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2. Introduce Brothier's forest-skein groups.

3. Investigate a new example.
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Thompson's group T

“Does every subfactor have something to do with CFT?” — Jones.
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Forest-skein groups: Tree-diagrams + Jones’ planar algebra

Idea: Pick a “colour set” and a set of “skein relations”, e.g.,

(oo | NV

and look at tree-diagrams, e.g.,

8

Caveat: Not every skein relation gives a group.

Theorem (Brothier '22)
The data ((e,e | t ~ s ) gives three “Thompson-like” groups.
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First examples

Consider two colours e and e.

Skein relation F-type T-type V-type

v ~ v F T V [Thompson '65, Brown '87]

V ~ V F7— Tq— V’T [Cleary '00, Burillo-Nucinkis—Reeves '22]
VAN VA" GWF Z{T ZgV [Brothier 23

P 1st and 2nd examples gives simple, whereas 3rd does not.
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Initial properties

Consider arbitrary forest-skein groups GF, GT, GV.
» Non-abelian, infinite (usually countable, can be uncountable).
» G' and GV always have torsion and G’ can have torsion.
» Can have non-trivial centre.
> All contain ®&nZ.
» G and GV contain Z* Z and GF can contain Z « Z.

» Finitely many colours and skein relations imply finitely
presented groups. [Brothier '22]

» Sometimes simple, sometimes not. [Brothier=S '24]
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A strange new example

Remainder of talk is focused on T-type group G of
(o0 v ~ \>>/ )

> Do we get finitely presented simple groups?

Questions:

» Do they have any new properties?
Attack for simplicity:
» Construct action on circle G ~ S similar to Thompson's
groups. [Brothier '22]
» Deduce D(G) simple if action faithful by classic arguments.
[Higman '54, Epstein '70]
Theorem (Brothier-S. '24)

The action G ~ S is faithful, hence D(G) is simple. Moreover,
G/D(G) is finite, so D(G) is finitely presented.



Graph of the action

Action of O on S for v ~ \y/
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Piecewise-defined homeomorphisms

s L2

Piecewise linear Piecewise projective

> All finitely presented simple groups in the literature acting on
S by homeomorphisms are atleast piecewise projective.
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New dynamical property

Theorem (Brothier-S. '24)

The finitely presented infinite simple group D(G) admits a faithful
action on S by homeomorphisms, however, it admits no non-trivial
piecewise projective action on S.

Let K <1 G be elements acting trivially on a neighbourhood of
0 € S. Suppose D(G) ~ S is non-trivial piecewise projective.
» Germ groups big - contain Z x Z.
» Implies Z « Z — D(K).

» Bounded cohomology: any D(K) ~ S unrolls to D(K) ~ R.

[Ghys '87, Fournier-Facio—Lodha '23]

» The subgroup structure of PP, (R) implies a contradiction.

[Brin—Squier '85, Monod '13]



Thanks for listening!
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