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Few words about post-quantum cryptography

Post-quantum cryptography is implemented on classical machines and is
supposed to be safe against quantum attacks (mainly attacks using
Shor’s and Grover’s algorithms). It is a current and urgent topic.

Group-based post-quantum cryptography is extremely versatile – we
can build a lot of cryptographic schemes with different functionalities
using group problems.
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Group problems used in cryptography that can be restricted to
subsets

• Conjugacy search problem

• Subgroup membership
problem

• Factorization problem

• Subgroup intersection problem

• Decomposition search problem

Carvalho and Malheiro proposed in [CM25] using orbits through
automorphism as subsets. The orbit of g through automorphism φ is
the set Orbφ(g) = {φk(g) | k ∈ N}.

Conjugacy search problem restricted to orbits

For given φ ∈ Aut(G ) and elements x , y , s ∈ G , decide whether x and
y are conjugate by an element in the orbit of s through φ, i.e., whether
there exists k ∈ N such that φk(s−1)xφk(s) = y?
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Identification scheme

In an identification scheme between a prover Alice and a verifier Bob, the
goal is for Alice to prove to Bob that she knows some secret without
revealing information about the secret. We have a public key that is
known to Alice, Bob, and all potential adversaries, and Alice’s private
key that is known only to Alice. One instance of the identification
scheme goes as follows:

1. Alice chooses at random some element r as her commitment and
sends it to Bob.

2. Bob chooses a random bit as his challenge and sends it to Alice.

3. Alice generates a response to the challenge that depends on her
private key, commitment, and Bob’s challenge. Alice sends the
response to Bob.

4. Bob verifies the response using the public key, his challenge,
and the response from Alice.
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Identification scheme using conjugacy problem restricted to or-
bits

Alice’s public key is an automorphism φ of the group G and three
elements x , y , s ∈ G such that y = φk+n(s−1)xφk+n(s), where integers
k, n are her private key.

1. Alice chooses j ∈ N such that n > j and r ∈ G , then sends
automorphism φk+j and element φn+k(r) to Bob.

2. Bob chooses a random bit c and sends it to Alice.

• If c = 0, then Alice sends element φn−j(s) to Bob and Bob checks if
the equality y = φk+j(φn−j(s−1))xφk+j(φn−j(s)) is satisfied. If it is,
then Bob accepts the authentication.

• If c = 1, then Alice sends element φn−j(sr) to Bob and Bob checks if
the equality
φk+n(r−1)yφk+n(r) = φk+j(φn−j(r−1s−1))xφk+j(φn−j(sr)) is
satisfied. If it is, then Bob accepts the authentication.
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Identification scheme works because:

• If c = 0, then Bob gets element φn−j(s) and calculates
φk+j(φn−j(s−1))xφk+j(φn−j(s)) = φk+n(s−1)xφk+n(s) = y .

• If c = 1, then Bob gets element φn−j(sr) and calculates
φk+j(φn−j(r−1s−1))yφk+j(φn−j(sr)) = φn+k(r−1s−1)xφn+k(sr) =

φn+k(r−1)φn+k(s−1)xφn+k(s)φn+k(r) = φn+k(r−1)yφn+k(r).
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Rational and algebraic subsets of a group

Let G = ⟨A | R⟩ be a finitely generated group, A a finite set of
generators, Â = A ∪ A−1, and π : Â∗ → G the canonical ”onto”
homomorphism.

Subset K ⊆ G is rational if there exists a regular language L ⊆ Â∗ such
that π(L) = K . Rational subsets of the group G will be denoted by
Rat(G ).

Subset K ⊆ G is algebraic if there exists a context-free language L ⊆ Â∗

such that π(L) = K . Algebraic subsets of the group G will be denoted by
Alg(G ).
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Subsets instead of subgroups

Pros:

• Subsets have less algebraic structure to exploit in attacks than
subgroups.

• Proving the computational hardness of group problems restricted to
rational or algebraic subsets can be easier than in the case of
subgroups because we can use known computationally hard problems
from formal language theory:

• Rational subset membership for Baumslag-Solitar groups BS(1, q)
with q ­ 2 is decidable and PSPACE-complete [CCZ20],

• Construction of an automaton group with a PSPACE-complete word
problem [WW23].

Cons:

• Not every cryptographic scheme that uses subgroups can be
modified by substituting subgroups with subsets.

• Depending on the concrete scheme, using subsets instead of
subgroups can be infeasible.
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