
Group Theory and Machine Learning:

Symmetries, Equivariances, and

Dimensionality Reduction

Hamid Usefi

Advances in Group Theory and Applications 2025, Napoli, Italy

Outline

Neural Networks

Invariant and Equivariant NN

Symmetric Tensors

Dimensionality Reduction

1

Neural Networks

Neural Networks

x1

x2

x3

...

xn

h
(1)
1

h
(1)
2

h
(1)
3

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

h
(3)
1

h
(3)
2

h
(3)
3

O1

O2

O3

O4

Input

Layer

First

Hidden

Layer

Second

Hidden

Layer

Third

Hidden

Layer

Output

Layer

2

Weights in NN

x1

x2

x3

...

xn

h1

h2

h3

h4

O1

O2

w11

w12

w13

w1n

Input
Hidden

Layer

Output

Layer

We have: h1 = σ(w11x1 + w12x2 + w13x3 + · · ·+ w1nxn + b1),

where σ is a non-linear activation function (such as ReLU or

sigmoid), and b1 is the bias term for neuron h1.

3

Neural Network with Three Hidden Layers and Four Outputs

x1

x2

x3

...

xn

h
(1)
1

h
(1)
2

h
(1)
3

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

h
(3)
1

h
(3)
2

h
(3)
3

O1

O2

O3

O4

Input

Layer

First

Hidden

Layer

Second

Hidden

Layer

Third

Hidden

Layer

Output

Layer

4

Calculations

h(1) = σ
(
W (1)x+ b(1)

)
, h(1) ∈ R3

h(2) = σ
(
W (2)h(1) + b(2)

)
, h(2) ∈ R4

h(3) = σ
(
W (3)h(2) + b(3)

)
, h(3) ∈ R3

fθ(x) = o = σ
(
W (4)h(3) + b(4)

)
, o ∈ R4

fθ(x) = σ

[
W (4)σ

(
W (3)σ

(
W (2)σ

(
W (1)x+ b(1)

)
+ b(2)

)
+ b(3)

)
+ b(4)

]

5

Backpropagation: Key Innovation

“We describe a new learning procedure, back-propagation, for

networks of neurone-like units. The procedure repeatedly adjusts

the weights of the connections in the network so as to minimize a

measure of the difference between the actual output vector of the

net and the desired output vector”1

1Rumelhart, D.E., Hinton, G.E. and Williams, R.J., 1986. Learning

representations by back-propagating errors. Nature, 323(6088), pp.533–536.

6

Backpropagation as Chain Rule

Given a loss function L(θ) and network output fθ(x), the gradient

is computed as:
∂L
∂θ

=
∂L

∂fθ(x)
· ∂fθ(x)

∂θ

• Forward pass: For a deep network with L layers,

h(l) = σ(l)(W (l)h(l−1) + b(l)), h(0) = x

• Output: Final output is fθ(x) = h(L)

• Compute gradients:

∂L
∂W (l)

= δ(l) · (h(l−1))⊤,
∂L
∂b(l)

= δ(l)

• Gradient descent update:

w
(l)
ij ← w

(l)
ij − η ·

∂L
∂w

(l)
ij

7

Backpropagation: A Mathematical View

Given a loss L(θ) and output fθ(x):

∂L
∂θ

=
∂L
∂f
· ∂f
∂θ

• Gradients computed layer-by-layer using chain rule.

• Update step: wij ← wij − η · ∂L/∂wij .

8

Universal Approximation Theorem

Statement:

• If σ is a continuous, non-polynomial activation function (e.g.,

sigmoid, ReLU), then a single hidden-layer neural network can

approximate any continuous function f : Rd → R on a

compact set, as closely as desired.

• The approximation is given by:

f̂ (x) =
N∑

n=1

cn σ

(
d∑

s=1

wnsxs + hn

)

where cn, wns , hn are learned weights and biases.

9

Universal Approximation Theorem

Intuition:

• Neural networks are universal function approximators: with

enough hidden units, they can model any pattern, no matter

how complex.

• The theorem guarantees the existence of such an

approximation for any target continuous function.

Implications:

• Depth is not strictly necessary for universality, but deeper

(multi-layer) networks can be more efficient and practical.

• This result underpins why neural networks are so widely used

for regression and classification.

Leshno et al., Neural Networks, 1993; Cybenko, 1989; Hornik et al., 1989

10

Symmetry and Invariance in Machine Learning: Why?

• Real-world data often comes with inherent structure and
symmetries:

• Images: translational symmetry (2D grids).

• Graphs (e.g., molecules, social networks): permutation

symmetry.

• Sequences (text, speech): temporal structure.

• Successful ML architectures explicitly encode these structures:

• Convolutional Neural Networks (CNNs):

translation-equivariance by weight sharing.

• Graph Neural Networks (GNNs): permutation

invariance/equivariance via neighborhood aggregation.

• Transformers: permutation-equivariant self-attention (initially

agnostic to order).

11

Invariant and Equivariant NN

Motivation

• Neural networks often leverage symmetries (e.g., CNNs for

translation symmetry).

• Focus: Networks invariant to permutations from subgroups

G ≤ Sn.

• Question: Can these networks universally approximate any

G -invariant function?

12

Translation Invariance: Motivation and Example

Example: Suppose our data consists of images

containing a pattern (e.g., a vertical bar).

If the bar appears on the left or right, we want our

classifier to treat both cases the same.

Translation Invariance: The label or prediction

should not depend on the position of the pattern.

Key Idea:

Use a network that respects this symmetry, such as a

CNN, so that

f (x) = f (Tax)

where Ta is a translation by a pixels.

Original x

Translated Tax

Output should be the same for both inputs. Networks like CNNs are designed

to capture this property.
13

Group Actions and Equivariance

Let G be a group acting on sets X and Y . A function f : X → Y

is G -equivariant if:

∀g ∈ G , f (g · x) = g · f (x)

• If the group action on Y is trivial, then f is G -invariant.

• Composition of equivariant maps remains equivariant.

14

Permutation-Invariant and Equivariant Networks

• Let G = Sn, the symmetric group on n elements. Given

x = (x1, . . . , xn) ∈ (Rd)n, the group acts by:

σ · (x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n))

for all σ ∈ Sn.

• f : (Rd)n → R is invariant if f (σ · x) = f (x) for all σ ∈ Sn.

• Deep Sets Theorem ([Zaheer et al., NIPS 2017]:) Any

continuous Sn-invariant function f can be expressed (up to

approximation) as:

f (x1, . . . , xn) = ρ

(
n∑

i=1

ϕ(xi)

)
where ϕ : Rd → Rp and ρ : Rp → R are learnable functions.

• The sum (or mean/max) operation is key: it removes order,

so permutations of xi do not affect the result.
15

Permutation-Invariant and Equivariant Networks

• F : (Rd)n → (Rp)n is equivariant if

F (σ · x) = σ · F (x)

for all σ ∈ Sn.

• Example: A layer defined by

F (x)i = ψ(xi ,
n∑

j=1

ϕ(xj))

is equivariant: permuting the xi permutes the outputs F (x)i

in the same way.

16

Symmetric Tensors

Tensors and Symmetric Tensors

Let V be a vector space (e.g., Rn). An order-k tensor is an

element of:

V⊗k = V ⊗ V ⊗ · · · ⊗ V (k times)

It can be viewed as a multidimensional array Ti1i2...ik .

A tensor T is symmetric if:

Ti1i2...ik = Tiσ(1)iσ(2)...iσ(k)
, ∀σ ∈ Sk

Example:
A symmetric tensor of order 2 over V = Rn is precisely a

symmetric n × n matrix.

17

Symmetric Tensors and Polynomials

The space of symmetric tensors of order k is denoted:

Symk(V) ⊂ V⊗k

This space is isomorphic to homogeneous polynomials of degree k

on V :

Symk(V) ∼= R[x1, . . . , xn]deg=k

Dimension:

dim(Symk(Rn)) =

(
n + k − 1

k

)

• Much smaller than nk = dim(V⊗k).

18

Density of G -Invariant Polynomials

Key Fact: G -invariant polynomials are dense in the space of

continuous G -invariant functions on any compact set K ⊂ Rn.

• By Stone-Weierstrass, for any continuous f : K → R and

ϵ > 0, there exists a polynomial p such that

sup
x∈K ′
|p(x)− f (x)| < ϵ,

where K ′ =
⋃

g∈G g · K .

• Consider the G -invariant polynomial:

q(x) = 1
|G |
∑

g∈G p(g · x)
• For all x ∈ K ,

|q(x)− f (x)| ≤ max
y∈K ′
|p(y)− f (y)| < ϵ

Conclusion: Any continuous G -invariant function can be

uniformly approximated by G -invariant polynomials.
19

Why Symmetric Tensors in ML?

• Permutation Invariance: For data such as sets or graphs,

the order of elements is irrelevant. Functions or networks

designed to process such data must be invariant (or

equivariant) to permutations. Symmetric tensors naturally

encode this invariance, as their entries are unchanged under

any permutation of indices.

• Maron et al. (2019): They showed that any Sn-invariant

function can be written (or approximated) as a function P of

symmetric tensors formed by summing over all k-tuples:

f (x) = P

∑
i

xi ,
∑
i ,j

xi ⊗ xj ,
∑
i ,j ,k

xi ⊗ xj ⊗ xk , . . .

Here, each term (e.g.,

∑
i ,j xi ⊗ xj) is a symmetric tensor,

invariant under permutation of indices.
20

Universality of Invariant Networks (Maron et al., 2019)

Theorem (Maron et al., 2019): Let f : Rn → R be a continuous

G -invariant function for some G ≤ Sn, and K ⊂ Rn a compact set.

Then there exists a G -invariant network that approximates f to

arbitrary precision:

∀ε > 0, ∃ G-invariant network F such that max
x∈K
|F (x)− f (x)| < ε.

Moreover, the construction requires (in general) the use of tensors

of order d , where d depends on the group G .

Maron et al., ”On the Universality of Invariant Networks”, ICML 2019

21

Hilbert-Noether Theorem and Maximal Tensor Order

Hilbert-Noether Theorem (Invariant Theory):

• For any finite group G acting linearly on Rn, the algebra of

G -invariant polynomials is finitely generated by a set of

invariant polynomials of bounded degree.

• For the symmetric group Sn, the generating set consists of

polynomials of degree at most n(n−1)
2 .

• Therefore, any continuous Sn-invariant function f : Rn → R
can be approximated as:

f (x) = P

∑
i

xi ,
∑
i ,j

xi ⊗ xj , . . . ,
∑

i1,...,id

xi1 ⊗ · · · ⊗ xid

where d ≤ n(n−1)

2

22

Bounds (Maron et al.)

• Lower Bound on Tensor Order: For G = An, tensor order

≥ n−2
2 is necessary for universality.

• Define (i1, i2) ∼ (j1, j2) if there exists g ∈ G so that

jℓ = g(iℓ), ℓ = 1, 2. We denote the number of equivalence

classes by |[n]2/G |.
• First-Order Networks: If first-order G -invariant networks are

universal, G must satisfy:

|[n]2/H| < |[n]2/G |, ∀G < H ≤ Sn.

23

Tensor Order and Lower Bound

Bounded Tensor Order

• Use Hilbert-Noether theorem to bound maximal tensor order

to n(n−1)
2 .

Lower Bound (Alternating Group)

• Use transitivity properties of An:

• Proof by contradiction using Vandermonde polynomial:

V (x) =
∏

1≤i<j≤n

(xi − xj)

• V is An-invariant, but not Sn-invariant.

24

First-Order Networks and Necessary Condition

Universality of First-Order Networks

• Known cases: Trivial group, Sn, grid (periodic CNN).

Necessary Condition (2-Closedness)

• Relation to 2-closed groups

|[n]2/H| < |[n]2/G |, ∀G < H ≤ Sn.

• Examples: Fixed-point free groups, cyclic groups.

25

The Action of O(d) on Polynomials

• The orthogonal group O(d) consists of all real d × d matrices

Q with QTQ = I .

• O(d) acts on vectors by x 7→ Qx .

• For any function or polynomial f : Rd → R, the action is:

(Q · f)(x) = f (Q−1x)

• A polynomial f is O(d)-invariant if f (Qx) = f (x) for all

Q ∈ O(d).

• f (x) = ∥x∥2 is O(d)-invariant: ∥Qx∥2 = xTQTQx = ∥x∥2

• f (x1, x2) = xT1 x2 is O(d)-invariant in both arguments.

Key Fact: The classical theory (Weyl, Procesi, etc.) shows that

any O(d)-invariant polynomial in several vectors can be written as

a function of all pairwise dot products:

f (x1, . . . , xk) = P(xTi xj for 1 ≤ i , j ≤ k)
26

Invariants for Matrices under O(d)

• For matrices A1, . . . ,Ak ∈ Rd×n, the action is Q · Ai = QAi

for Q ∈ O(d).

• The basic building blocks for all O(d)-invariant polynomials

are the traces:

Tr(AiA
T
j)

• Every invariant polynomial is a polynomial function of these

traces (Weyl’s first fundamental theorem).

• Example: For A1,A2, both Tr(A1AT
1) and Tr(A1AT

2) are

invariant under all orthogonal transformations.

27

Universal Models for O(d)

• Key result [Miller et al., NeurIPS 2021]: Every continuous

O(d)-invariant or equivariant function of vectors/tensors can

be expressed in terms of a finite set of scalar invariants and

contractions:

xi · xj , Tr(AiA
T
j), etc.

and nonlinear functions thereof.

• Any equivariant output is a universal (nonlinear) function of

these invariants, times basis equivariant tensors.

• Conclusion: For both Sn and O(d), universal models can be

constructed from simple invariant “building blocks.”

28

Real-World Applications of Equivariant/Invariant Networks

1. Drug Discovery and Chemistry

Equivariant networks effectively handle molecular data, respecting

rotational and permutation invariances inherent in molecules.

Examples:

• SchNet for molecular property prediction and dynamics

modeling [Schütt et al., NeurIPS 2017].

• EGNN for molecular dynamics [Satorras et al., ICML 2021].

Schütt, K. T., et al. “SchNet: A continuous-filter convolutional neural network

for modeling quantum interactions.” NeurIPS, 2017.

Satorras, V. G., et al. “E(n) Equivariant Graph Neural Networks.” ICML, 2021.

29

Real-World Applications of Equivariant/Invariant Networks

2. Protein Structure Prediction

DeepMind’s AlphaFold uses equivariant networks to model protein

3D structures from sequence data [Jumper et al., Nature 2021].

Jumper, J., et al. “Highly accurate protein structure prediction with

AlphaFold.” Nature, 2021.

30

Real-World Applications of Equivariant/Invariant Networks

3. Physics and Astronomy

Equivariant neural networks assist in modeling physical systems

and cosmological data, naturally incorporating symmetries.

Examples:

• SE(3)-equivariant neural networks for particle physics

simulations [Fuchs et al., NeurIPS 2020].

• Cosmological simulations and galaxy classification

tasks [Villaescusa-Navarro et al., arXiv 2021].

Fuchs, F. B., et al. “SE(3)-Transformers: 3D Roto-Translation Equivariant

Attention Networks.” NeurIPS, 2020.

Villaescusa-Navarro, F., et al. “Cosmological simulations with equivariant

neural networks.” arXiv:2109.10915, 2021.
31

Dimensionality Reduction

SVD

• Suppose A is an m × n matrix of rank ρ.

• We want to determine linearly dependent columns of A

• Recall SVD of A as A=UΣV T , where Um×m and Vn×n are

orthogonal matrices and Σ = diag(σ1, . . . , σρ, 0, . . . , 0) is an

m × n diagonal matrix.

• Pseudo-inverse of A is the n ×m matrix A† = VΣ−1UT ,

where Σ−1 = diag(σ−1
1 , . . . , σ−1

ρ , 0, . . . , 0).

32

Example

• Consider a 50× 40 synthetic matrix A with the only relations

between columns of A as follows:

−F1 + 2F5 + F6 = 0, F1 − F2 − 3F5 + F6 = 0,

−F3 + F5 − 3F6 = 0, F3 − F4 + 2F5 + 4F6 = 0,

−F7 + F9 − 5F10 = 0, −F8 + 5F9 + F10 = 0.

• Let

M̄ =

−1.0 0 0 0 0 0

0 −1.0 0 0 0 0

0 0 −1.0 0 0 0

0 0 0 −1.0 0 0

2.0 −1.0 1.0 3.0 0 0

1.0 2.0 −3.0 1.0 0 0

.

33

Projector to the null space

• Let P = I − A†A.

• Then Pw = w, for every w ∈ N (A), where N (A) is the null

space of A.

• Range of P is N (A), P2 = P and PT = P.

• So, P is the orthogonal projection onto N (A).

34

Example-projector

The projector PA (rounded up to two decimals) is:

0.69 0 0.06 −0.44 −0.12 −0.06 0 0 0 0 0 · · · 0

0 0.69 0.44 0.06 0.06 −0.12 0 0 0 0 0 · · · 0

0.06 0.44 0.38 0 −0.06 0.19 0 0 0 0 0 · · · 0

−0.44 0.06 0 0.38 −0.19 −0.06 0 0 0 0 0 · · · 0

−0.12 0.06 −0.06 −0.19 0.94 0 0 0 0 0 0 · · · 0

−0.06 −0.12 0.19 −0.06 0 0.94 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0.04 0 −0.04 0.19 0 · · · 0

0 0 0 0 0 0 0 0.04 −0.19 −0.04 0 · · · 0

0 0 0 0 0 0 −0.04 −0.19 0.96 0 0 · · · 0

0 0 0 0 0 0 0.19 −0.04 0 0.96 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
... · · ·

...

0 0 0 0 0 0 0 0 0 0 0 · · · 0

Note:If re-generate A, we still get the same PA.

35

Independent features

Theorem (HU, Computational Statistics & Data Analysis,

2022)
Let A be a matrix and set P = I − A†A. The following are

equivalent:

1. The column Fj of A is independent of the rest of columns of

A;

2. Pj ,j = 0.

36

Clusters

Theorem (HU, CSDA, 2022)

• Let A be a matrix and set P = I − A†A. Then after

re-ordering the columns of A, the projector P has a

block-diagonal form, that is there is a permutation matrix Π

such that ΠPΠT = diag(S1, S2, . . . ,Sk).

• We call the columns within a block Si a cluster.

• If |Si | = 1 then Si is a singleton cluster independent of the

rest of the columns of A (by the previous theorem).

• Each block Si corresponds to a cluster of columns of A that

are linearly dependent with each other, that is if Pi ,j ̸= 0 then

Fi and Fj are in the same cluster.

• Note that the converse of Theorem does not hold, that is

within a cluster we could have columns Fi and Fj such that

Pi ,j = 0. 37

Associated graph

• We associate a graph G to A whose vertices are the columns

of A and we say Fi and Fj are connected if Pi ,j ̸= 0.

• The graph associated to matrix A demonstrating the two

clusters is as follow:

1

23

4

5

6

7 8

9

10

38

Clusters

• In general, we do not know the permutation matrix Π. Our

objective is to retrieve Π from the projector P.

• We can exclude the singletons and assume that Pi ,i ̸= 0, for

all i .

• We consider the graph G associated to P.

• Theorem: Connected components of G correspond to

the clusters.

39

Gene Expression Datasets

In this example, the dataset consists of rows representing patients

and columns representing genes (features). The cancer status for

each patient is noted in an additional column, referred to as the

“outcome column.”

Patient gene1 gene2 · · · genen Cancer

Patient1 5.32 7.85 1.22 3.14 Yes

Patient2 6.23 7.01 0.98 2.95 No
...

...
... · · ·

...
...

PatientM 4.91 6.77 1.05 3.21 Yes

40

The important cluster

Example

Let D = [A | b], where the relations between columns of A are

given by

−F1 + 2F5 + F6 = 0, F1 − F2 − 3F5 + F6 = 0,

−F3 + F5 − 3F6 = 0, F3 − F4 + 2F5 + 4F6 = 0,

−F7 + F9 − 5F10 = 0, −F8 + 5F9 + F10 = 0.

Let b = 15F3 + 9F9 − 3F12. The last row (column) of the

projector PD = I − D†D is as follows:

(
0.006 0.043 −0.061 0 −0.006 0.018 −0.002 −0.011 −0.002 0 0 0.02 0 · · · 0 0.006

)

Note that non-zero entries in this row represents columns of A that

correlate with b, so the remaining columns can be filtered out as

irrelevant.
41

Thresholds

• Since, the notion of relevancy is not quantitative and one has

to be cautious in removing features. We set a soft threshold

Thirr and we set |Pi ,n+1| = 0 whenever |Pi ,n+1| < Thirr . Note

that the last row (column) of PD reflects the correlations with

b.

• In real datasets we might inherently encounter minor

correlations between features, that is in the matrix PA we

might see very small entries that indicate weak correlations.

We use a threshold Thred to map the weak feature

correlations to zero.

42

Problem

• Generate a synthetic matrix A of size 50× 40 and impose the

following linear dependencies among its columns:

−F1 + 2F5 + F6 = ϵ1, F1 − F2 − 3F5 + F6 = ϵ2,

−F3 + F5 − 3F6 = ϵ3, −F4 + 2F5 + 4F6 = ϵ4,

−F7 + F9 − 5F10 = ϵ5, −F8 + 5F9 + F10 = ϵ6,

where Fi denotes the ith column of A, each ϵj ∼ N(0, σ2j),

and ∥ϵj∥2 = 10−s .

• Problem: Recover the imposed linear dependencies in the

presence of noise.

43

	Neural Networks
	Invariant and Equivariant NN
	Symmetric Tensors
	Dimensionality Reduction

