

On the irreducibility of monomial representations for set-theoretical solutions to the Yang–Baxter equation

Joint work with C. Dietzel and E. Feingesicht arXiv:2409.10648

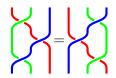
Silvia Properzi

June 25, 2025

Research Foundation Flanders Opening new horizons

Set-theoretic solutions of the YBE:

A set X and a bijective map $r: X \times X \to X \times X$ such that



 $(r \times id) \circ (id \times r) \circ (r \times id) = (id \times r) \circ (r \times id) \circ (id \times r).$

We will use the notation $r(x, y) = (\lambda_x(y), \rho_y(x))$. A solution is:

- ▶ non-degenerate if λ_x , ρ_x are bijective for all $x \in X$;
- **involutive** if $r^2 = id$.

With **solution** we mean finite involutive non-degenerate set-theoretic solution to the Yang–Baxter equation.

$$\rho_{\mathbf{y}}(\mathbf{x}) = \lambda_{\lambda_{\mathbf{x}}(\mathbf{y})}^{-1}(\mathbf{x}).$$

Note that, given any set X, $r = id_{X^2}$ is an involutive degenerate solution.

- Flip solution on a finite set X: r(x, y) = (y, x), i.e. $\lambda_x = id_X$ for every $x \in X$
- (Involutive) Lyubashenko solution on a finite set X: $r(x, y) = (\lambda(y), \lambda^{-1}(x))$ for λ a permutation of X.
- Our main example: (Involutive) Lyubashenko solution on $X_n = \{x_1, \dots, x_n\}$ with $\lambda : x_i \mapsto x_{i+1}$, where the indices are considered modulo n (λ is an n-cycle of X_n):

$$r(x_i, x_j) = (x_{j+1}, x_{i-1}).$$

A solution (X, r) is **indecomposable** if there is no non-trivial partition $X = A \sqcup B$ such that $r(A^2) = A^2$ and $r(B^2) = B^2$.

The **permutation group** of a solution (*X*, *r*) is

$$\mathcal{G}(X, \mathbf{r}) = \langle \lambda_{\mathbf{x}} \mid \mathbf{x} \in \mathbf{X} \rangle \leq \operatorname{Sym}_{\mathbf{X}}.$$

Proposition (Etingof-Schedler-Soloviev, 1999)

(X, r) is indecomposable $\iff \mathcal{G}(X, r)$ acts transitively on X.

PERMUTATION BRACE

Let (X, r) be a solution, then $\mathcal{G}(X, r) = \langle \lambda_X | x \in X \rangle$ has a **brace** structure $(\mathcal{G}(X, r), +, \circ)$ with addition induced by

$$\lambda_{\mathbf{X}} + \lambda_{\mathbf{y}} = \lambda_{\mathbf{X}} \circ \lambda_{\lambda_{\mathbf{X}}^{-1}(\mathbf{y})}$$
 for $\mathbf{X}, \mathbf{y} \in \mathbf{X}$.

The **Dehornoy class** of a solution (X, r) is the exponent of the group $(\mathcal{G}(X, r), +)$.

Proposition (Feingesicht, 2024)

Let (X, r) be a solution of size n and Dehornoy class d, then

d divides $|\mathcal{G}(X, r)|$ divides d^n .

Example:

• X_n is indecomposable and it has Dehornoy class n:

$$\mathcal{G}(X_n) = \langle \lambda \rangle \cong C_n \text{ and } + = \circ.$$

STRUCTURE BRACE

Etingof–Schedler–Soloviev defined the **structure group** of a solution (X, r) is

$$\mathbf{G}(\mathbf{X},\mathbf{r}) = \langle \mathbf{X} \mid \mathbf{x} \circ \mathbf{y} = \mathbf{u} \circ \mathbf{v}, \text{ for } \mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v} \in \mathbf{X} \text{ s.t. } \mathbf{r}(\mathbf{x},\mathbf{y}) = (\mathbf{u},\mathbf{v}) \rangle.$$

Examples:

• For (*X*, *r*) the flip solution on a set *X* of size *n*, the structure group is

$$G(X) = \langle X \mid x \circ y = y \circ x \text{ for } x, y \in X \rangle,$$

i.e. the free abelian group on *n* generators.

• The structure group of X_n is

$$G(X_n) = \langle x_1, \ldots, x_n \mid x_i \circ x_j = x_{j+1} \circ x_{i-1}. \rangle$$

STRUCTURE BRACE

Let (X, r) be a solution, then G(X, r) has a **brace structure** $(G(X, r), +, \circ)$ with addition induced by

$$x + y = x \circ \lambda_x^{-1}(y)$$
 for $x, y \in X$.

Moreover, if (X, r) has Dehornoy class d, the set

$$kdG(X,r) = \{(kd)g \mid g \in G(X,r)\}$$

is an ideal for every positive integer k. We define

$$\overline{G}_k(X,r) = G(X,r)/kdG(X,r).$$

Proposition

Let (X, r) be a solution, then

$$\mathcal{G}(\mathbf{X},\mathbf{r}) = \overline{\mathbf{G}}_k(\mathbf{X},\mathbf{r}) / \operatorname{Soc}(\overline{\mathbf{G}}_k(\mathbf{X},\mathbf{r})).$$

Theorem (Dehornoy, 2015)

Let (X, r) be a solution of Dehornoy class d, then the map $x \mapsto P_{\lambda_x} D_x$ extends to a faithful representation

$$egin{aligned} \Theta: \mathsf{G}(X) &
ightarrow \mathsf{M}_X(\mathbb{C}(q)) \ g &= \sum_{x \in X} g_x x \mapsto \left(\prod_{x \in X} \mathsf{D}_x^{g_x}
ight) \mathsf{P}_{\lambda_g} \end{aligned}$$

Moreover for every positive integer **k**, the evaluation $\mathbf{q} = \zeta_{kd}$ yields a faithful representation

$$\overline{\Theta}_k: \overline{G_k(X)} \to M_X(\mathbb{C}),$$

INDECOMPOSABILITY VS IRREDUCIBILITY

Recall that (X, r) is **indecomposable** if there is no non-trivial partition $X = A \sqcup B$ such that $r(A^2) = A^2$ and $r(B^2) = B^2$.

What is the connection between indecomposability of the solution and irreducibility of the representations?

► If (X, r) is decomposable, then Θ and $\overline{\Theta_k}$ are reducible: if $X = A \sqcup B$ is a decomposition, then the subspaces of $\mathbb{C}(q)^X$ spanned by A and B are invariant.

INDECOMPOSABILITY VS IRREDUCIBILITY - CASE K > 1

Let (X, r) be a solution of size n and Dehornoy class d. Recall

 $\Theta: G(X) \to M_X(\mathbb{C}(q)) \qquad \overline{\Theta}_k: \overline{G_k(X)} \to M_X(\mathbb{C})$

Theorem (C. Dietzel, E. Feingesicht, S.P., 2025)

Suppose that k > 1, then the following are equivalent:

- 1. X is indecomposable,
- 2. Θ is irreducible,
- 3. $\overline{\Theta}_k$ is irreducible.

INDECOMPOSABILITY VS IRREDUCIBILITY - CASE K = 1

What about the case k = 1?

Let (X, r) be a solution of size n and Dehornoy class d. Recall

$$\Theta: \mathsf{G}(X) o \mathsf{M}_X(\mathbb{C}(q)) \qquad \overline{\Theta}_k: \overline{\mathsf{G}_k(X)} o \mathsf{M}_X(\mathbb{C})$$

Theorem (C. Dietzel, E. Feingesicht, S.P., 2025)

If (X, r) is indecomposable, $\overline{\Theta}_1$ is irreducible if and only if

$$d > 2$$
 or $d = 2$ and $|\mathcal{G}(X, r)| < 2^{\frac{n}{2}}$.

Examples:

• X_2 is indecomposable but $\overline{\Theta}_1$ is reducible:

$$\overline{\Theta}_1(x_1) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $\overline{\Theta}_1(x_2) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = -\overline{\Theta}(x_1).$

REFERENCES

- C. Dietzel, E. Feingesicht, S. Properzi, Indecomposability and irreducibility of monomial representations for set-theoretical solutions to the Yang-Baxter equation, arXiv:2409.10648 (2025).
- F.Cedó, Left Braces: Solutions of the Yang-Baxter Equation, Advances in Group Theory and Applications 5 (2018), 33 90.
- P. Dehornoy, Set-theoretic solutions of the Yang–Baxter equation, RC-calculus, and Garside germs, Advances in Mathematics 282 (2015), 93 – 127.
- V. Drinfeld, On Some Unsolved Problems in Quantum Group Theory, Lecture Notes in Mathematics 1510 (1992), 1 – 8.
- P. Etingof, T. Schedler, A Soloviev. Set-Theoretical Solutions to the Quantum Yang–Baxter Equation, Duke Mathematical Journal 100 (1999), 169–209
- E. Feingesicht. Dehornoy's Class and Sylows for Set-Theoretical Solutions of the Yang-Baxter Equation, International Journal of Algebra and Computation 34 (2024), 147–173