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Quandles

Coloring rules

Color a diagram of an oriented knot K by an algebra (X ,◁,▷) according
to these rules:

x y

y ◁ x

y x

y ▷ x

Which properties must ◁, ▷ satisfy for the coloring to be invariant under
Reidemeister moves? There are many oriented Reidemeister moves, but all
are consequences of the following five:
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Quandles

Reidemeister I

x x

x ◁ x

x x

x ▷ x

So far we have x ◁ x = x = x ▷ x .
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Quandles

Reidemeister II

x

y

x (y ◁ x)▷ x

y

y ◁ x

x

y
y

(y ▷ x)◁ xx

y ▷ x

So far we have x ◁ x = x = x ▷ x , (y ◁ x)▷ x = y and (y ▷ x)◁ x = y .

Hence R◁
x = (R▷

x )
−1 and we don’t need to keep track of ▷ anymore.
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Quandles

Reidemeister III

y ◁ x (z ◁ y)◁ x

x
z ◁ y

yz

y ◁ x (z ◁ x)◁ (y ◁ x)

x

yz

z ◁ x

Altogether, we have: (X ,◁) such that x ◁ x = x and Rx ∈ Aut(X ,◁).
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Quandles

Racks and quandles

Definition

A magma (Q, ·) is a rack if

• Rx is a permutation of Q for every x ∈ Q,

• (yx)(zx) = (yz)x for every x , y , z ∈ Q.

A rack (Q, ·) is a quandle if

• xx = x for every x ∈ Q.

Definition

For a rack Q, let

Mltr(Q) = ⟨Rx : x ∈ Q⟩ ≤ Aut(Q)

be the right multiplication group of Q.
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Quandles

Examples of quandles

Projection quandle
x ∗ y = x
on a set X

Conjugation quandle
x ∗ y = yxy−1

on a group (G , ·), or on a union of some conjugacy classes

Affine quandle
x ∗ y = φ(x) + (1− φ)(y)
for a group (G ,+) and φ ∈ Aut(G )

Coset quandle
Hx ∗ Hy = Hφ(xy−1)y
for a group (G , ·), subgroup H ≤ G and φ ∈ Aut(G ) centralizing H
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The Joyce-Blackburn representation

Key properties of racks and quandles

Denote by gG the conjugacy class of g in G .

If G acts on X , let O(x) be the orbit of x and X/G a complete set of
orbit representatives.

In any magma Q, if x ∈ Q and φ ∈ Aut(Q) then φRxφ
−1 = Rφ(x).

Let Q be a rack and G = Mltr(Q). Then:

• Rx ∈ CG (Gx),

• RG
x = {Rφ(x) : φ ∈ G} = {Ry : y ∈ O(x)},

• G = ⟨
⋃

x∈Q/G RG
x ⟩,

• if Q is a quandle, then Rx ∈ Z (Gx) since Rx(x) = xx = x .
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The Joyce-Blackburn representation

Joyce-Blackburn representation for racks

Theorem (Blackburn, VY)

Let G be a group acting on X . Then there is a one to one correspondence
between:

• racks Q defined on X with Mltr(Q) = G, and

• rack envelopes for G , that is, tuples (ρx : x ∈ X/G ) such that
ρx ∈ CG (Gx) and ⟨

⋃
x∈X/G ρ

G
x ⟩ = G.
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The Joyce-Blackburn representation

From a quandle envelope to a quandle: An example

Let G = ⟨(2, 3, 4), (2, 3)⟩ ∼= S3 act on {1, 2, 3, 4}. The orbits are
{1}, {2, 3, 4} and we can take X/G = {1, 2}.

We have G1 = G , Z (G1) = 1 and G2 = ⟨(3, 4)⟩ = Z (G2).

Let us take ρ1 = () and ρ2 = (3, 4). Then ⟨ρG2 ⟩ = G .

With φ = (2, 3, 4) ∈ G , we have
ρ3 = φρ2φ

−1 = (2, 4) and ρ4 = φ−1ρ2φ = (2, 3).

We obtain the quandle
Q 1 2 3 4

1 1 1 1 1
2 2 2 4 3
3 3 4 3 2
4 4 3 2 4
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Enumeration of small quandles

Isomorphisms and conjugation

Proposition (folklore for right quasigroups)

Let X be a set.

• If (X , ∗), (X , ◦) are isomorphic racks then Mltr(X, ∗), Mltr(X, ◦) are
conjugate subgroups of SX .

• Let G, H be conjugate subgroups of SX . Then the set of racks on X
with right multiplication group equal to G contains the same
isomorphism types as the set of racks on X with right multiplication
group equal to H.

(iii) Let (X , ∗), (X , ◦) be two racks with Mltr(X, ∗) = G = Mltr(X, ◦).
Then (X , ∗), (X , ◦) are isomorphic if and only if there is an
isomorphism f : (X , ∗) → (X , ◦) satisfying f ∈ NSX (G ).
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Enumeration of small quandles

Action on parameter spaces

For a group G ≤ SX let

Parr (G ) =
∏

x∈X/G

CG (Gx), Parq(G ) =
∏

x∈X/G

Z (Gx).

The above isomorphism relation induces an action of NSX (G ) on Parr (G )

Difficulties:

• Parr (G ) can be large, especially if G is an elementary abelian
2-group. There is a nonabelian G ≤ S13 for which Parr (G ) has over 2
billion elements.

• Not every (ρGx : x ∈ X/G ) ∈ Parr (G ) generates G . This must be
explicitly tested.

• Not clear how to use Burnside’s Lemma efficiently for envelopes.
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Enumeration of small quandles

Conjugacy classes of subgroups of symmetric groups

It is a nontrivial problem to calculate subgroups of Sn up to conjugation.
The following takes several hours in GAP:

n = 1 2 3 4 5 6 7 8 9 10 11 12 13
s(n) = 1 2 4 11 19 56 96 296 554 1593 3094 10723 20832

State of the art:

Theorem (Holt)

There are 7598016157515302757 subgroups of S18, partitioned into
7274651 conjugacy classes.
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Enumeration of small quandles

The enumeration algorithm

Let r(n) (resp. q(n)) denote the number of racks (resp. quandles) of order
n up to isomorphism.

The algorithm:

• confirms all previously known results r(≤ 8), q(≤ 9) in 3 seconds,

• takes about a day to find isomorphism types for r(11) and q(12),

• crashes on r(12), r(13) and q(13),

• takes 3 weeks to determine isomorphism types of racks of order 13
with nonabelian right multiplication groups.
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Petr Vojtěchovský (Denver) Enumeration of quandles AGTA 2025 19 / 45



Enumeration of small quandles

Racks with commuting right translations

Theorem

The following conditions are equivalent for a rack Q:

• Mltr(Q) is abelian,

• (xy)z = (xz)y,

• x(yz) = xy,

• Q is 2-reductive (that is, x(yu) = x(yv)),

• Q is medial (that is, (xu)(vy) = (xv)(uy))
and paragraphic (that is, x(yx) = xy).

Jedlička, Pilitowska, Stanovský and Zamojska-Dzienio used affine meshes
to construct all 2-reductive racks, in principle. They used Burnside’s
Lemma efficiently to count 2-reductive racks up to n ≤ 14. Using their
counts for the abelian case, we determined r(12), r(13) and q(13).
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Enumeration of small quandles

Enumeration results: Racks and quandles

n q(n) r(n) comments

1 1 1
2 1 2
3 3 6
4 7 19
5 22 74
6 73 353
7 298 2080 easy; add column, test, backtrack

8 1581 16023 McCarron
9 11079 159526 q(9) McCarron

10 102771 2093244
11 1275419 36265070
12 21101335 836395102 BUT WAIT, THERE IS MORE
13 469250886 25794670618 VY
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12 21101335 836395102

BUT WAIT, THERE IS MORE
13 469250886 25794670618 VY
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Enumeration of small quandles

Asymptotic growth

Theorem (Blackburn 2013)

For all sufficiently large orders n, we have

2n
2/4−o(n log(n)) ≤ q(n) ≤ r(n) ≤ 2cn

2
,

where c is a constant approximately equal to 1.5566.

Theorem (Ashford and Riordan 2017)

For every ε > 0 and for all sufficiently large orders n we have

2n
2/4−ε ≤ q(n) ≤ r(n) ≤ 2n

2/4+ε.
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Connected quandles

Connected quandles

Definition

A quandle Q is connected if Mltr(Q) acts transitively on Q.

Theorem

Let G be a group acting transitively on X . Let x ∈ X. There is a
one-to-one correspondence between:

• connected quandles Q on X with Mltr(Q) = G, and

• the set of all ρx ∈ CG (Gx) such that ⟨ρGx ⟩ = G.
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Connected quandles

Enumeration results: Connected quandles

The enumeration of connected quandles was carried out independently by
HSV and by Vendramin.

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
c(n) = 1 0 1 1 3 2 5 3 8 1 9 10 11 0 7 9

n = 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
c(n) = 15 12 17 10 9 0 21 42 34 0 65 13 27 24 29 17

n = 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
c(n) = 11 0 15 73 35 0 13 33 39 26 41 9 45 0 45

(Note c(2p) for primes p > 5.)
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Connected quandles

Commuting translations and connectedness
For a rack Q let Disr(Q) = ⟨R−1

x Ry : x , y ∈ Q⟩ be the right
displacement group.

Proposition (Joyce)

Let Q be a rack. Then Disr(Q)⊴Mltr(Q) and Mltr(Q)/Disr(Q) is cyclic.

Corollary

Let Q be a connected rack. Then Mltr(Q)′ = Disr(Q).

Proof.

For x , y ∈ Q let φ ∈ Mltr(Q) be such that φ(x) = y . Then
R−1
x Ry = R−1

x Rφ(x) = R−1
x φRxφ

−1 = [Rx , φ
−1] ∈ Mltr(Q)′.

Corollary

Let Q be a connected quandle with Mltr(Q) abelian. Then Q = 1.
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Connected quandles

Commuting translations in connected quandles

A subset S of a quandle Q is an R-clique if [Rx ,Ry ] = 1 for all x , y ∈ S .

It is easy to prove that maximal R-cliques are subquandles. We know from
above that in a nontrivial connected quandle every R-clique must be
proper. How big can it get? One third is achievable:

Theorem (KMV 2025)

Let m > 0 and e ∈ Zm
2 . Let Q = (Z3 × Zm

2 , ∗), where

(i , a) ∗ (j , b) =

 (−i − j , a), if i − j ≡ 0 (mod 3),
(−i − j , a+ b), if i − j ≡ 1 (mod 3),
(−i − j , a+ b + e), otherwise.

Then Q is a connected quandle in which the 2m right translations R(0,a)

are pairwise distinct and pairwise commute.
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Principal quandles and Hayashi’s conjecture

Principal quandles

Recall coset quandles:
Hx ∗ Hy = Hφ(xy−1)y ,
(G , ·) a group, H ≤ G , φ ∈ Aut(G ) centralizing H

Recall affine quandles:
x ∗ y = φ(x) + (1− φ)(y) = φ(x − y) + y
for a group (G ,+) and φ ∈ Aut(G )

Definition

Let (G , ·, 1) be a group and φ ∈ Aut(Q). Then the principal quandle
Q(G , φ) is defined on G by

x ∗ y = φ(xy−1)y .
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Principal quandles and Hayashi’s conjecture

Basic properties of principal quandles

Let Q = Q(G , φ) be a principal quandle.
Let θ(x) = φ(x)−1x .
Then:

• R1 = φ,

• F = F (G , φ) = {x ∈ G : φ(x) = x} ≤ G ,

• S = S(F , φ) = ⟨θ(x) : x ∈ G ⟩⊴ G ,

• (SF )/S ∼= F/(S ∩ F ) (let m(Q) = [F : S ∩ F ]),

• Q is connected iff S = G ,

• any union of cosets of S is a subquandle of Q.
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Principal quandles and Hayashi’s conjecture

Essential subquandles

Lemma

Let Q = Q(G , φ) and S = S(G , φ). For any x , y ∈ G we have
θ(Sx) = θ(Sy) or θ(Sx) ∩ θ(Sy) = ∅.

Definition

An essential subquandle of Q is any subquandle of the form

E =
⋃
x∈X

Sx

such that θ(E ) = θ(G ) and θ(Sx) ∩ θ(Sy) = ∅ for x ̸= y ∈ X .

Lemma (PV)

Any two essential subquandles are isomorphic.
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Principal quandles and Hayashi’s conjecture

The isomorphism problem for principal quandles

Theorem

If φ,ψ are conjugate in Aut(G ) then Q(G , φ) ∼= Q(G , ψ).

Problem

For which groups G is the converse true? That is, which groups G have
the property that whenever Q(G , φ) ∼= Q(G , ψ) then the automorphisms
φ,ψ are conjugate in Aut(G )?

• for simple groups [SV]

• for symmetric groups [Higashitani-Kurihara 2023]

• for dihedral groups D2p, p prime [same]
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Principal quandles and Hayashi’s conjecture

An isomorphism theorem for principal quandles

Theorem (PSV)

For i ∈ {1, 2} let (Gi , ·, ei ) be a group, φi ∈ Aut(Gi ), Qi = Q(Gi , φi ),
Si = S(Gi , φi ) and mi = m(Qi ). Let E1 =

⋃
x∈X1

S1x be an essential
subquandle of Q1. Then Q1

∼= Q2 if and only if

• m1 = m2,

• there is a group isomorphism ψ : S1 → S2 such that ψφ1 = φ2ψ on
S1,

• there is a mapping σ : X1 → Q2 such that σ(e1) = e2 and ψθ1 = θ2σ
on X1.

This generalizes results of Hou and Holmes for affine quandles.

Petr Vojtěchovský (Denver) Enumeration of quandles AGTA 2025 33 / 45



Principal quandles and Hayashi’s conjecture

An isomorphism theorem for principal quandles

Theorem (PSV)

For i ∈ {1, 2} let (Gi , ·, ei ) be a group, φi ∈ Aut(Gi ), Qi = Q(Gi , φi ),
Si = S(Gi , φi ) and mi = m(Qi ). Let E1 =

⋃
x∈X1

S1x be an essential
subquandle of Q1. Then Q1

∼= Q2 if and only if

• m1 = m2,

• there is a group isomorphism ψ : S1 → S2 such that ψφ1 = φ2ψ on
S1,

• there is a mapping σ : X1 → Q2 such that σ(e1) = e2 and ψθ1 = θ2σ
on X1.

This generalizes results of Hou and Holmes for affine quandles.

Petr Vojtěchovský (Denver) Enumeration of quandles AGTA 2025 33 / 45



Principal quandles and Hayashi’s conjecture

Hayashi’s conjecture

Note: In a connected rack, any two right translations have the same cycle
structure (since they are conjugate).

Definition

A permutation φ on a finite set X has a regular cycle if it has a cycle of
length |φ|.

Conjecture (Hayashi)

Let Q be a finite connected quandle. Then every right translation of Q
has a regular cycle.
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Principal quandles and Hayashi’s conjecture

Towards disproving Hayashi’s conjecture

Proposition

Suppose that G is a finite group and φ ∈ Aut(G ) is such that
S(G , φ) = ⟨φ(x)−1x : x ∈ G ⟩ = G and φ does not have a regular cycle.
Then the principal quandle Q = Q(G , φ) is a counterexample to Hayashi’s
conjecture.

• There are finite groups possessing an automorphism without a regular
cycle [Horoshevskii].

• For all such group automorphisms I tested, the best I could see was
[G : S(G , φ)] = 4.

Problem

Is there a finite group G and an automorphism φ of G such that
⟨φ(x)−1x : x ∈ G ⟩ = G and φ does not have a regular cycle?
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Principal quandles and Hayashi’s conjecture

Towards proving Hayashi’s conjecture

Hayashi’s conjecture is true for:

• primitive quandles (that is, Mltr(Q) acts primitively on Q, not just
transitively),

• affine quandles,

• whenever φ has at most three cycles [Watanabe],

• whenever φ has at most five cycles [Lages-Lopes],

• for connected quandles of order ≤ 47.
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Enumeration of right self-distributive magmas

The isomorphism problem for magmas

Consider all magmas on a finite set X . Here is a naive approach to the
classification of the magmas up to isomorphism:

• The symmetric group SX acts on the magmas via f : (X , ·) → (X , ∗),
x ∗ y = f (f −1(x) · f −1(y)).

• The orbits of this action are precisely the isomorphism types.

• The space it too large.

• Good news: The action restricts to the set of magmas in a given
variety V .

• Bad news: The space is typically still too large.
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Petr Vojtěchovský (Denver) Enumeration of quandles AGTA 2025 38 / 45



Enumeration of right self-distributive magmas

The isomorphism problem for magmas

Consider all magmas on a finite set X . Here is a naive approach to the
classification of the magmas up to isomorphism:

• The symmetric group SX acts on the magmas via f : (X , ·) → (X , ∗),
x ∗ y = f (f −1(x) · f −1(y)).

• The orbits of this action are precisely the isomorphism types.

• The space it too large.

• Good news: The action restricts to the set of magmas in a given
variety V .

• Bad news: The space is typically still too large.
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Enumeration of right self-distributive magmas

Partial magmas

A partial magma on X is a mapping t : D → X , where D ⊆ X × X is the
(partial) domain of t.

• The above action of SX extends to partial magmas.

• The partial domain D changes to D f = {(f (x), f (y)) : (x , y) ∈ D}.
• Main idea: Built the magmas up by enlarging the partial domain in

several steps.

Theorem

The only invariant domains under the action of SX are the diagonal
∆ = {(x , x) : x ∈ X} and its complement (X × X ) \∆.
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Petr Vojtěchovský (Denver) Enumeration of quandles AGTA 2025 39 / 45



Enumeration of right self-distributive magmas

Partial magmas

A partial magma on X is a mapping t : D → X , where D ⊆ X × X is the
(partial) domain of t.

• The above action of SX extends to partial magmas.

• The partial domain D changes to D f = {(f (x), f (y)) : (x , y) ∈ D}.

• Main idea: Built the magmas up by enlarging the partial domain in
several steps.

Theorem

The only invariant domains under the action of SX are the diagonal
∆ = {(x , x) : x ∈ X} and its complement (X × X ) \∆.
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Enumeration of right self-distributive magmas

A funny result

Let V be any variety of magmas and let n > 0 be fixed.

For 1 ≤ i ≤ n, let mi (V ) be the number of magmas of order n in V
satisfying 1 ∗ 1 = i .

Theorem

m2(V ) = m3(V ) = · · · = mn(V ). (But m1(V ) ̸= m2(V ) in general.)

Proof.

For 1 < i < j , consider f ∈ SX such that f (1) = 1 and f (i) = j .
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Enumeration of right self-distributive magmas

Mapping types

A partial magma t : ∆ → X × X can be identified with the endofunction
x 7→ t(x , x) of X .

The orbits of SX on the space of endofuctions are known as mapping
types. These were first studied by Davis in 1953. In 1972, De Bruijn came
up with a recursive (and hard to evaluate) formula for the number an of
mapping types.

n = 1 2 3 4 5 6 7 8 9
an = 1 3 7 19 47 130 343 961 2615

See the sequence OEIS A001372 for an with n ≤ 1000.
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Enumeration of right self-distributive magmas

Minimal representatives of endofunctions

Endofunctions on Xn = {1, . . . , n} can be ordered lexicographically.

Theorem (Mitchell-M-V 2024)

There is an O(n2) algorithm that for a given endofunction t on Xn returns
the minimal representative of the same mapping type as t.
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Enumeration of right self-distributive magmas

Stratified group action

• We can therefore quickly find all possible diagonals up to
isomorphism.

• Bad news: For a given diagonal, the space might still be very large.

• Next idea: If the stabilizer H of the given diagonal (as a function) is
large, there can be larger H-invariant domains, e.g., add the first
column, then add the first row, etc.

• This results in a stratified group action which can be controlled by
the orbit-stabilizer theorem.

• We tried this for the variety of right self-distributive magmas, that is,
magmas satisfying (xy)z = (xz)(yz).
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Enumeration of right self-distributive magmas

Results of Ježek

Theorem (Ježek 1997)

The number of right self-distributive magmas of order n in absolute terms
and up to isomorphism is

n = 1 2 3 4 5 6
an = 1 9 224 14067 3717524 25488943921
in = 1 6 48 720 33425 35527077∗

• The entry i6 was corrected by us [MV].

• With the stratified group action, the calculation takes 2 seconds for
n ≤ 5, and a few minutes for n = 6.
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Enumeration of right self-distributive magmas

The number of right self-distributive magmas of order 7

The problem of finding a7 is very challenging.

• We considered 108404 orbits of partial domains.

• All but two orbits finished in about 10 days.

• The diagonals 1111223 and 1111123 are trouble. We handled them
interactively.

Theorem (MV)

There are 3, 021, 268, 037, 534, 480 right self-distributive groupoids of
order 7, counted absolutely.

(Disclaimer: We are redoing the calculations to see if we get the same
answer with different orbits.)
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