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Abstract

It is known that (generalized) soluble groups in which every non-normal subgroup is
locally nilpotent either are locally nilpotent or have a finite commutator subgroup.
Here the structure of (generalized) soluble groups with finitely many normalizers
of (infinite) non-(locally nilpotent) subgroups is investigated, and the above result
is extended to this more general situation.

1. Introduction

A group G is called metahamiltonian if every non-abelian subgroup of G is normal.
Metahamiltonian groups were introduced and investigated by G.M. Romalis and
N.F. Sesekin [15; 16; 17], who proved in particular that locally soluble metahamil-
tonian groups have a finite commutator subgroup. More recently, B. Bruno and
R.E. Phillips [1] considered groups in which every subgroup is either locally nilpo-
tent or normal, and also in this case they obtained that locally soluble groups with
such property either are locally nilpotent or have finite commutator subgroups. The
consideration of Tarski groups (i.e. infinite simple groups whose proper non-trivial
subgroups have prime order) shows that in these situations some (generalised) sol-
ubility condition must be required. Actually, Bruno and Phillips proved their result
within the universe of W-groups: a group G is called a W-group if every finitely
generated non-nilpotent subgroup of G has a finite, non-nilpotent, homomorphic
image. It is well known that all locally (soluble-by-finite) groups and all linear
groups have the property W (see [13, part 2, theorem 10.51] and [19]). The aim of
this paper is to extend this investigation to groups containing in some sense only a
few subgroups, which are neither locally nilpotent nor normal.

In 1980 Y.D. Polovickĭı [12] showed that a group G has finitely many normal-
izers of abelian subgroups if and only if the centre Z(G) has finite index. Much
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earlier, in a famous paper from 1955, B.H. Neumann [10] proved that a group
G has finite conjugacy classes of subgroups if and only if G/Z(G) is finite, and
the same conclusion holds if the restriction is imposed only to conjugacy classes
of abelian subgroups (see [6]). Thus, central-by-finite groups are precisely those
groups in which the normalizers of (abelian) subgroups have finite index, and these
results suggested that the behaviour of normalizers has a strong influence on the
group. The structure of groups with finitely many normalizers of subgroups with a
given property χ has recently been studied for several different choices of χ (see [2;
3; 4; 5]). Here, we consider groups with finitely many normalizers of non-(locally
nilpotent) subgroups, and our main result on this subject is the following:

Theorem A Let G be a W-group with finitely many normalizers of non-(locally
nilpotent) subgroups. Then either G is locally nilpotent or its commutator sub-
group G′ is finite.
Of course, all finite groups satisfy the hypotheses of the above theorem, and hence
there is no bound for the derived length of soluble groups with finitely many nor-
malizers of non-nilpotent subgroups, Moreover, it follows from Theorem A that if G
is a W-group with finitely many normalizers of non-(locally nilpotent) subgroups,
then either G is locally nilpotent or all its locally nilpotent subgroups are nilpotent.
Thus we have:

Corollary Let G be a W-group with finitely many normalizers of non-(locally
nilpotent) subgroups. If G is not locally nilpotent, then it has finitely many normal-
izers of non-nilpotent subgroups.
Note here that a result corresponding to Theorem A for groups with finitely many
normalizers of non-nilpotent subgroups cannot be proved, and it seems difficult to
deal with the case of locally nilpotent groups with this property; in fact, there exist
(soluble) locally nilpotent groups with trivial centre in which all proper subgroups
are nilpotent and subnormal (see [7]), and such groups can have arbitrarily high
derived length (see [8]).

Next, we consider the more general situation of groups with finitely many nor-
malizers of infinite non-(locally nilpotent) subgroups. In this case, one cannot expect
to obtain the finiteness of the commutator subgroup, as it is shown by the non-
abelian extension of a group of type p∞ (where p is an odd prime) by a group of
order 2. In this context we have the following result:

Theorem B Let G be a W-group with finitely many normalizers of infinite non-
(locally nilpotent) subgroups. If G is not locally nilpotent, then either it is a Černikov
group or its commutator subgroup G′ is finite.

Most of our notation is standard and can, for instance, be found in [13].

2. Preliminary results

The following result plays a central role in the study of groups with finitely many
normalizers of subgroups with a given property. It was proved by B.H. Neumann [9]
in the more general case of groups covered by finitely many cosets.
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Lemma 2.1. Let the group G = X1 ∪ . . . ∪Xt be the union of finitely many sub-
groups X1, . . . , Xt. Then any Xi of infinite index can be omitted from this decom-
position; in particular, at least one of the subgroups X1, . . . , Xt has finite index
in G.

Our next lemma shows that any group with finitely many normalizers of non-
nilpotent subgroups contains a subgroup of finite index in which all non-nilpotent
subgroups are subnormal, with defect of at most 2.

Lemma 2.2. Let G be a group with finitely many normalizers of non-nilpotent
subgroups. Then G contains a characteristic subgroup M of finite index, such that
NM (X) is normal in M for each non-nilpotent subgroup X of M .

Proof. Let H be the set of all non-nilpotent subgroups of G. If X is any element of
H, its normalizer NG(X) has obviously finitely many images under automorphisms
of G; in particular, the subgroup NG(X) has finitely many conjugates in G and so
the index |G : NG(NG(X))| is finite. It follows that the characteristic subgroup

M(X) =
⋂

α∈Aut G

NG(NG(X))α

also has finite index in G. If X and Y are elements of H such that NG(X) = NG(Y ),
then M(X) = M(Y ), and hence also

M =
⋂

X∈H
M(X)

is a characteristic subgroup of finite index of G. Let X be any non-nilpotent sub-
group of M . Then

M ≤ M(X) ≤ NG(NG(X)),

and so the normalizer NM (X) = NG(X) ∩M is a normal subgroup of M .

Recall that a group G is said to be locally graded if every finitely generated
non-trivial subgroup of G contains a proper subgroup of finite index; of course, all
W-groups are locally graded.

Corollary 2.3. Let G be a locally graded group with finitely many normalizers of
non-nilpotent subgroups. Then G is soluble-by-finite.

Proof. By Lemma 2.2 there exists in G a normal subgroup M of finite index, such
that all non-nilpotent subgroups of M are subnormal with defect of at most 2 (in
M). Then M is soluble (see [18, theorem 2]), and hence G is soluble-by-finite.

The same argument used in the proof of Lemma 2.2 shows that any group with
finitely many normalizers of (infinite) non-(locally nilpotent) subgroups contains a
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subgroup of finite index, in which every (infinite) subgroup is either locally nilpotent
or subnormal with defect of at most 2. In fact, we have:

Lemma 2.4. Let G be a group with finitely many normalizers of (infinite) sub-
groups that are not locally nilpotent. Then G contains a characteristic subgroup M
of finite index such that NM (X) is normal in M for each (infinite) subgroup X
of M that is not locally nilpotent.

It follows from a theorem of Phillips and Wilson (see [11, theorem A]) that any
W-group whose infinite non-subnormal subgroups are locally nilpotent is a finite
extension of a locally nilpotent group. Thus, the above lemma can be applied to
obtain the following result:

Lemma 2.5. Let G be a W-group with finitely many normalizers of infinite non-
(locally nilpotent) subgroups. Then the Hirsch–Plotkin radical of G has finite index;
in particular, G locally satisfies the maximal condition on subgroups.

Proof. By Lemma 2.4 there exists a normal subgroup M of G of finite index, such
that every infinite subgroup of M is either subnormal or locally nilpotent. Then M
contains a locally nilpotent subgroup of finite index, and hence the Hirsch–Plotkin
radical of G has finite index.

In the last part of this section, we consider groups in which all infinite non-
normal subgroups are locally nilpotent; it turns out that such groups are essentially
the same as those considered by Bruno and Phillips.

Lemma 2.6. Let G be a non-periodic W-group whose infinite non-normal sub-
groups are locally nilpotent. Then, either G is locally nilpotent or all non-normal
subgroups of G are nilpotent.

Proof. Suppose that G is not locally nilpotent, and let X be any finite non-
nilpotent subgroup of G. Consider an element g ∈ G of infinite order. Since E =
〈X, g〉 is a finitely generated non-nilpotent subgroup of G, it contains a normal
subgroup K such that E/K is a finite non-nilpotent group. Obviously, there exists
a non-normal subgroup L of E such that K < L < E. Thus, K is a finitely
generated infinite nilpotent group; and so, replacing K by a suitable subgroup,
it can be assumed that K is torsion-free. For each positive integer n, the infinite
subgroup XKn is normal in G, and hence also

X =
⋂
n

XKn

is a normal subgroup of G. Therefore, all non-normal subgroups of G are locally
nilpotent, and so even nilpotent (see [1, theorem B]).

Corollary 2.7. Let G be a non-periodic W-group whose infinite non-normal sub-
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groups are locally nilpotent. Then either G is locally nilpotent or its commutator
subgroup G′ is finite.

The following lemma is an easy consequence of a result of D.I. Zaičev [20].

Lemma 2.8. Let G be a periodic (locally soluble)-by-finite group, and let X be a
finite subgroup of G. If G is not a Černikov group, there exists a collection (Ki)i∈I

of infinite subgroups of G such that
⋂

i∈I

Ki = X.

Proof. As X is finite, G contains an abelian subgroup A such that AX = A
and A does not satisfy the minimal condition on subgroups (see [20]). Clearly, the
socle S of A is infinite, and the subgroup XS is residually finite. Then there exists a
collection (Li)i∈I of normal subgroups of finite index of XS such that X∩Li = {1}
for all i, and

⋂

i∈I

Li = {1}.

It follows that each XLi is infinite and
⋂

i∈I

XLi = X.

Thus, the lemma is proved.

Corollary 2.9. Let G be a W-group whose infinite, non-normal subgroups are lo-
cally nilpotent. If G is not locally nilpotent, then either G is a Černikov group or
all non-normal subgroups of G are nilpotent.

Proof. It follows from Lemma 2.5 that G contains a locally nilpotent subgroup of
finite index. Moreover, by Lemma 2.6 it can be assumed that G is periodic. Suppose
that G is not a Černikov group, and let X be any finite, non-nilpotent subgroup
of G. It follows from Lemma 2.8 that X can be obtained as the intersection of a
collection of infinite subgroups, and hence it is normal in G. Therefore, all non-
normal subgroups of G are locally nilpotent, and hence G contains a finite, normal
subgroup N such that G/N is a Dedekind group. In particular, G has a finite
commutator subgroup and so its locally nilpotent subgroups are even nilpotent.

3. Proofs of the theorems

The first results of this section deal with the behaviour of torsion-free, normal sub-
groups in groups with finitely many normalizers of infinite non-(locally nilpotent)
subgroups.

Lemma 3.1. Let G be a W-group with finitely many normalizers of infinite non-
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(locally nilpotent) subgroups, and let A be a torsion-free abelian subgroup of G. If x
is an element of finite order of G such that Ax = A, then [A, x] = {1}.

Proof. Assume for a contradiction that the statement is false, and consider a
counterexample G with a minimal number k of normalizers of infinite non-(locally
nilpotent) subgroups. Clearly, 〈x〉A is not periodic, and in particular G is not locally
nilpotent. Thus k > 1, since, by Corollary 2.7, any non-periodic W-group whose
infinite, non-normal subgroups are locally nilpotent either is locally nilpotent or
has a finite commutator subgroup. Let a be an element of A such that [a, x] 6= 1,
and put B = A ∩ 〈a, x〉. Then Bx = B, and B is finitely generated by Lemma 2.5;
moreover, there exists a prime number p such that [Bpn

, x] 6= {1} for all positive
integers n. As

〈x〉 =
⋂

n∈N
〈Bpn

, x〉,

the subgroup 〈Bpm

, x〉 is not normal in G for some positive integer m. It follows
that NG(〈Bpm

, x〉) has less than k normalizers of infinite non-(locally nilpotent)
subgroups, and hence [Bpm

, x] = {1}. This contradiction proves the lemma.

Lemma 3.2. Let G be a W-group with finitely many normalizers of infinite non-
(locally nilpotent) subgroups, and let A be a torsion-free abelian normal subgroup
of G, such that G/A is periodic. Then A is contained in the centre of G.

Proof. Assume, for a contradiction, that the statement is false, so that [A, x] 6=
{1} for some element x of G; and it follows from Lemma 3.1 that x must have
infinite order. Clearly, A ∩ 〈x〉 = 〈xm〉 with m > 1, since G/A is periodic. Let
T/〈xm〉 be the subgroup consisting of all elements of finite order of A/〈xm〉; then
A/T is torsion-free and [A, x] ≤ T by Lemma 3.1. On the other hand, xm belongs to
Z(〈T, x〉) and 〈T, x〉/〈xm〉 is locally finite, so that [T, x] is locally finite by Schur’s
theorem, and hence [T, x] = {1}. Therefore, [A, x, x] = {1}. It follows that:

[A, x]m = [A, xm] = {1},

and so [A, x] = {1}, which is a contradiction.

Corollary 3.3. Let G be a finitely generated abelian-by-finite group with finitely
many normalizers of infinite, non-nilpotent subgroups. Then the factor group G/Z(G)
is finite.

In our proofs we will also need the following elementary characterization of
normal subgroups of polycyclic-by-finite groups.

Lemma 3.4. Let G be a polycyclic-by-finite group, and let X be a subgroup of G
such that Xσ is normal in Gσ for each finite homomorphic image Gσ of G. Then X
is normal in G.
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Proof. Let H be the set of all subgroups of finite index of G containing X. If H
is any element of H, the product XHG is a normal subgroup of G; since every
subgroup of a polycyclic-by-finite group is the intersection of subgroups of finite
index (see [14, 5.4.16]), we have

X =
⋂

H∈H
H =

⋂

H∈H
XHG,

and so X is likewise normal in G.

The next result provides in particular a complete characterisation of finitely
generated, locally graded groups with finitely many normalizers of non-nilpotent
subgroups. It shows that for such groups, only the extreme cases actually occur.

Theorem 3.5. A finitely generated, soluble-by-finite group G has finitely many
normalizers of infinite, non-nilpotent subgroups if and only if either G is nilpotent
or the factor group G/Z(G) is finite.

Proof. The condition of the statement is obviously sufficient. Conversely, suppose
that the group G has finitely many normalizers of infinite, non-nilpotent subgroups.
It follows from Lemma 2.5 that G is nilpotent-by-finite, and so it contains a torsion-
free nilpotent normal subgroup H of finite index. Assume now, for a contradiction,
that G neither is nilpotent nor central-by-finite, so that by Corollary 3.3 it is not
even abelian-by-finite. Thus, Corollary 2.7 yields that the counterexample G con-
tains infinite subgroups that are neither nilpotent nor normal, and G can be chosen
in such a way that the set

{NG(X1), . . . , NG(Xk)}

of all proper normalizers of infinite, non-nilpotent subgroups has minimal order k.
Clearly, each NG(Xi) is a non-nilpotent group with less than k proper normalizers
of infinite, non-nilpotent subgroups, and hence it is central-by-finite; it follows that
the index |G : NG(Xi)| is infinite for all i = 1, . . . , k. Let L be any G-invariant
subgroup of finite index of H; then |L : L ∩ NG(Xi)| is infinite for all i, and so L
cannot be contained in the set

NG(X1) ∪ . . . ∪NG(Xk),

because of Lemma 2.1. Therefore, each non-nilpotent subgroup of G/L is normal.
Let X be any infinite, non-nilpotent subgroup of G; then X contains a normal
subgroup Y such that X/Y is a finite, non-nilpotent group. Moreover, since each
subgroup of G is the intersection of subgroups of finite index, there exists a subgroup
of finite index U of G such that X∩U = Y . Thus, V = L∩UG is a normal subgroup
of finite index of G and XV/V is not nilpotent, so that XV is a normal subgroup
of G; it also follows that XL = (XV )L is normal in G, and so X itself is a normal
subgroup of G by Lemma 3.4. Therefore, all infinite, non-nilpotent subgroups of G



150 Mathematical Proceedings of the Royal Irish Academy

are normal, so that G′ is finite by Corollary 2.7. Hence, H ≤ Z(G) and G/Z(G) is
finite. This contradiction completes the proof of the theorem.

Corollary 3.6. Let G be a torsion-free W-group with finitely many normalizers of
non-(locally nilpotent) subgroups. Then G is locally nilpotent.

Proof. Assume that G contains a finitely generated, non-nilpotent subgroup E.
Since G locally satisfies the maximal condition on subgroups by Lemma 2.5, it
follows from Theorem 3.5 that E/Z(E) is finite, which is a contradiction, as E is a
torsion-free, non-abelian group. Therefore, G is locally nilpotent.

We are now in a position to prove our main results.

Proof of Theorem A. The statement is known if every non-normal subgroup
of G is locally nilpotent (see [1, theorem B]). Suppose that G is not locally nilpotent
and contains subgroups which are neither locally nilpotent nor normal, and let
NG(X1), . . . , NG(Xk) be the normalizers of such subgroups.

Assume first that

G = NG(X1) ∪ . . . ∪NG(Xk).

Then, by Lemma 2.1, every subgroup of infinite index can be omitted from this
union, and hence

G = NG(Xi1) ∪ . . . ∪NG(Xit),

where the index |G : NG(Xij )| is finite for each j = 1, . . . , t. Clearly, NG(Xij )
has less than k proper normalizers of non-(locally nilpotent) subgroups, and so by
induction it can be assumed that NG(Xij )

′ is finite for j = 1, . . . , t. Since every
NG(Xij ) has finitely many conjugates, it follows from Dietzmann’s lemma that the
normal closure

N = 〈NG(Xi1)
′, . . . , NG(Xit)

′〉G

is likewise finite. Moreover, the factor group G/N has a finite covering consisting of
abelian subgroups, and hence it is central-by-finite (see [13, part 1, theorem 4.16]).
Therefore G′ is finite in this case by Schur’s theorem.

Suppose now that NG(X1)∪ . . .∪NG(Xk) is properly contained in G, and let g
be an element of the set

G \ (NG(X1) ∪ . . . ∪NG(Xk)).

As G is not locally nilpotent, it contains a finitely generated, non-nilpotent sub-
group E. Then 〈g, E〉 is a normal subgroup of G and all subgroups of G/〈g, E〉
are normal, so that in particular |G′〈g,E〉/〈g, E〉| ≤ 2 and G′ is finitely generated
by Lemma 2.5. It follows that G′ = K ′, where K is a suitable, finitely generated,
non-nilpotent subgroup of G. On the other hand, K has finitely many normalizers
of non-nilpotent subgroups, so that K/Z(K) is finite by Theorem 3.5 and hence
G′ = K ′ is finite.
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Proof of Theorem B. The group G contains a locally nilpotent subgroup of
finite index by Lemma 2.5. Assume that G is not a Černikov group. If every in-
finite, non-normal subgroup of G is locally nilpotent, then all non-normal sub-
groups of G are nilpotent by Corollary 2.9, and so G′ is finite. Suppose that G
contains infinite subgroups that are neither locally nilpotent nor normal, and let
NG(X1), . . . , NG(Xk) be the normalizers of such subgroups. By induction on k,
it can be assumed that each NG(Xi) either is a Černikov group or has a finite
commutator subgroup. If

G = NG(X1) ∪ . . . ∪NG(Xk),

by Lemma 2.1 we have also

G = NG(Xi1) ∪ . . . ∪NG(Xit
),

where each NG(Xij
) has finite index in G. In particular, NG(Xij

) is not a Černikov
group and hence NG(Xij )

′ is finite for every i = 1, . . . , t. In this case, the same
argument used in the last part of the proof of Theorem A yields that G′ is finite.
Therefore, it can be assumed that NG(X1)∪ . . .∪NG(Xk) is a proper subset of G.

Let g be an element of

G \ (NG(X1) ∪ . . . ∪NG(Xk)),

and let E be a finitely generated, non-nilpotent subgroup of G. Then X = 〈g, E〉 is
finitely generated and all infinite subgroups of G containing X are normal. Suppose
first that G is periodic, so that X is finite and hence it can be obtained as the
intersection of infinite subgroups by Lemma 2.8. It follows that X is normal in G
and all infinite subgroups of G/X are normal, so that G/X is a Dedekind group
by Lemma 2.8 and G′ is finite in this case. Assume now that G is not periodic, and
let a be an element of infinite order of G. Then the infinite subgroup 〈a,X〉 is normal
in G, and G/〈a,X〉 is a Dedekind group. As G locally satisfies the maximal condition
on subgroups by Lemma 2.5, it follows that G′ is finitely generated. Therefore
G′ = K ′, where K is a suitable, finitely generated, non-nilpotent subgroup of G
containing X. Since K has finitely many normalizers of non-nilpotent subgroups,
K/Z(K) is finite by Theorem 3.5 and hence G′ = K ′ is finite.
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