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1 Introduction

In a famous paper of 1955, Neumann [12] proved that each subgroup of a group G
has finitely many conjugates if and only if the centre Z(G) has finite index, and
hence, central-by-finite groups are precisely those groups in which the normalizers of
subgroups have finite index. This result suggests that the behaviour of normalizers
has a strong influence on the structure of the group. In fact, it follows easily from
a result of Polovickĭı [13] that a group has finitely many normalizers of abelian
subgroups if and only if it is central-by-finite. In a series of relevant papers, Romalis
and Sesekin (see [15], [16], [17]) investigated (generalized) soluble groups in which all
non-normal subgroups are abelian, and proved in particular that such groups have
finite commutator subgroups. This result has been recently extended to the case of
groups with finitely many normalizers of non-abelian subgroups (see [3]). Moreover,
groups with finitely many normalizers of subgroups with a given property χ have
been studied for several other different choices of χ (see [4], [5], [6]).

The aim of this paper is to study groups with finitely many normalizers of
non-polycyclic subgroups. The structure of groups in which every non-normal sub-
group is polycyclic has been completely described in [8], while the case of groups
for which the set of all subgroups which are neither normal nor polycyclic is fi-
nite has been considered in [2]. We will work within the universe of locally graded
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groups, i.e., groups in which every finitely generated non-trivial subgroup contains
a proper subgroup of finite index. This is a quite large class, containing in par-
ticular all locally soluble-by-finite groups. Our main result shows that any locally
graded group with finitely many normalizers of non-polycyclic subgroups either is
polycyclic or has a Černikov commutator subgroup. In particular, residually finite
non-polycyclic groups with the above property have finite commutator subgroups.
Moreover, torsion-free locally graded groups with finitely many normalizers of non-
polycyclic subgroups are either polycyclic or abelian.

Most of our notation is standard and can be found in [14].

2 Statements and Proofs

Our first result shows that any group with finitely many normalizers of non-polycyc-
lic subgroups contains a subgroup of finite index in which every non-polycyclic
subgroup is subnormal with defect at most 2.

Lemma 2.1. Let G be a group with finitely many normalizers of non-polycyclic
subgroups. Then G contains a characteristic subgroup M of finite index such that
NM (X) is normal in M for each non-polycyclic subgroup X of M .

Proof. If X is any non-polycyclic subgroup of G, its normalizer NG(X) has obviously
finitely many images under automorphisms of G. In particular, the subgroup NG(X)
has finitely many conjugates in G and so the index |G : NG(NG(X))| is finite. It
follows that the characteristic subgroup

M(X) =
⋂

α∈Aut(G)

NG(NG(X))α

also has finite index in G. Let H be the set of all non-polycyclic subgroups of G. If
X and Y are elements of H such that NG(X) = NG(Y ), then M(X) = M(Y ), and
hence

M =
⋂

X∈H
M(X)

is a characteristic subgroup of finite index of G. Let X be any non-polycyclic
subgroup of M . Then M ≤ M(X) ≤ NG(NG(X)), and so the normalizer NM (X) =
NG(X) ∩M is a normal subgroup of M . 2

Lemma 2.2. Let G be a locally graded group with finitely many normalizers
of non-polycyclic subgroups. Then G is soluble-by-finite and locally satisfies the
maximal condition on subgroups.

Proof. By Lemma 2.1, the group G contains a characteristic subgroup M of finite
index in which all normalizers of non-polycyclic subgroups are normal. Let X be
any non-polycyclic subgroup of M . Then every subgroup of M containing X is
subnormal with defect at most 2, so that both groups NM (X)/X and M/NM (X)
are nilpotent with class at most 3 (see [10, Theorem 1]). In particular, M (6) is
contained in X, and hence, every proper subgroup of M (6) is polycyclic. Thus,
M (6) is either soluble or finite (see [8, Corollary 2.6]), so G is soluble-by-finite.
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In order to prove that G locally satisfies the maximal condition on subgroups,
we may obviously suppose that G is finitely generated, so that M is also finitely
generated. If every subgroup of finite index of M is subnormal, the group M is
nilpotent (see [14, Part 2, Theorem 10.51]) and G satisfies the maximal condition.
Now assume that M contains a non-subnormal subgroup H of finite index. It follows
from the definition of M that H is polycyclic, so that in this case G also satisfies
the maximal condition on subgroups. 2

It follows in particular from Polovickĭı’s theorem quoted in the introduction that
any group with finitely many normalizers has a finite commutator subgroup. Our
next lemma is an obvious corollary of this fact.

Lemma 2.3. Let G be a group with finitely many normalizers of non-polycyclic
subgroups, and let N be a normal subgroup of G which is not polycyclic. Then
G′/(G′ ∩N) is finite.

For our purposes, we also need a result of Neumann [11], that actually holds in
the more general situation of groups covered by cosets of subgroups.

Lemma 2.4. Let the group G = X1 ∪ · · · ∪ Xt be the union of finitely many
subgroups X1, . . . , Xt. Then any Xi of infinite index can be omitted from this
decomposition, in particular, at least one of the subgroups X1, . . . , Xt has finite
index in G.

Recall that a group G is said to be an FC-group if each element of G has
finitely many conjugates, or equivalently, if the centralizer CG(g) has finite index in
G for every g ∈ G. In particular, any group with finite commutator subgroup has
the property FC. Moreover, it is also clear that abelian-by-finite FC-groups are
central-by-finite.

Lemma 2.5. Let G be an FC-group with finitely many normalizers of non-poly-
cyclic subgroups. Then the factor group G/Z(G) is finite.

Proof. Assume for a contradiction that G/Z(G) is infinite, so that G contains a sub-
group which is not finitely generated and has infinitely many conjugates (see [12]).
Let NG(X1), . . . , NG(Xk) be the normalizers of infinite index of non-polycyclic sub-
groups of G, then NG(X1) ∪ · · · ∪ NG(Xk) is a proper subset of G by Neumann’s
Lemma, and we may consider an element

g ∈ G \
k⋃

i=1

NG(Xi).

Then each subgroup of CG(g) has finitely many conjugates, and hence, CG(g) is a
central-by-finite group (see [12]). As the index |G : CG(g)| is finite, it follows that
G is abelian-by-finite and so even central-by-finite. This contradiction proves the
lemma. 2

Lemma 2.6. Let G be a torsion-free soluble group with a unique proper normalizer
of non-polycyclic subgroups. Then G is nilpotent.
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Proof. Assume for a contradiction that the group G is not nilpotent. Clearly, all
non-polycyclic subgroups of G are subnormal and so there exists an element g of
G such that 〈g〉 is not subnormal in G (see [1] or [18]). Let X be a non-polycyclic
subgroup of G whose normalizer NG(X) is properly contained in G. Since all
subgroups of NG(X) are either polycyclic or normal, we have that NG(X) is abelian
(see [8]). Then NG(X) is finitely generated as a 〈g〉-module (see [9, Lemma 15]),
and hence, the subgroup 〈a,NG(X)〉 is finitely generated. Thus, 〈a,NG(X)〉 is
polycyclic by Lemma 2.2, and this contradiction proves the lemma. 2

Our next result is an easy consequence of Dietzmann’s Lemma.

Lemma 2.7. Let G be a group and let X be a periodic subgroup of G. If X has
finitely many conjugates in G, then the normal closure XG is periodic.

Proof. Since X has finitely many conjugates, there exists a normal subgroup K of
G such that the index |G : K| is finite and XK = X. Then X∩K is contained in the
largest periodic normal subgroup L of K. Moreover, XL/L is a finite subgroup of
G/L with finitely many conjugates and hence, it follows from Dietzmann’s Lemma
that XGL/L is finite. Therefore, the subgroup XG is periodic. 2

The following lemma on groups whose subgroups are either subnormal or finitely
generated has been proved in [9, p. 217]. Recall that the Baer radical of a group G
is the subgroup generated by all cyclic subnormal subgroups of G, and G is a Baer
group if it coincides with its Baer radical, or equivalently, if all finitely generated
subgroups of G are subnormal.

Lemma 2.8. Let G be a group containing a torsion-free abelian normal subgroup
which is not finitely generated, and let B be the Baer radical of G. If every
non-subnormal subgroup of G is finitely generated, then the factor group G/B is
torsion-free.

Our next lemma is a relevant step in the proof of the main result of the paper.

Lemma 2.9. Let G be a locally graded group with finitely many normalizers of
non-polycyclic subgroups. Then either G is polycyclic or its commutator subgroup
G′ is periodic.

Proof. The group G is soluble-by-finite by Lemma 2.2. Assume that the statement is
false, and choose a counterexample with a minimal number k of proper normalizers
of non-polycyclic subgroups. Then k > 0 (see [8]), and of course it can be assumed
without loss of generality that G has no periodic non-trivial normal subgroup. Let
NG(X1), . . . , NG(Xk) be these normalizers. For every i = 1, . . . , k, the subgroup
NG(Xi) has less than k proper normalizers of non-polycyclic subgroups, and hence,
NG(Xi)′ is periodic. On the other hand, the subgroup NG(Xi) has finitely many
conjugates in G, so that the conjugacy class of NG(Xi)′ is also finite and hence, the
normal closure (NG(Xi)′)G is periodic by Lemma 2.7. It follows that every NG(Xi)
is a torsion-free abelian group. In particular, NG(Xi) is not contained in NG(Xj)
for i 6= j. Thus, the subgroup NG(Xi) is either normal or self-normalizing in G,
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and in the latter case the index |G : NG(Xi)| is finite. Let Ai be the core of NG(Xi)
in G. Then either Ai = NG(Xi) or the index |G : Ai| is finite, and in both cases
the torsion-free abelian subgroup Ai cannot be finitely generated. Moreover, as Xi

is not normal in G and G′ is infinite, we have that Ai is not contained in Z(G).
Let xi be an element of G such that [Ai, xi] 6= {1}, and put Bi = 〈xi, Ai〉.

Assume that the group Bi/(〈xi〉 ∩ Ai) has periodic commutator subgroup, so that
in particular, 〈xi〉 ∩ Ai = 〈xmi

i 〉 6= {1}. Clearly, 〈xi, B
′
i〉/Z(〈xi, B

′
i〉) is periodic, so

that 〈xi, B
′
i〉′ is likewise periodic and hence, [B′

i, xi] = {1}, as B′
i ≤ Ai is torsion-

free. Thus, [Ai, xi]mi = [Ai, x
mi
i ] = {1} and so [Ai, xi] = {1}. This contradiction

shows that Bi/(〈xi〉∩Ai) has non-periodic commutator subgroup, so that the group
〈xi, Ai〉/C〈xi〉(Ai) is also a counterexample, and hence, even a minimal counterex-
ample. Replacing G by 〈xi, Ai〉/C〈xi〉(Ai), it can be assumed without loss of gener-
ality that G = 〈x〉n A, where A is the normalizer of a non-polycyclic subgroup X
and C〈x〉(A) = {1}. Suppose that x has finite order, so that by a further reduction
we may even assume that x has prime order. Clearly, G is not locally nilpotent
and hence, by Lemma 2.8 it contains a non-subnormal subgroup Y which is not
finitely generated. Thus, NG(Y ) 6= A and so G = 〈A,NG(Y )〉. On the other hand,
the subgroup A ∩NG(Y ) is contained in Z(G) and the index |G : NG(Y )| must be
finite, a contradiction since G′ is infinite. Therefore, x has infinite order and G is
torsion-free.

The above argument also shows that in any minimal counterexample G the
proper normalizers of non-polycyclic subgroups have infinite index and so they
must be normal. In particular, all non-subnormal subgroups of G are polycyclic,
and hence, Lemma 2.8 yields that either G is a Baer group or the Baer radical
of G coincides with A. In the latter case all proper normalizers of non-polycyclic
subgroups of G are contained in A, so that A is the unique such normalizer and
hence, G is nilpotent by Lemma 2.6. On the other hand, if G is a Baer group, we
have that all subgroups of G are subnormal and so G is also nilpotent in this case
(see [18]). Among all counterexamples obtained in this way, we can of course choose
one G with smallest nilpotency class c. Then the torsion-free group G/Z(G) cannot
be a counterexample and hence, it is either polycyclic or abelian. In order to prove
that G/Z(G) must be polycyclic, we can of course suppose that G/Z(G) is abelian,
so that G has class 2 and in particular, G′ = {[a, x] | a ∈ A}.

Assume that G′ is not polycyclic, so that it contains a proper non-polycyclic
subgroup K (see [8, Corollary 2.6]). Put L = 〈x,K〉. Then G′ ≤ LG and G′ ∩ L =
K < G′, so that L is not normal in G and hence, the normalizer NG(L) is abelian.
It follows that A ∩NG(L) is contained in Z(G). Consider an element a of A such
that 1 6= [a, x] ∈ K. As [a, L] = 〈[a, x]〉 ≤ K < L, we have that a belongs to
A∩NG(L) ≤ Z(G), contradicting the choice of a. Therefore, G′ is polycyclic. Since
all subgroups NG(X1), . . . , NG(Xk) have infinite index in G, it follows from Lemma
2.4 that NG(X1) ∪ · · · ∪ NG(Xk) is a proper subset of G. Let g be an element of
the set

G \
k⋃

i=1

NG(Xi).

As CG(g) = CG(〈g, G′〉), the factor group G/CG(g) is isomorphic to a group of
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automorphisms of the polycyclic group 〈g, G′〉, and hence, G/CG(g) is likewise
polycyclic (see [14, Part 1, Theorem 3.27]). In particular, there exists a finitely
generated subgroup E of G such that G = CG(g)E and G′ ≤ E. Moreover, the
factor group G/CG(E) is also polycyclic. As CG(g) is a non-polycyclic group whose
non-normal subgroups are polycyclic, CG(g) is abelian. Thus, CG(g) ∩ CG(E) is
contained in Z(G), and so G/Z(G) is polycyclic.

Let H be any subgroup of G which is not finitely generated. Then H ∩Z(G) is
not finitely generated, so that the factor group G/(H∩Z(G)) has finitely many nor-
malizers and hence, it is central-by-finite (see [13]). It follows that every subgroup
of G which is not finitely generated has finitely many conjugates (see [7, Proposition
3.4]), a contradiction since the index |G : NG(Xi)| is infinite for i = 1, . . . , k. This
last contradiction completes the proof of the lemma. 2

Corollary 2.10. Let G be a torsion-free locally graded group with finitely many
normalizers of non-polycyclic subgroups. Then G is either polycyclic or abelian.

Now we deal with the groups whose commutator subgroup has finite exponent.

Lemma 2.11. Let G be a nilpotent group with finitely many normalizers of non-
polycyclic subgroups. If the commutator subgroup G′ of G has finite exponent,
then G/Z(G) is finite.

Proof. Assume for a contradiction that G′ is infinite, and let m be the smallest
positive integer such that G′ ∩ Zm(G) is infinite. Then K = G′ ∩ Zm−1(G) is a
finite normal subgroup of G and (G′ ∩ Zm(G))/K = U1/K × U2/K, where both
factors U1/K and U2/K are infinite. On the other hand, U1 and U2 are normal
subgroups of G, and so the indices |G′ : U1| and |G′ : U2| are finite by Lemma 2.3.
This contradiction shows that G′ is finite, and hence, G/Z(G) is likewise finite by
Lemma 2.5. 2

Lemma 2.12. Let G be an abelian-by-(locally finite) group with finitely many
normalizers of non-polycyclic subgroups. If the commutator subgroup G′ of G has
finite exponent, then G′/(G′ ∩ Z(G)) is finite.

Proof. Let e be the exponent of G′, and let A be an abelian normal subgroup
of G such that G/A is locally finite. Then {1} = [A,G]e = [Ae, G], so that Ae

is contained in Z(G) and hence, the group G/Z(G) is also locally finite. Clearly,
G/Z(G) has finitely many normalizers of infinite subgroups and so G/Z(G) is either
central-by-finite or a Černikov group (see [3]). It follows that G/Z(G) has a finite
commutator subgroup, and hence, G′/(G′ ∩ Z(G)) is finite. 2

It is now possible to prove the main result of the paper.

Theorem 2.13. Let G be a locally graded non-polycyclic group with finitely many
normalizers of non-polycyclic subgroups. Then the commutator subgroup G′ of G
is a Černikov group and its divisible part is a primary group.

Proof. The group G is soluble-by-finite by Lemma 2.2 and its commutator subgroup
G′ is periodic by Lemma 2.9. Thus, the set T of all elements of finite order of G
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is a subgroup and the factor group G/T is abelian. Since T has finitely many
normalizers of infinite subgroups, it is central-by-finite (see [3]).

Assume for a contradiction that G′ is not a Černikov group, and choose a coun-
terexample such that the set {NG(X1), . . . , NG(Xk)} of all proper normalizers of
non-polycyclic subgroups has smallest order k, and of course, k > 0 (see [8]). It
follows from Lemma 2.3 that T cannot contain two infinite G-invariant subgroups
with finite intersection. In particular, C = Z(T ) has finitely many non-trivial pri-
mary components, and so there exists a prime number p such that the p-component
Cp of C has infinite socle Sp. Then again Lemma 2.3 yields that G′ is a finite
extension of an abelian group of exponent p, and hence, G′ has finite exponent and
G′ ∩ Z(G) is finite. It follows that G′/(G′ ∩ Z(G)) is infinite and so by Lemma
2.12 the group G cannot be abelian-by-finite. For each i = 1, . . . , k, the normal-
izer NG(Xi) has less than k proper normalizers of non-polycyclic subgroups, so
that NG(Xi)′ is a Černikov group and hence, it is even finite. Thus, the normal
subgroup 〈NG(X1)′, . . . , NG(Xk)′〉G is likewise finite by Dietzmann’s Lemma, and
replacing G by the factor group G/N it can be assumed without loss of generality
that NG(Xi) is abelian for every i = 1, . . . , k. As G is not abelian-by-finite, the
index |G : NG(Xi)| is infinite for each i = 1, . . . , k. On the other hand, NG(Xi) is a
non-polycyclic subgroup of G and NG(NG(Xi)) has finite index in G, so that all sub-
groups NG(X1), . . . , NG(Xk) are normal in G. In particular, every non-polycyclic
subgroup of G is subnormal with defect at most 2.

Since G′ is abelian-by-finite, another application of Lemma 2.12 gives that
G′′/(G′′ ∩ Z(G′)) is finite, so that G′/Z(G′) has a finite commutator subgroup
and hence, G′/Z2(G′) is finite by Lemma 2.5. Thus, Z2(G′) is an infinite normal
subgroup of G and all subgroups of G/Z2(G′) are subnormal with defect at most
2. It follows that G/Z2(G′) is a nilpotent group, so that G′ is nilpotent and G is
soluble. As the nilpotent subgroup CG(G′) is central-by-finite by Lemma 2.11, we
obtain from Lemma 2.12 that G/CG(G′) is not periodic, so that there exists an
element x of G of infinite order such that 〈x〉 ∩ CG(G′) = {1}. In particular, the
index |〈x,G′〉 : Z(〈x,G′〉)| is infinite and hence, Lemma 2.11 yields that 〈x,G′〉 is
not nilpotent. Thus, the subgroup 〈x〉 is not subnormal in G, so the Baer radical of
G is a proper subgroup. As G does not contain infinite Černikov normal subgroups
by Lemma 2.3, it follows that G is finitely generated (see [9, Theorem 3]) and so
even polycyclic by Lemma 2.2. This contradiction proves that G′ is a Černikov
group.

Suppose finally that G′ is infinite, so that its divisible part J has an infinite
primary component P . As the factor group G/P has finitely many normalizers, it
follows that G′/P is finite. The theorem is proved. 2

It turns out from the classification of locally graded groups with polycyclic
non-normal subgroups that if G is a non-polycyclic group of this type, then the
commutator subgroup G′ is either finite or a finite extension of a group of type p∞

(for some prime number p). This property is no longer true in the case of groups with
finitely many normalizers of non-polycyclic subgroups. In fact, let A = 〈an | n ∈
N0, a0 = 1, a3

n+1 = an ∀n ∈ N0〉 and B = 〈bn | n ∈ N0, b0 = 1, b3
n+1 = bn ∀n ∈ N0〉

be two groups of type 3∞, and put W = A×B. Now consider the automorphism x
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of W defined by ax
n = bn and bx

n = a−1
n b−1

n for all n ∈ N0. The semidirect product
G = 〈x〉nW is a hypercentral 3-group with G′ = W , and W is the unique proper
normalizer of a non-polycyclic subgroup of G.

Corollary 2.14. Let G be a residually finite-by-abelian group with finitely many
normalizers of non-polycyclic subgroups. Then either G is polycyclic or G/Z(G) is
finite.

Proof. Since G is residually finite-by-abelian, its commutator subgroup G′ is resid-
ually finite and hence, it follows from Theorem 2.13 that either G is polycyclic or
G′ is finite. Moreover, in the latter case G/Z(G) is finite by Lemma 2.5. 2
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