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Plan of the talk

1. Tell the story of Jones’ connections.

2. Introduce Brothier’s forest-skein groups.

3. Investigate a new example.
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▶ T and V are finitely presented infinite simple. [Thompson ’65]
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Forest-skein groups: Tree-diagrams + Jones’ planar algebra

Idea: Pick a “colour set” and a set of “skein relations”, e.g.,

⟨ •, • | ∼ ⟩

and look at tree-diagrams, e.g.,

∼

Caveat: Not every skein relation gives a group.

Theorem (Brothier ’22)

The data ⟨ •, • | t ∼ s ⟩ gives three “Thompson-like” groups.
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First examples

Consider two colours • and •.

Skein relation F -type T -type V -type

∼ F T V [Thompson ’65, Brown ’87]

∼ Fτ Tτ Vτ [Cleary ’00, Burillo–Nucinkis–Reeves ’22]

∼ Z ≀θQ F Z ≀θQ T Z ≀θQ V [Brothier ’23]

▶ 1st and 2nd examples gives simple, whereas 3rd does not.
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Initial properties

Consider arbitrary forest-skein groups GF , GT , GV .

▶ Non-abelian, infinite (usually countable, can be uncountable).

▶ GT and GV always have torsion and GF can have torsion.

▶ Can have non-trivial centre.

▶ All contain ⊕NZ.

▶ GT and GV contain Z ∗ Z and GF can contain Z ∗ Z.

▶ Finitely many colours and skein relations imply finitely
presented groups. [Brothier ’22]

▶ Sometimes simple, sometimes not. [Brothier–S ’24]
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A strange new example

Remainder of talk is focused on T -type group G of

⟨ •, • | ∼ ⟩

Questions:

▶ Do we get finitely presented simple groups?

▶ Do they have any new properties?

Attack for simplicity:

▶ Construct action on circle G ↷ S similar to Thompson’s
groups. [Brothier ’22]

▶ Deduce D(G ) simple if action faithful by classic arguments.
[Higman ’54, Epstein ’70]

Theorem (Brothier–S. ’24)

The action G ↷ S is faithful, hence D(G ) is simple. Moreover,
G/D(G ) is finite, so D(G ) is finitely presented.
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Graph of the action

Action of on S for ∼ .
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Piecewise-defined homeomorphisms

Piecewise linear Piecewise projective

▶ All finitely presented simple groups in the literature acting on
S by homeomorphisms are atleast piecewise projective.
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New dynamical property

Theorem (Brothier–S. ’24)

The finitely presented infinite simple group D(G ) admits a faithful
action on S by homeomorphisms

, however, it admits no non-trivial
piecewise projective action on S.

Let K ◁ G be elements acting trivially on a neighbourhood of
0 ∈ S. Suppose D(G ) ↷ S is non-trivial piecewise projective.

▶ Germ groups big - contain Z ∗ Z.

▶ Implies Z ∗ Z ↪→ D(K ).

▶ Bounded cohomology: any D(K ) ↷ S unrolls to D(K ) ↷ R.
[Ghys ’87, Fournier-Facio–Lodha ’23]

▶ The subgroup structure of PP+(R) implies a contradiction.
[Brin–Squier ’85, Monod ’13]
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Thanks for listening!

▶ A. Brothier. Forest-skein groups I: between Vaughan Jones’ subfactors
and Richard Thompson’s groups. Preprint, arXiv:2207.03100, 2022.

▶ A. Brothier. Forest-skein groups II: Construction from homogeneously
presented monoids. Internat. J. Math., 34(8):Paper No. 2350042, 41,
2023.

▶ A. Brothier and R. Seelig. Forest-skein groups III: simplicity. Preprint,
arXiv:2406.09718, 2024.

▶ A. Brothier and R. Seelig. Forest-skein groups IV: dynamics. Preprint,
arXiv:2411.12569, 2024.


