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Introduction



Finite width: definition

A group G in which |v;(G) : v;11(G)| is bounded for all i > 1 is said to
be of finite width.
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Finite width: some historical facts

e Klaas, Leedham-Green, and Plesken proved that a number of linear
pro-p groups related to classical groups over pro-p domains have
finite width.

Conjecture (Zelmanov, 1996)

s it true that a just infinite pro-p group of finite (lower central) width
is either soluble, p-adic analytic (so linear over Q,), or commensurable
to a positive part of a loop group or to the Nottingham group?

e No!
Theorem (Rozhkov)
The Grigorchuk group has finite width.
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Automorphisms of regular rooted trees

e The root is a distinguished vertex.
e The tree is infinite.
e Regular: the number of descendants is the same at every level.

Automorphisms of 74: bijections of the vertices that preserve incidence

e The set Aut 74 of all automorphisms of 7, is a group with respect to
composition between functions.

e The nth level stabilizer St(n) fixes all vertices up to level n.
o If G < Aut7y, we write Stg(n) = G N St(n).
e Also Stg(n) < G.



Describing elements of Aut 7y

Every f € Aut T4 can be written as
f=(h,...,f)o,

where f; € Aut 74 and o € Sym(d).
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The GGS-groups

Let p be an odd prime and 7, the p-adic tree.
The Grigorchuk-Gupta-Sidki group (GGS for short) is defined by

e a=(1,...,1)(12... p)

o b=(a%,a%, ... a% b)

where e = (e1,...,e,_1) € Fg_l is its defining vector.

The group Ge = (a, b) is the GGS-group corresponding to the defining
vector e.

A GGS-group is periodic if and only if Zf’;ll e =0 mod p.
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A specific example: the Gupta-Sidki p-group

Let e = (1,-1,0,...,0). The Gupta-Sidki group G(1,1,,...,0) is
generated by a, b, where

e a=(1,...,1)(12... p)
e b=(a,a 1,1,...,1,b)

Note that the Gupta-Sidki p-groups are periodic for every p > 2.
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In our case: FG-type groups |

Let G be a GGS-group with defining vector e = (ey,...,e,-1) € F571,
where p is an odd prime. Define the following two elements of [F:

-1

p—1
e(e) = & and d(e) = Z iej.
i=1

1

o

1

The group G is of FG-type if (e) # 0 and d(e) # 0.
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In our case: FG-type groups Il

e The Fabrykowski-Gupta p-groups are of FG-type, since
e=(1,0,7720)

e The GGS-group with constant defining vector is not of FG-type.
e All groups of FG-type are non-periodic.

10



Lower central series, uniseriality
and our results




Back to the conjecture

Conjecture (Zelmanov, 1996)

Is it true that a just infinite pro-p group of finite lower central width is
either soluble, p-adic analytic (so linear over Q,), or commensurable to
a positive part of a loop group or to the Nottingham group?

Nol!

Theorem (Rozhkov)

The Grigorchuk group has finite width.



More generally: for the Grigorchuk I

o [l:"=38
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More generally: for the Grigorchuk I

o [l:"=38
e [vi(l) : vi41(T)| = 2 or 4 for all i > 2 (Rozhkov)
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For the GGS-groups

e If G = Gupta-Sidki 3-group, then |7;(G) : vi11(G)| is not bounded
as i — oo (Bartholdi)

e If G = Fabrykowski-Gupta 3-group, then |;(G) : vi4+1(G)| < 32
(Bartholdi)

o If p>37

Conjecture (Bartholdi, Eick, Hartung)
If G = Fabrykowski-Gupta p-group, is |i(G) : vi+1(G)| < p??

SPOILER
ALERT!
E
YES!



Uniseriality

Definition

Let G and N be two p-groups and suppose that G acts on N. We define
No:= N and N; := [N, G,.i.,G]. If N =1 and N;_1 # 1, then we say
that G acts uniserially on N if [N;_1 : Ni| = p for all i € {1,...,t}.



In our case

Let G be a non-periodic GGS-group, then we define the quotient
G := G/Stg(n) and so Stg,(n — 1) := Stg(n — 1)/ Stg(n).
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In our case

Let G be a non-periodic GGS-group, then we define the quotient
G := G/Stg(n) and so Stg,(n — 1) := Stg(n — 1)/ Stg(n).

Theorem (Fernandez-Alcober, Garciarena-Peréz, N)

G, acts uniserially on Stg,(n — 1).
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e If G has the CSP (i.e. every normal subgroup contain some level
stabilizer)
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Advantages: work with G,

e If G has the CSP (i.e. every normal subgroup contain some level
stabilizer)

o If |G :7i(G)| < o0

Then |G : vi(G)| = |G, : 7i(Gy)l.
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Understand the lower central series of G, for every n € N.
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Cp

Not much to say!
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e G, is a p-group of maximal class of order pt*! where t is the rank of
the circulant matrix C = C(ey, ..., ep—1,0). (Fernandez-Alcober,
Zugadi-Reizabal)
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e G, is a p-group of maximal class of order pt*! where t is the rank of
the circulant matrix C = C(ey, ..., ep—1,0). (Fernandez-Alcober,
Zugadi-Reizabal)

e The indices of the lower central series of G, are completely
determined by the fact that G, is a p-group of maximal class.
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Let G be a non-periodic GGS-group. Then the following hold:
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i=2,...,p. Also v,11(G2) = 1 and G, has nilpotency class p.



Theorem (Fernandez-Alcober, Garciarena-Peréz, N)

Let G be a non-periodic GGS-group. Then the following hold:

1. We have |G, : G5| = p? and |7i(Gz) : vi+1(G2)| = p for every
i=2,...,p. Also v,11(G2) = 1 and G, has nilpotency class p.

2. Forevery i > 2 and every g € G ~ Stg(1), we have

7i(G2) = ([b, g, =1, g])vit1(G2).

In particular, v;(Gz) = ([b, a°b, =1, a°b])yi+1(G2).



e G acts uniserially on the level stabilizer Stg,(2).
e We investigate the position of some commutators in the generators

of G3.
e If § =0, the structure of the lower central series of Gz is not clear.
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Gs

Theorem (Fernandez-Alcober, Garciarena-Peréz, N)

Let G be GGS-group of FG-type. Then the following hold:

1. The indices between consecutive terms are:
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Gs

Theorem (Fernandez-Alcober, Garciarena-Peréz, N)

Let G be GGS-group of FG-type. Then the following hold:

1. The indices between consecutive terms are:

p? ifie{1,p},
1i(Gs) 1 vir(G3)l = q¢p ifie{2,....p—1,p+1...,p° -1},
1 ifi> p2.

In particular, Gz has nilpotency class p> — 1.

2. Furthermore, fori € {2,....,p—1,p+1...,p> — 1}, we have
'7i(G3) = <[b’ a“b, ’:7':'[’ aab]>7i+1(G3)a
and,

vp(Gs) = ([b, a°b,P7L, a°b], [b, a°b, P72, 8% b, b])Yp+1(G3).



e We compare the lower central series of G, with that of the wreath
product W(G,—1) = Gp—11 C,.
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e We compare the lower central series of G, with that of the wreath
product W(G,—1) = Gp—11 C,.

We use the map ) that embeds the group G into W(G) = G C,.

e Some terms of the lower central series of ¥)(G,) coincide with terms
of the lower central series of W(G,_1).

Some other terms appear as “sandwiches” of the series of W(G,_1).
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Our main result

Theorem (Fernandez-Alcober, Garciarena-Peréz, N)
Let p be an odd prime and let G be a GGS-group of FG-type defined
over the p-adic tree.

1. We determine all the generators of consecutive terms of the lower
central series.

2. We conclude that G is a group of lower central width 2.

24
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Conclusions

e The proportion of groups of FG-type among all GGS-groups is
roughly (%)2.

e The majority of GGS-groups are of FG-type.

e The proportion of groups of FG-type among non-periodic
GGS-groups is ijl.

Use the information above to determine the structure of the Lie algebra
associated with the group.



Grazie mille per |'attenzione :)
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