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Let V = Fn
p and let Wn be the Sylow p-subgroup of Sym(V ).

Wn
..= ≀ni=1 Fp = Fun(Fn−1

p ,Fp)⋊Wn−1.

The group Fun(Fn−1
p ,Fp) is the last base group of the wreath product and it may be

identified with the additive group of the polynomials in n − 1 variables in which every
variable appears with degree at most p − 1.
In particular, the k-th base subgroup Bk of Wn is defined as

Bk
..= Fun(Fk−1

p ,Fp) ∼= Fp[x1, . . . , xk ]/(x
p
1 − x1, . . . , x

p
k−1 − xk−1)

We will denote an homogeneous element f in Bk as f∆k .
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Let 1 ≤ i < k ≤ n be two integers.

For each element h∆i ∈ Bi , we define the operator ∆i by

∆i (h)(f (x)∆k) = (f (x + hei )− f (x))∆k . (1)

This operator can be used to express the conjugation action of an element h∆i ∈ Bi on
an element f∆k ∈ Bk by way of the commutator

[f∆k , h∆i ] = ∆i (h)
(
f∆k

)
.

The element f∆k ∈ Bk acts on (x1, . . . , xn) ∈ V via the translation

(x1, . . . , xn) → (x1, . . . , xn)− ek f (x1, . . . , xk−1).
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We denote by T the group generated by

T = ⟨∆1, . . . ,∆n⟩. (2)

We call T the canonical elementary abelian regular subgroup of Wn.
Notice that T is the image of the right regular representation σ : V → Sym(V ).
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Our aim is to determine the growth of the normalizer chain originating from T and
defined as follows.

Ni =


T if i = −1

Un if i = 0

NSym(V )(Ni−1) if i ≥ 1,

(3)

where Un is the p-Sylow subgroup of AGL(V ).
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Theorem ([Aragona et al., 2021])

For every k ≥ 1, we have NSym(V )(Nk−1) = NWn(Nk−1).

Thus, the chain of normalizers for i ≥ 1 of T in Sym(V ) is equal to the chain of
normalizers of T in Wn.
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Power Monomials

Let Λ = (λ1, . . . , λi , . . . ) be a sequence of non-negative integers with finite support and
weight

wt(Λ) ..=
∞∑
i=1

iλi < ∞,

we shall say that Λ is a partition of N if wt(Λ) = N.

The power monomial xΛ , where Λ is
a partition, is defined as

xΛ =
∞∏
i=1

xλi
i .
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Central series of Wn

The first step was to compute the lower and upper central series of Wn.

Lemma

Let i ≥ 1, then γi (Wn) ∩ Bk = ⟨xΛ∆k | pdeg(xΛ∆k) ≤ pn−1 − i⟩.

And so

γi (Wn) = γi+1(Wn)⋊ ⟨cxΛ∆k | pdeg(xΛ) = pn−1 − i , 1 ≤ k ≤ n and c ∈ Fp⟩.
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Corollary

Two consecutive terms of the lower central series are elementary abelian.

So that the graded Lie algebra Ln associated with the lower central series of Wn inherits
the structure of a Lie algebra over Fp.

We have that
Ln = ≀n L1,

where L1 is the one dimensional algebra over Fp.
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We identify Ln as the subalgebra of the Witt algebra over Fp in n variables spanned by
the basis

B =
n⋃

k=1

Bk where Bk =
{
xΛ∂k | Λ ∈ Pp(k − 1)

}
.

where Pp(k − 1) denotes the set of all the partitions with values in {1, . . . , p − 1} and
whose maximal part is less then or equal to k − 1.

The product of Ln is defined on the basis B as follows[
xΛ∂k , x

Θ∂j

]
:= ∂j(x

Λ)xΘ∂k − xΛ∂k(x
Θ)∂j

=


∂j(x

Λ)xΘ∂k if j < k,

−xΛ∂k(x
Θ)∂j if j > k,

0 otherwise.
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Theorem

The lower and upper central series of Wn coincide. The same holds for the central series
of Ln.

This result was already proven by Kaloujnine in group context. We provided an
alternative proof of it and we proved that the same holds also for Ln.
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Normal subgroups

Let N be a normal subgroup of Wn which is contained in the last n− k base subgroups of
Wn.

We have that N contains γpk−1+1(Wn), the pk−1 + 1-th term of the lower central
series, and

|N : γpk−1+1(Wn)| ≤
(
pp

k−1)n−k+1
.

In particular this index is bounded above by a function depending only on p and k .

In the special case in which k = n, the normal subgroup N coincides with a term of the
lower central series.
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The map φ

The lower central series of Wn allow us to construct an explicit map from Wn to Ln and
the group Wn.

Let xΛ∆k ∈ Wn be a monomial element in the k-th base subgroup of Wn. We define

φi (x
Λ∆k) =

{
xΛ∂k if xΛ∆k ∈ γi (Wn) \ γi+1(Wn)

0 otherwise

For a polynomial element f∆k , we define φi (f∆k) ..= φi (lt(f∆k)), where lt(f∆k) is the
leading term of the polynomial f with respect to a p-weighted degree.
And, in general, for g = g1 . . . gn ∈ Wn, we set

φi (g) =

{∑n
j=1 φi (lt(gj)) if g ∈ γi (Wn) \ γi+1(Wn),

0 otherwise.
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Normalizer chain

We recall that we wanted to compute the following chain of normalizers originating from
T .

Ni =

{
T if i = −1

NWn(Ni−1) if i ≥ 0
(4)

Thanks to the map φ, we can relate this chain to the corresponding chain of idealizers in
Ln. In particular, we prove that

|NLn(H
φ)| = |NWn(H)|.

As a consequence, the growth of the chain of normalizers in Wn matches the growth of
the chain of idealizers in the algebra Ln.
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Consider

qp,i =
i∑

j=1

tp,j

where tp,j denotes the number of partitions of j into at least two parts, where each part
can be repeated at most p − 1 times.

Theorem ([Aragona et al., 2024a])

Let 1 ≤ i ≤ n − 1, then |Ni/Ni−1| = pqp,i+1 .

We find a correspondence between the normalizer chain and particular partitions of
integers.
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Thank you!
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