From Vaughan Jones' connections to new infinite simple groups

Ryan Seelig (joint work with Arnaud Brothier)

UNSW Sydney

June 2025

AGTA Conference, Napoli, Italy

<ロト < @ ト < E ト < E ト E の Q O 1/13

Main characters

Vaughan Jones

Arnaud Brothier

<ロ > < 部 > < 言 > < 言 > こ 章 の Q @ 2/13

1. Tell the story of Jones' connections.

- 1. Tell the story of Jones' connections.
- 2. Introduce Brothier's forest-skein groups.

- 1. Tell the story of Jones' connections.
- 2. Introduce Brothier's forest-skein groups.

<ロ > < 母 > < 星 > < 星 > ミ 章 の へ つ 3/13

3. Investigate a new example.

Subfactors

Planar algebra

<ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 三 つ へ C 4/13

<ロ > < 団 > < 豆 > < 豆 > < 豆 > うへで 4/13

"Does every subfactor have something to do with CFT?" - Jones.

"Does every subfactor have something to do with CFT?" - Jones.

"Does every subfactor have something to do with CFT?" - Jones.

"Does every subfactor have something to do with CFT?" - Jones.

"Does every subfactor have something to do with CFT?" - Jones.

"Does every subfactor have something to do with CFT?" - Jones.

4 ロ ト 4 母 ト 4 臣 ト 4 臣 ト 臣 の 9 9 4/13

"Does every subfactor have something to do with CFT?" - Jones.

4 ロ ト 4 母 ト 4 臣 ト 4 臣 ト 臣 の 9 9 4/13

Tree-diagrams and Thompson's groups

Tree-diagrams and Thompson's groups

T and V are finitely presented infinite simple. [Thompson '65]

< □ > < @ > < E > < E > E の Q · 5/13

<ロ > < 回 > < 画 > < 三 > < 三 > 三 の < で 6/13

Idea: Pick a "colour set" and a set of "skein relations", e.g.,

 $\langle \bullet, \bullet | \bigvee \sim \bigvee \rangle$

Idea: Pick a "colour set" and a set of "skein relations", e.g.,

 $\langle \bullet, \bullet | \bigvee \sim \bigvee \rangle$

and look at tree-diagrams, e.g.,

Idea: Pick a "colour set" and a set of "skein relations", e.g.,

and look at tree-diagrams, e.g.,

<ロト < □ ト < 三 ト < 三 ト ミ の < で 6/13

Idea: Pick a "colour set" and a set of "skein relations", e.g.,

and look at tree-diagrams, e.g.,

Caveat: Not every skein relation gives a group.

Idea: Pick a "colour set" and a set of "skein relations", e.g.,

and look at tree-diagrams, e.g.,

Caveat: Not every skein relation gives a group.

Theorem (Brothier '22) The data $\langle \bullet, \bullet | t \sim s \rangle$ gives three "Thompson-like" groups.

Consider two colours • and •.

Consider two colours \bullet and \bullet .

Skein relation F-type T-type V-type

・ロト ・ 一日 ト ・ 三 ト ・ 三 ・ つへ ? /13

 $\checkmark \sim \checkmark$

Consider two colours \bullet and \bullet .

Skein relation F-type T-type V-type $\bigvee \sim \bigvee F T V$ [Thompson '65, Brown '87]

<□ > < @ > < ≧ > < ≧ > ≧ り < ♡ 7/13

Consider two colours • and •.

Skein relationF-typeT-typeV-type $\checkmark \sim \checkmark$ FTV[Thompson '65, Brown '87]

<ロ > < 母 > < 臣 > < 臣 > 臣 の < つ 7/13

 $\bigvee_{\sim}\bigvee$

Consider two colours • and •.

Skein relationF-typeT-typeV-type $\checkmark \sim \checkmark$ FTV $\checkmark \sim \checkmark$ FTV $\checkmark \sim \checkmark$ F_{τ} T_{τ} V_{τ} [Cleary '00, Burillo-Nucinkis-Reeves '22]

Consider two colours • and •.

Skein relation F-type T-type V-type $\checkmark \sim \checkmark$ F T V [Thompson '65, Brown '87] \sim \sim $F_{ au}$ $T_{ au}$ $V_{ au}$ [Cleary '00, Burillo-Nucinkis-Reeves '22] $\bigvee \sim \bigvee \qquad \mathbf{Z} \wr^{\theta}_{\mathbf{Q}} F \qquad \mathbf{Z} \wr^{\theta}_{\mathbf{Q}} T \qquad \mathbf{Z} \wr^{\theta}_{\mathbf{Q}} V$ [Brothier '23]

<□ > < @ > < E > < E > E の Q · 7/13

Consider two colours • and •.

Skein relation F-type T-type V-type $\bigvee \sim \bigvee F T$ V [Thompson '65, Brown '87] $V_{\sim} V_{\tau}$ F_{τ} F_{τ} V_{τ} [Cleary '00, Burillo-Nucinkis-Reeves '22] $\bigvee \sim \bigvee \qquad \mathbf{Z} \wr_{\mathbf{Q}}^{\theta} F \qquad \mathbf{Z} \wr_{\mathbf{Q}}^{\theta} T \qquad \mathbf{Z} \wr_{\mathbf{Q}}^{\theta} V$ [Brothier '23]

1st and 2nd examples gives simple, whereas 3rd does not.

Consider arbitrary forest-skein groups G^F , G^T , G^V .

Consider arbitrary forest-skein groups G^F , G^T , G^V .

▶ Non-abelian, infinite (usually countable, can be uncountable).

<ロト < 団ト < 巨ト < 巨ト < 巨 の < の 8/13

Consider arbitrary forest-skein groups G^F , G^T , G^V .

Non-abelian, infinite (usually countable, can be uncountable).

<ロト < 団ト < 巨ト < 巨ト < 巨 の < の 8/13

• G^T and G^V always have torsion and G^F can have torsion.

Consider arbitrary forest-skein groups G^F , G^T , G^V .

▶ Non-abelian, infinite (usually countable, can be uncountable).

<ロト < 団ト < 巨ト < 巨ト < 巨 の < の 8/13

- G^T and G^V always have torsion and G^F can have torsion.
- Can have non-trivial centre.

Consider arbitrary forest-skein groups G^F , G^T , G^V .

▶ Non-abelian, infinite (usually countable, can be uncountable).

<ロ > < 回 > < 画 > < 三 > < 三 > 三 の へ の 8/13

- G^T and G^V always have torsion and G^F can have torsion.
- Can have non-trivial centre.
- ► All contain ⊕_NZ.

Consider arbitrary forest-skein groups G^F , G^T , G^V .

- Non-abelian, infinite (usually countable, can be uncountable).
- G^T and G^V always have torsion and G^F can have torsion.
- Can have non-trivial centre.
- ► All contain ⊕_NZ.
- G^T and G^V contain $\mathbf{Z} * \mathbf{Z}$ and G^F can contain $\mathbf{Z} * \mathbf{Z}$.

Consider arbitrary forest-skein groups G^F , G^T , G^V .

- Non-abelian, infinite (usually countable, can be uncountable).
- G^T and G^V always have torsion and G^F can have torsion.
- Can have non-trivial centre.
- ► All contain ⊕_NZ.
- G^T and G^V contain $\mathbf{Z} * \mathbf{Z}$ and G^F can contain $\mathbf{Z} * \mathbf{Z}$.
- Finitely many colours and skein relations imply finitely presented groups. [Brothier '22]

<ロト

Consider arbitrary forest-skein groups G^F , G^T , G^V .

- ▶ Non-abelian, infinite (usually countable, can be uncountable).
- G^T and G^V always have torsion and G^F can have torsion.
- Can have non-trivial centre.
- ► All contain ⊕_NZ.
- G^T and G^V contain $\mathbf{Z} * \mathbf{Z}$ and G^F can contain $\mathbf{Z} * \mathbf{Z}$.
- Finitely many colours and skein relations imply finitely presented groups. [Brothier '22]
- Sometimes simple, sometimes not. [Brothier-S '24]

<ロト

Remainder of talk is focused on T-type group G of

 $\langle \bullet, \bullet | \bigvee \sim \langle \lor \rangle$

Remainder of talk is focused on T-type group G of

 $\langle \bullet, \bullet | \checkmark \sim \checkmark \rangle$

Questions:

Remainder of talk is focused on T-type group G of

Questions:

Do we get finitely presented simple groups?

Remainder of talk is focused on T-type group G of

Questions:

- Do we get finitely presented simple groups?
- Do they have any new properties?

Remainder of talk is focused on T-type group G of

$$\langle \bullet, \bullet | \checkmark \sim \checkmark \rangle$$

Questions:

- Do we get finitely presented simple groups?
- Do they have any new properties?

Attack for simplicity:

 Construct action on circle G
 S similar to Thompson's groups.
 [Brothier '22]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 9/13

Remainder of talk is focused on T-type group G of

$$\langle \bullet, \bullet | \checkmark \sim \checkmark \rangle$$

Questions:

- Do we get finitely presented simple groups?
- Do they have any new properties?

Attack for simplicity:

Construct action on circle G
S similar to Thompson's groups.
[Brothier '22]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 9/13

• Deduce D(G) simple if action faithful by classic arguments.

[Higman '54, Epstein '70]

Remainder of talk is focused on T-type group G of

Questions:

- Do we get finitely presented simple groups?
- Do they have any new properties?

Attack for simplicity:

- Construct action on circle G
 S similar to Thompson's groups.
 [Brothier '22]
- Deduce D(G) simple if action faithful by classic arguments.

[Higman '54, Epstein '70]

Theorem (Brothier-S. '24)

The action $G \curvearrowright \mathbf{S}$ is faithful, hence D(G) is simple.

Remainder of talk is focused on T-type group G of

Questions:

- Do we get finitely presented simple groups?
- Do they have any new properties?

Attack for simplicity:

- Construct action on circle G
 S similar to Thompson's groups.
 [Brothier '22]
- Deduce D(G) simple if action faithful by classic arguments.

[Higman '54, Epstein '70]

Theorem (Brothier-S. '24)

The action $G \curvearrowright \mathbf{S}$ is faithful, hence D(G) is simple. Moreover, G/D(G) is finite, so D(G) is finitely presented.

Graph of the action

۹.℃ 10/13

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ● ○ ○ ○ 11/13

Piecewise linear

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ♪ ♀ ≧ りへで 11/13

Piecewise linear

Piecewise projective

4 ロ ト 4 母 ト 4 差 ト 4 差 ト 差 の 4 で 11/13

All finitely presented simple groups in the literature acting on
 S by homeomorphisms are atleast piecewise projective.

Theorem (Brothier-S. '24)

The finitely presented infinite simple group D(G) admits a faithful action on **S** by homeomorphisms

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Brothier-S. '24)

The finitely presented infinite simple group D(G) admits a faithful action on **S** by homeomorphisms, however, it admits no non-trivial piecewise projective action on **S**.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Brothier-S. '24)

The finitely presented infinite simple group D(G) admits a faithful action on **S** by homeomorphisms, however, it admits no non-trivial piecewise projective action on **S**.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $K \lhd G$ be elements acting trivially on a neighbourhood of $0 \in \mathbf{S}$.

Theorem (Brothier-S. '24)

The finitely presented infinite simple group D(G) admits a faithful action on **S** by homeomorphisms, however, it admits no non-trivial piecewise projective action on **S**.

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り へ ♡ 12/13

Let $K \lhd G$ be elements acting trivially on a neighbourhood of $0 \in \mathbf{S}$. Suppose $D(G) \frown \mathbf{S}$ is non-trivial piecewise projective.

Theorem (Brothier-S. '24)

The finitely presented infinite simple group D(G) admits a faithful action on **S** by homeomorphisms, however, it admits no non-trivial piecewise projective action on **S**.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ○ Q ○ 12/13

Let $K \lhd G$ be elements acting trivially on a neighbourhood of $0 \in \mathbf{S}$. Suppose $D(G) \frown \mathbf{S}$ is non-trivial piecewise projective.

► Germ groups big - contain **Z** * **Z**.

Theorem (Brothier-S. '24)

The finitely presented infinite simple group D(G) admits a faithful action on **S** by homeomorphisms, however, it admits no non-trivial piecewise projective action on **S**.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 12/13

Let $K \lhd G$ be elements acting trivially on a neighbourhood of $0 \in \mathbf{S}$. Suppose $D(G) \frown \mathbf{S}$ is non-trivial piecewise projective.

- ► Germ groups big contain **Z** * **Z**.
- lmplies $\mathbf{Z} * \mathbf{Z} \hookrightarrow D(K)$.

Theorem (Brothier-S. '24)

The finitely presented infinite simple group D(G) admits a faithful action on **S** by homeomorphisms, however, it admits no non-trivial piecewise projective action on **S**.

Let $K \lhd G$ be elements acting trivially on a neighbourhood of $0 \in \mathbf{S}$. Suppose $D(G) \frown \mathbf{S}$ is non-trivial piecewise projective.

- ► Germ groups big contain **Z** * **Z**.
- lmplies $\mathbf{Z} * \mathbf{Z} \hookrightarrow D(K)$.
- ▶ Bounded cohomology: any $D(K) \frown \mathbf{S}$ unrolls to $D(K) \frown \mathbf{R}$. [Ghys '87, Fournier-Facio-Lodha '23]

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ○ Q ○ 12/13

Theorem (Brothier-S. '24)

The finitely presented infinite simple group D(G) admits a faithful action on **S** by homeomorphisms, however, it admits no non-trivial piecewise projective action on **S**.

Let $K \lhd G$ be elements acting trivially on a neighbourhood of $0 \in \mathbf{S}$. Suppose $D(G) \frown \mathbf{S}$ is non-trivial piecewise projective.

- ► Germ groups big contain **Z** * **Z**.
- lmplies $\mathbf{Z} * \mathbf{Z} \hookrightarrow D(K)$.
- ▶ Bounded cohomology: any $D(K) \frown \mathbf{S}$ unrolls to $D(K) \frown \mathbf{R}$. [Ghys '87, Fournier-Facio-Lodha '23]

The subgroup structure of PP₊(R) implies a contradiction. [Brin-Squier '85, Monod '13]

Thanks for listening!

- A. Brothier. Forest-skein groups I: between Vaughan Jones' subfactors and Richard Thompson's groups. *Preprint, arXiv:2207.03100,* 2022.
- A. Brothier. Forest-skein groups II: Construction from homogeneously presented monoids. *Internat. J. Math.*, 34(8):Paper No. 2350042, 41, 2023.
- A. Brothier and R. Seelig. Forest-skein groups III: simplicity. Preprint, arXiv:2406.09718, 2024.
- A. Brothier and R. Seelig. Forest-skein groups IV: dynamics. Preprint, arXiv:2411.12569, 2024.

<ロト < 目 > < 目 > < 目 > 目 の へ ? 13/13