 
is a normal subgroup of G, and it is contained in the hypercenter of A' by Lemma 3.4. As G ~ < AIK, 
it follows that A I n K is contained in the hypercenter of G ', and hence G~/(A I n K) is not locally 
nilpotent. Therefore, A' n K = 1, and so [A A K, A / =  1. Then A n K lies in the center of G = AK, 
and G ' ( A A K ) / ( A G K )  is not locally nilpotent, so that A A K  = 1. The centralizer CA(K) is a normal 
subgroup of G, and the factor group G/CA(K) is also a counterexample. As 

CA/CA(K)(KCA(K)/CA(K)) = 1, 

it can be assumed without loss of generality that CA(K) = 1. Then CG(K) = K, and G/K is 
isomorphic with a group of automorphisms of K. It follows that every abelian subgroup of G/K is 
minimax (see [7, Part 2, Corollary to Lemma 10.37]), and hence G/K itself is a minimax group (see [7, 
Part 2, Theorem 10.35]). Therefore, G is m~uimax, and G I is locally nilpotent by Theorem 3.2. This 
contradiction shows that K is not torsion-free. Let T be the subgroup consisting of all elements of 
finite order of K. Then K / T  is torsion-free, and G'T/T is locally nilpotent by the first part of the 
proof. Since G' is not locally nilpotent, there exists a prime number p such that  G~Tp,/Tp, is not 
locally nilpotent. Hence, without loss of generality it can be assumed that T is a p-group. Let J 
be the finite residual of T. Then T / J  is finite, and so G'J /J  is locally nilpotent by Lemma 3.5. 
Consider an infinite minimal G-invariant subgroup J0 of J.  Then G'Jo/Jo is locally nilpotent, and 
J0 is a radicable subgroup of G whose proper G-invariant subgroups are finite. Clearly, J0 n Z(G ~ is 
a proper subgroup of J0, so that JoAZ(G') is finite and G/(JoNZ(G')) is a counterexample. Therefore, 
without loss of generality it can be assumed that J0 A Z(G') = 1. Moreover, the locally uilpoteut group 
G'/Ce,(Jo) is isomorphic with a group of automorphisms of 3"o, and so it is hypercentral (see [7, Part 2, 
Theorem 6.32]). Then there exists a subgroup L of G such that G = L D< J0 (see [5, Theorem 5.3.7]). 
The centralizer CL(Jo) is a normal subgroup of G, and G'CL(Jo)/CL(Jo) is not locally nilpotent. 
Since 

CL/cLCJo)(JoCL(Jo)/CL(Jo)) = 1, 

we may also suppose that C1.(Jo) = 1 and Ca(Jo) = Jo. In particular, J = Jo = Z~(K) by 
Lemma 2.6. Let A0 be the Hirsch-Plotkin radical of A, and assume that A0 n J -~ 1. Since J satisfies 
the minimal condition on subgroups, it follows that Z(Ao) n J ~ 1. Let a be a nontriviai element of 
Z(Ao) n J,  and let n be the smallestpositive integer such that a �9 Zn(K). Put G = G/Zn-I(K).  
Then a is a nontrivial element of Z(AoK). Clearly, J = [J, G/ <_ G' and G' < A 'K  < AoK, so that 

�9 ] N  Z((~'), a contradiction, since Zn-l(K) is finite and J n Z(G') = 1 (see [5, C~rollary 5.3.8]). 
It follows that A0 N J = 1, so that also A n J = 1. A similar argument proves that  B n J = 1. Since 
L is isomorphic with a group of automorphisms of J,  the locally nilpotent subgroup L ' is nilpotent 
(see [7, Part 2, Theorem 6.32]), and in particular G is soluble. Moreover, L is abelian-by-finite, since 
every proper L-invariant subgroup of J is finite (see [5, Lemma 6.6.4]), so that  also A and B are 
abelian-by-finite. The factorizer X = X(J)  of J in G = ,aB has the triple factorization 

X = A'B* = A*J = B'J,  

where A* = A n BJ  and B* = B n AJ. Since A* n J = B* N J = 1 and Cx(J )  = J, it follows from 
Lemma 3.6 that J = X. Thus J is a factorized subgroup of G = AB, and hence J = (ANJ)(BNJ)  = 1. 
This last contradiction completes the proof of statement (a). 

(b) The commutator subgroup G t of G is locally nilpotent by (a), and it follows from Lemma 3.4 
that K n G' is contained in the hypercenter of G'. Since G'/(K N G r) ~_ G'AP/K is hypercentral, G ' 
is hypercentral. 
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(c) Assume that this is false, and choose a counterexample G such that K has minimal minimax 
rank. The subgroup G' is locally nilpotent by (a). Clearly, it is enough to show that the group G'/K' 
is nilpotent, so that on replacing G by G/K' it can be assumed without loss of generality that K is 
abelian. 

If T is the subgroup of all elements of finite order of K, then (KNG')/(TOG') is contained in some 
term with finite ordinal type of the upper central series of G'/(T O G') (see [7, Part 2, Lemma 6.37]). 
As G~K/K is nilpotent, it follows that G'T/T is nilpotent as well. Let d be the finite residual-of the 
0,ernikov group T. Then T/J  is finite, and so G'J/J is nilpotent. By the minimality of the minimax 
rank of K, we infer that J is a p-group for some prime p. Consider an infinite minimal G-invariant 
subgroup 3'o of J .  Then G'Jo/Jo is nilpotent, and J0 is a radicable subgroup of G whose proper 
G-invariant subgroups are finite. Then J0 = [J0, G ~] _< G', and there exists a subgroup L of G such 
that G = JoL and Jo n L is finite (see [5, Theorem 5.4.4] and [16, Lemma 10]). The subgroup J0 n L 
is normal in G, and G'/(do O L) is not nilpotent, so that we may suppose that J0 O L = 1. Then 
g = (L n K) x d0, where J0 O L is normal in G and G'(L n K)/(L o K) is not nilpotent. Hence, it can 
also be assumed that L O K = 1, and K = J0 < G'. Then G = L t~ K, and as in the proof of (a) we 
may reduce the matter to the case in which CG(K) = K. Then the soluble group G/K is isomorphic 
with a group of automorphisms of K, and since all proper G-invariant subgroups of K are finite, we 
infer that G/K is abelian-by-finite (see [5, Lemma 6.6.4]). Let c be the nilpotency class of A'. Then 
A' n K is contained in Zc(A'K). Hence, 

[An K, A'K] = [A O K, A'] < A' n K < Zc(A'K). 

Therefore, the normal subgroup A n K of G is contained in Zc+I(G'), and so it is finite. The same 
argument p_roves that B n K too_is finite, so that E = ( A n  K)(B N K) is a finite normal subgroup 
of G. Let G = G/E. Then Cp,(K) = K by Lemma 2.5, and on replacing G by G-' it can be assumed 
without loss of generality that A n K = B n K = 1. In particular, A and B are abelian-by-finite, and 
so K = G by Lemma 3.6. This last contradiction completes the proof of the theorem. [] 

Locally finite groups with a triple factorization by locally nilpotent subgroups have been considered 
in [17]. Here we prove the following result. 

T h e o r e m  3.8. Let the locally finite group G = AB = AK = BK be the product of two subgroups 
A and B, at least one of which hyperabelian, and a locally nilpotent normal subgroup K. If A ~ and 
B s are locally nilpotent then the commutator subgroup G' of G is locally ailpotent. 

PROOF. As locally finite residually locally nilpotent groups are locally nilpotent and At, Ore(G) 
= 1, it is enough to show that G'Ot/(G)/Ore(G ) is locally nilpotent for every prime p. Thus, it can be 
assumed that Ore(G) = 1, so that in particular the locally nilpotent normal subgroup K is a p-group. 
Suppose that A is hyperabelian, and assume by contradiction that the commutator subgroup A' of 
A is not a p-group, so that it contains an abelian nontrivial A-invariant p'-subgroup A0. Let B1 be 
the unique Sylow if-subgroup of B'. Then BIK is a normal subgroup of G, and the factor group 
G/B1K is an extension of a p-group by an abelian group. Since A0 is contained in G', it follows that 
A0 < B1K. Consider the normal subgroup B0 = AoK O B1 of/3. Clearly, 

AoK = AoK O B1K = BoK 

and 

re(A0) n r ( K ) :  rr(B0) n r ( K )  : o .  

Application of Lemma 3.2.3 of [5] yields NAo(Ao O Bo) = Ao O Bo (see also [18, Lemma 1.59]). Since 
A0 is abelian, it follows that A0 < B0, so that A0 = B0 is a normal if-subgroup of G = AB. This 
contradiction shows that A' is a p-group, so that G' < A'K is a p-group. Hence, it is locally nilpotent. 
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