Normality conditions in the Sylow *p*-subgroup of $Sym(p^n)$ and its associated Lie algebra

Giuseppe Nozzi

A joint work with R.Aragona and N.Gavioli University of L'Aquila

24/06/2025

Let $V = \mathbb{F}_p^n$ and let W_n be the Sylow *p*-subgroup of Sym(V).

$$W_n := \wr_{i=1}^n \mathbb{F}_p = \mathsf{Fun}(\mathbb{F}_p^{n-1}, \mathbb{F}_p) \rtimes W_{n-1}.$$

Let $V = \mathbb{F}_p^n$ and let W_n be the Sylow *p*-subgroup of Sym(V).

$$W_n := \wr_{i=1}^n \mathbb{F}_p = \operatorname{Fun}(\mathbb{F}_p^{n-1}, \mathbb{F}_p) \rtimes W_{n-1}.$$

The group $\operatorname{Fun}(\mathbb{F}_p^{n-1},\mathbb{F}_p)$ is the last base group of the wreath product and it may be identified with the additive group of the polynomials in n-1 variables in which every variable appears with degree at most p-1.

Let $V = \mathbb{F}_p^n$ and let W_n be the Sylow *p*-subgroup of Sym(V).

$$W_n := \wr_{i=1}^n \mathbb{F}_p = \operatorname{Fun}(\mathbb{F}_p^{n-1}, \mathbb{F}_p) \rtimes W_{n-1}.$$

The group $\operatorname{Fun}(\mathbb{F}_p^{n-1},\mathbb{F}_p)$ is the last base group of the wreath product and it may be identified with the additive group of the polynomials in n-1 variables in which every variable appears with degree at most p-1. In particular, the *k*-th base subgroup B_k of W_n is defined as

$$B_k := \mathsf{Fun}(\mathbb{F}_p^{k-1}, \mathbb{F}_p) \cong \mathbb{F}_p[x_1, \ldots, x_k]/(x_1^p - x_1, \ldots, x_{k-1}^p - x_{k-1})$$

We will denote an homogeneous element f in B_k as $f\Delta_k$.

Let $1 \le i < k \le n$ be two integers.

Let $1 \le i < k \le n$ be two integers. For each element $h\Delta_i \in B_i$, we define the operator Δ_i by

$$\Delta_i(h)(f(x)\Delta_k) = (f(x+he_i) - f(x))\Delta_k.$$
(1)

Let $1 \le i < k \le n$ be two integers. For each element $h\Delta_i \in B_i$, we define the operator Δ_i by

$$\Delta_i(h)(f(x)\Delta_k) = (f(x+he_i) - f(x))\Delta_k.$$
(1)

This operator can be used to express the conjugation action of an element $h\Delta_i \in B_i$ on an element $f\Delta_k \in B_k$ by way of the commutator

$$[f\Delta_k, h\Delta_i] = \Delta_i(h)(f\Delta_k).$$

Let $1 \le i < k \le n$ be two integers. For each element $h\Delta_i \in B_i$, we define the operator Δ_i by

$$\Delta_i(h)(f(x)\Delta_k) = (f(x+he_i) - f(x))\Delta_k.$$
(1)

This operator can be used to express the conjugation action of an element $h\Delta_i \in B_i$ on an element $f\Delta_k \in B_k$ by way of the commutator

$$[f\Delta_k, h\Delta_i] = \Delta_i(h)(f\Delta_k).$$

The element $f\Delta_k \in B_k$ acts on $(x_1, \ldots, x_n) \in V$ via the translation

$$(x_1,\ldots,x_n) \rightarrow (x_1,\ldots,x_n) - e_k f(x_1,\ldots,x_{k-1}).$$

We denote by T the group generated by

$$\mathcal{T} = \langle \Delta_1, \dots, \Delta_n \rangle. \tag{2}$$

We denote by T the group generated by

$$T = \langle \Delta_1, \dots, \Delta_n \rangle. \tag{2}$$

We call T the canonical elementary abelian regular subgroup of W_n .

We denote by T the group generated by

$$T = \langle \Delta_1, \dots, \Delta_n \rangle. \tag{2}$$

We call T the canonical elementary abelian regular subgroup of W_n . Notice that T is the image of the right regular representation $\sigma: V \to \text{Sym}(V)$. Our aim is to determine the growth of the normalizer chain originating from ${\cal T}$ and defined as follows.

$$\mathbf{N}_{i} = \begin{cases} T & \text{if } i = -1 \\ U_{n} & \text{if } i = 0 \\ N_{\text{Sym}(V)}(N_{i-1}) & \text{if } i \ge 1, \end{cases}$$
(3)

where U_n is the *p*-Sylow subgroup of AGL(*V*).

Theorem ([Aragona et al., 2021])

For every $k \geq 1$, we have $N_{Sym(V)}(\mathbf{N}_{k-1}) = N_{W_n}(\mathbf{N}_{k-1})$.

Theorem ([Aragona et al., 2021])

For every $k \geq 1$, we have $N_{Sym(V)}(\mathbf{N}_{k-1}) = N_{W_n}(\mathbf{N}_{k-1})$.

Thus, the chain of normalizers for $i \ge 1$ of T in Sym(V) is equal to the chain of normalizers of T in W_n .

Let $\Lambda = (\lambda_1, \dots, \lambda_i, \dots)$ be a sequence of non-negative integers with finite support and weight

$$\operatorname{wt}(\Lambda) := \sum_{i=1}^{\infty} i \lambda_i < \infty,$$

we shall say that Λ is a partition of N if $wt(\Lambda) = N$.

Let $\Lambda = (\lambda_1, \dots, \lambda_i, \dots)$ be a sequence of non-negative integers with finite support and weight

$$\operatorname{wt}(\Lambda) := \sum_{i=1}^{\infty} i\lambda_i < \infty,$$

we shall say that Λ is a partition of N if $wt(\Lambda) = N$. The power monomial x^{Λ} , where Λ is a partition, is defined as

$$x^{\Lambda} = \prod_{i=1}^{\infty} x_i^{\lambda_i}.$$

The first step was to compute the lower and upper central series of W_n .

The first step was to compute the lower and upper central series of W_n .

Lemma

Let
$$i \geq 1$$
, then $\gamma_i(W_n) \cap B_k = \langle x^{\Lambda} \Delta_k \mid \mathsf{pdeg}(x^{\Lambda} \Delta_k) \leq p^{n-1} - i \rangle$.

And so

$$\gamma_i(W_n) = \gamma_{i+1}(W_n) \rtimes \langle cx^{\Lambda} \Delta_k \mid \mathsf{pdeg}(x^{\Lambda}) = p^{n-1} - i, \ 1 \leq k \leq n \text{ and } c \in \mathbb{F}_p \rangle.$$

Corollary

Two consecutive terms of the lower central series are elementary abelian.

So that the graded Lie algebra \mathfrak{L}_n associated with the lower central series of W_n inherits the structure of a Lie algebra over \mathbb{F}_p .

Corollary

Two consecutive terms of the lower central series are elementary abelian.

So that the graded Lie algebra \mathfrak{L}_n associated with the lower central series of W_n inherits the structure of a Lie algebra over \mathbb{F}_p .

We have that

$$\mathfrak{L}_n = \wr^n \mathfrak{L}_1,$$

where \mathfrak{L}_1 is the one dimensional algebra over \mathbb{F}_p .

We identify \mathfrak{L}_n as the subalgebra of the Witt algebra over \mathbb{F}_p in *n* variables spanned by the basis

$$\mathfrak{B} = \bigcup_{k=1}^{"} \mathfrak{B}_k$$
 where $\mathfrak{B}_k = \left\{ x^{\Lambda} \partial_k \mid \Lambda \in \mathcal{P}_p(k-1) \right\}.$

where $\mathcal{P}_p(k-1)$ denotes the set of all the partitions with values in $\{1, \ldots, p-1\}$ and whose maximal part is less then or equal to k-1.

We identify \mathfrak{L}_n as the subalgebra of the Witt algebra over \mathbb{F}_p in *n* variables spanned by the basis

$$\mathfrak{B} = \bigcup_{k=1}^{"} \mathfrak{B}_k$$
 where $\mathfrak{B}_k = \left\{ x^{\Lambda} \partial_k \mid \Lambda \in \mathcal{P}_p(k-1) \right\}.$

where $\mathcal{P}_p(k-1)$ denotes the set of all the partitions with values in $\{1, \ldots, p-1\}$ and whose maximal part is less then or equal to k-1. The product of \mathfrak{L}_p is defined on the basis \mathfrak{B} as follows

$$\begin{bmatrix} x^{\Lambda}\partial_k, x^{\Theta}\partial_j \end{bmatrix} := \partial_j(x^{\Lambda})x^{\Theta}\partial_k - x^{\Lambda}\partial_k(x^{\Theta})\partial_j$$
$$= \begin{cases} \partial_j(x^{\Lambda})x^{\Theta}\partial_k & \text{if } j < k, \\ -x^{\Lambda}\partial_k(x^{\Theta})\partial_j & \text{if } j > k, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem

The lower and upper central series of W_n coincide. The same holds for the central series of \mathfrak{L}_n .

Theorem

The lower and upper central series of W_n coincide. The same holds for the central series of \mathfrak{L}_n .

This result was already proven by Kaloujnine in group context. We provided an alternative proof of it and we proved that the same holds also for \mathfrak{L}_n .

Let N be a normal subgroup of W_n which is contained in the last n - k base subgroups of W_n .

Let N be a normal subgroup of W_n which is contained in the last n - k base subgroups of W_n . We have that N contains $\gamma_{p^{k-1}+1}(W_n)$, the $p^{k-1} + 1$ -th term of the lower central series, and

$$|\mathsf{N}:\gamma_{\mathsf{p}^{k-1}+1}(W_n)|\leq \left(\mathsf{p}^{\mathsf{p}^{k-1}}\right)^{n-k+1}.$$

Let N be a normal subgroup of W_n which is contained in the last n - k base subgroups of W_n . We have that N contains $\gamma_{p^{k-1}+1}(W_n)$, the $p^{k-1} + 1$ -th term of the lower central series, and

$$|N:\gamma_{p^{k-1}+1}(W_n)| \leq (p^{p^{k-1}})^{n-k+1}$$

In particular this index is bounded above by a function depending only on p and k.

Let N be a normal subgroup of W_n which is contained in the last n - k base subgroups of W_n . We have that N contains $\gamma_{p^{k-1}+1}(W_n)$, the $p^{k-1} + 1$ -th term of the lower central series, and

$$|N:\gamma_{p^{k-1}+1}(W_n)| \leq (p^{p^{k-1}})^{n-k+1}.$$

In particular this index is bounded above by a function depending only on p and k.

In the special case in which k = n, the normal subgroup N coincides with a term of the lower central series.

The lower central series of W_n allow us to construct an explicit map from W_n to \mathfrak{L}_n and the group W_n .

The map φ

The lower central series of W_n allow us to construct an explicit map from W_n to \mathfrak{L}_n and the group W_n .

Let $x^{\Lambda}\Delta_k \in W_n$ be a monomial element in the k-th base subgroup of W_n . We define

$$arphi_i(x^{\Lambda}\Delta_k) = egin{cases} x^{\Lambda}\partial_k & ext{ if } x^{\Lambda}\Delta_k \in \gamma_i(W_n) \setminus \gamma_{i+1}(W_n) \ 0 & ext{ otherwise} \end{cases}$$

For a polynomial element $f\Delta_k$, we define $\varphi_i(f\Delta_k) := \varphi_i(\operatorname{lt}(f\Delta_k))$, where $\operatorname{lt}(f\Delta_k)$ is the leading term of the polynomial f with respect to a p-weighted degree.

The map arphi

The lower central series of W_n allow us to construct an explicit map from W_n to \mathfrak{L}_n and the group W_n .

Let $x^{\Lambda}\Delta_k \in W_n$ be a monomial element in the k-th base subgroup of W_n . We define

$$arphi_i(x^{\Lambda}\Delta_k) = egin{cases} x^{\Lambda}\partial_k & ext{ if } x^{\Lambda}\Delta_k \in \gamma_i(W_n) \setminus \gamma_{i+1}(W_n) \ 0 & ext{ otherwise} \end{cases}$$

For a polynomial element $f\Delta_k$, we define $\varphi_i(f\Delta_k) := \varphi_i(\operatorname{lt}(f\Delta_k))$, where $\operatorname{lt}(f\Delta_k)$ is the leading term of the polynomial f with respect to a p-weighted degree. And, in general, for $g = g_1 \dots g_n \in W_n$, we set

$$arphi_i(g) = egin{cases} \sum_{j=1}^n arphi_i(\operatorname{lt}(g_j)) & ext{if } g \in \gamma_i(W_n) \setminus \gamma_{i+1}(W_n), \ 0 & ext{otherwise}. \end{cases}$$

We recall that we wanted to compute the following chain of normalizers originating from $\mathcal{T}.$

$$\mathbf{N}_{i} = \begin{cases} T & \text{if } i = -1 \\ N_{W_{n}}(\mathbf{N}_{i-1}) & \text{if } i \geq 0 \end{cases}$$
(4)

We recall that we wanted to compute the following chain of normalizers originating from \mathcal{T} .

$$\mathbf{N}_{i} = \begin{cases} T & \text{if } i = -1 \\ N_{W_{n}}(\mathbf{N}_{i-1}) & \text{if } i \ge 0 \end{cases}$$
(4)

Thanks to the map φ , we can relate this chain to the corresponding chain of idealizers in \mathfrak{L}_n . In particular, we prove that

 $|\mathfrak{N}_{\mathfrak{L}_n}(H^{\varphi})| = |N_{W_n}(H)|.$

We recall that we wanted to compute the following chain of normalizers originating from \mathcal{T} .

$$\mathbf{N}_{i} = \begin{cases} T & \text{if } i = -1 \\ N_{W_{n}}(\mathbf{N}_{i-1}) & \text{if } i \ge 0 \end{cases}$$
(4)

Thanks to the map φ , we can relate this chain to the corresponding chain of idealizers in \mathfrak{L}_n . In particular, we prove that

$$|\mathfrak{N}_{\mathfrak{L}_n}(H^{\varphi})| = |N_{W_n}(H)|.$$

As a consequence, the growth of the chain of normalizers in W_n matches the growth of the chain of idealizers in the algebra \mathfrak{L}_n .

Consider

$$q_{p,i} = \sum_{j=1}^{i} t_{p,j}$$

where $t_{p,j}$ denotes the number of partitions of j into at least two parts, where each part can be repeated at most p-1 times.

Theorem ([Aragona et al., 2024a])

Let $1 \le i \le n-1$, then $|N_i/N_{i-1}| = p^{q_{p,i+1}}$.

We find a correspondence between the normalizer chain and particular partitions of integers.

.

```
Aragona, R., Civino, R., and Gavioli, N. (2024a).
```

A modular idealizer chain and unrefinability of partitions with repeated parts. *Israel J. Math.*, 260(1):441–461.

```
    Aragona, R., Civino, R., Gavioli, N., and Scoppola, C. M. (2021).
    A chain of normalizers in the Sylow 2-subgroups of the symmetric group on 2<sup>n</sup> letters.
Indian J. Pure Appl. Math., 52(3):735–746.
```

```
Aragona, R., Gavioli, N., and Nozzi, G. (2024b).
Transfinite hypercentral iterated wreath product of integral domains.
```

```
🔋 Kaloujnine, L. (1948).
```

La structure des *p*-groupes de Sylow des groupes symétriques finis. Ann. Sci. École Norm. Sup. (3), 65:239–276.

Thank you!