On finite groups in which the twisted conjugacy classes satisfy some conditions

Chiara Nicotera

University of Salerno

Napoli 24 June 2025

The relation of φ -conjugation Let *G* be a group, $\varphi \in Aut(G)$ and $x, y \in G$:

y is φ -conjugate to $x \iff \exists z \in G : y = z^{-1}xz^{\varphi}$

• φ -conjugation is an equivalence relation in G

 equivalence classes are called twisted conjugacy classes or φ-conjugacy classes

- In particular $[1]_{\varphi} = \{x^{-1}x^{\varphi}|x \in G\}$ and $|[1]_{\varphi}| = |G : C_{G}(\varphi)|$, because $R_{\varphi}(1) = \{x \in G | x^{\varphi} = x\} = C_{G}(\varphi)$
- $[1]_{\varphi} = \{1\}$ if and only if $\varphi = id_G$ and, if *G* is a finte group, then $[1]_{\varphi} = G$ if and only if $C_G(\varphi) = 1$ that is φ is fixed-point-free.

Let *G* be a group, $\varphi \in Aut(G)$ and $x, y \in G$:

y is φ -conjugate to $x \iff \exists z \in G : y = z^{-1}xz^{\varphi}$

• φ -conjugation is an equivalence relation in G

 equivalence classes are called twisted conjugacy classes or φ-conjugacy classes

- In particular $[1]_{\varphi} = \{x^{-1}x^{\varphi}|x \in G\}$ and $|[1]_{\varphi}| = |G : C_{G}(\varphi)|$, because $R_{\varphi}(1) = \{x \in G | x^{\varphi} = x\} = C_{G}(\varphi)$
- $[1]_{\varphi} = \{1\}$ if and only if $\varphi = id_G$ and, if *G* is a finte group, then $[1]_{\varphi} = G$ if and only if $C_G(\varphi) = 1$ that is φ is fixed-point-free.

Let *G* be a group, $\varphi \in Aut(G)$ and $x, y \in G$:

y is φ -conjugate to $x \iff \exists z \in G : y = z^{-1}xz^{\varphi}$

- φ -conjugation is an equivalence relation in G
- equivalence classes are called twisted conjugacy classes or φ-conjugacy classes

- In particular $[1]_{\varphi} = \{x^{-1}x^{\varphi}|x \in G\}$ and $|[1]_{\varphi}| = |G : C_{G}(\varphi)|$, because $R_{\varphi}(1) = \{x \in G | x^{\varphi} = x\} = C_{G}(\varphi)$
- $[1]_{\varphi} = \{1\}$ if and only if $\varphi = id_G$ and, if *G* is a finte group, then $[1]_{\varphi} = G$ if and only if $C_G(\varphi) = 1$ that is φ is fixed-point-free.

Let *G* be a group, $\varphi \in Aut(G)$ and $x, y \in G$:

y is φ -conjugate to $x \iff \exists z \in G : y = z^{-1}xz^{\varphi}$

- φ-conjugation is an equivalence relation in G
- equivalence classes are called twisted conjugacy classes or φ-conjugacy classes

- In particular $[1]_{\varphi} = \{x^{-1}x^{\varphi}|x \in G\}$ and $|[1]_{\varphi}| = |G : C_{G}(\varphi)|$, because $R_{\varphi}(1) = \{x \in G | x^{\varphi} = x\} = C_{G}(\varphi)$
- $[1]_{\varphi} = \{1\}$ if and only if $\varphi = id_G$ and, if *G* is a finte group, then $[1]_{\varphi} = G$ if and only if $C_G(\varphi) = 1$ that is φ is fixed-point-free.

Let *G* be a group, $\varphi \in Aut(G)$ and $x, y \in G$:

y is φ -conjugate to $x \iff \exists z \in G : y = z^{-1}xz^{\varphi}$

- φ-conjugation is an equivalence relation in G
- equivalence classes are called twisted conjugacy classes or φ -conjugacy classes

• For every $g \in G$, $[g]_{\varphi} = \{x^{-1}gx^{\varphi}|x \in G\}$ and $|[g]_{\varphi}| = |G : R_{\varphi}(g)|$, where $R_{\varphi}(g) = \{x \in G | x^{\varphi} = x^{g}\}.$

• In particular $[1]_{\varphi} = \{x^{-1}x^{\varphi}|x \in G\}$ and $|[1]_{\varphi}| = |G : C_{G}(\varphi)|$, because $R_{\varphi}(1) = \{x \in G | x^{\varphi} = x\} = C_{G}(\varphi)$

• $[1]_{\varphi} = \{1\}$ if and only if $\varphi = id_G$ and, if *G* is a finte group, then $[1]_{\varphi} = G$ if and only if $C_G(\varphi) = 1$ that is φ is fixed-point-free.

Let *G* be a group, $\varphi \in Aut(G)$ and $x, y \in G$:

y is φ -conjugate to $x \iff \exists z \in G : y = z^{-1}xz^{\varphi}$

- φ-conjugation is an equivalence relation in G
- equivalence classes are called twisted conjugacy classes or φ -conjugacy classes
- For every $g \in G$, $[g]_{\varphi} = \{x^{-1}gx^{\varphi}|x \in G\}$ and $|[g]_{\varphi}| = |G : R_{\varphi}(g)|$, where $R_{\varphi}(g) = \{x \in G | x^{\varphi} = x^{g}\}.$
- In particular $[1]_{\varphi} = \{x^{-1}x^{\varphi}|x \in G\}$ and $|[1]_{\varphi}| = |G : C_G(\varphi)|$, because $R_{\varphi}(1) = \{x \in G | x^{\varphi} = x\} = C_G(\varphi)$
- $[1]_{\varphi} = \{1\}$ if and only if $\varphi = id_G$ and, if *G* is a finte group, then $[1]_{\varphi} = G$ if and only if $C_G(\varphi) = 1$ that is φ is fixed-point-free.

Example

If $\varphi = id_G$ we have that

y is φ -conjugate to $x \iff \exists z \in G : y = z^{-1}xz$

then, for every $g \in G$:

• $[g]_{\varphi} = \{x^{-1}gx | x \in G\} = Cl_G(g)$ the conjugacy class of g

• $R_{\varphi}(g) = C_G(g) = \{x \in G | g^x = g\}$ the centralizer of g in G.

Problem

If G is a finite group, then the set

 $\mathit{n}(\mathit{G}) := \{|\mathit{Cl}_{\mathit{G}}(\mathit{g})||\mathit{g} \in \mathit{G}\} \subseteq \mathbb{N}$

has an influence on the structure of *G*. Now, let $id_G \neq \varphi \in Aut(G)$ and consider

 $n_arphi(G):=\{|[g]_arphi|g\in G\}\subseteq\mathbb{N}$

What can we say about *G* and what about φ is we know $n_{\varphi}(G) := \{|[g]_{\varphi}||g \in G\}$?

Problem

If G is a finite group, then the set

$$\mathit{n}(\mathit{G}):=\{|\mathit{Cl}_{\mathit{G}}(\mathit{g})||\mathit{g}\in \mathit{G}\}\subseteq\mathbb{N}$$

has an influence on the structure of *G*. Now, let $id_G \neq \varphi \in Aut(G)$ and consider

$$\mathit{n_{arphi}(G)} := \{ |[g]_{arphi}| g \in G \} \subseteq \mathbb{N}$$

What can we say about *G* and what about φ is we know $n_{\varphi}(G) := \{ |[g]_{\varphi} | | g \in G \} \}$?

Problem

If G is a finite group, then the set

$$\mathit{n}(\mathit{G}):=\{|\mathit{Cl}_{\mathit{G}}(\mathit{g})||\mathit{g}\in \mathit{G}\}\subseteq\mathbb{N}$$

has an influence on the structure of *G*. Now, let $id_G \neq \varphi \in Aut(G)$ and consider

$$\mathit{n_{arphi}(G)} := \{ |[g]_{arphi}| g \in G \} \subseteq \mathbb{N}$$

What can we say about *G* and what about φ is we know $n_{\varphi}(G) := \{ |[g]_{\varphi} | | g \in G \}$?

Let *G* be a group and $\varphi \in Aut(G)$; then

• 1 \in $n_{\varphi}(G)$ if and only if $\varphi \in$ Inn(G)

• For every $\varphi \in \text{Inn}(G)$, we have $n_{\varphi}(G) = n(G)$

 For every φ ∈ Inn(G) and for every t ∈ n(G) the number of conjugacy classes of order t is equal to the number of φconjugacy classes of order t.

Let *G* be a group and $\varphi \in Aut(G)$; then

- 1 \in $n_{\varphi}(G)$ if and only if $\varphi \in$ Inn(G)
- For every $\varphi \in \text{Inn}(G)$, we have $n_{\varphi}(G) = n(G)$

 For every φ ∈ Inn(G) and for every t ∈ n(G) the number of conjugacy classes of order t is equal to the number of φconjugacy classes of order t.

Let *G* be a group and $\varphi \in Aut(G)$; then

- 1 \in $n_{\varphi}(G)$ if and only if $\varphi \in$ Inn(G)
- For every $\varphi \in \mathsf{Inn}(G)$, we have $n_{\varphi}(G) = n(G)$
- For every φ ∈ lnn(G) and for every t ∈ n(G) the number of conjugacy classes of order t is equal to the number of φconjugacy classes of order t.

Let *G* be a group and $\varphi \in Aut(G)$; then

- 1 \in $n_{\varphi}(G)$ if and only if $\varphi \in$ Inn(G)
- For every $\varphi \in \mathsf{Inn}(G)$, we have $n_{\varphi}(G) = n(G)$
- For every φ ∈ lnn(G) and for every t ∈ n(G) the number of conjugacy classes of order t is equal to the number of φconjugacy classes of order t.

•
$$[1]_{arphi}=\{g^{-1}g^{arphi}|g\in G\}\leq G$$

- for every $x \in G$ we have that $[x]_{\varphi} = \{g^{-1}xg^{\varphi}|g \in G\} = \{xg^{-1}g^{\varphi}|g \in G\} = x[1]_{\varphi}$
- φ -conjugation is a congruence in G
- $n_{\varphi}(G) = \{|[1]_{\varphi}|\}$

- $[1]_{\varphi} = \{g^{-1}g^{\varphi}|g \in G\} \leq G$
- for every $x \in G$ we have that $[x]_{\varphi} = \{g^{-1}xg^{\varphi}|g \in G\} = \{xg^{-1}g^{\varphi}|g \in G\} = x[1]_{\varphi}$
- φ -conjugation is a congruence in G
- $n_{\varphi}(G) = \{|[1]_{\varphi}|\}$

•
$$[1]_{arphi} = \{g^{-1}g^{arphi} | g \in G\} \leq G$$

• for every $x \in G$ we have that $[x]_{\varphi} = \{g^{-1}xg^{\varphi}|g \in G\} = \{xg^{-1}g^{\varphi}|g \in G\} = x[1]_{\varphi}$

- φ -conjugation is a congruence in G
- $n_{\varphi}(G) = \{|[1]_{\varphi}|\}$

•
$$[1]_arphi=\{g^{-1}g^arphi|g\in G\}\leq G$$

• for every $x \in G$ we have that $[x]_{\varphi} = \{g^{-1}xg^{\varphi}|g \in G\} = \{xg^{-1}g^{\varphi}|g \in G\} = x[1]_{\varphi}$

• φ -conjugation is a congruence in G

• $n_{\varphi}(G) = \{|[1]_{\varphi}|\}$

•
$$[1]_arphi=\{g^{-1}g^arphi|g\in G\}\leq G$$

- for every $x \in G$ we have that $[x]_{\varphi} = \{g^{-1}xg^{\varphi}|g \in G\} = \{xg^{-1}g^{\varphi}|g \in G\} = x[1]_{\varphi}$
- φ -conjugation is a congruence in G

• $n_{\varphi}(G) = \{|[1]_{\varphi}|\}$

•
$$[1]_arphi=\{g^{-1}g^arphi|g\in G\}\leq G$$

- for every $x \in G$ we have that $[x]_{\varphi} = \{g^{-1}xg^{\varphi}|g \in G\} = \{xg^{-1}g^{\varphi}|g \in G\} = x[1]_{\varphi}$
- φ -conjugation is a congruence in G
- $n_{\varphi}(G) = \{|[1]_{\varphi}|\}$

There exist non-abelian groups having an automorphism φ such that φ -conjugation is a congruence.

Let $G = P \times \langle x \rangle$, where P is an extraspecial p-group and $\langle x \rangle \simeq \mathbb{Z}_p$; put $P' = Z(P) = \langle z \rangle$ and consider the automorphism $\varphi \in \operatorname{Aut}(G)$ such that $y^{\varphi} = y$ for every $y \in P$ and $x^{\varphi} = xz$. Then we have:

• for every $g = yx^t \in G$, with $y \in P$, we have that

$$g^{-1}g^{\varphi} = x^{-t}y^{-1}y(x^{t})^{\varphi} = x^{-t}x^{t}z^{t} = z^{t} \in Z(P) \subseteq Z(G)$$

then φ is a central automorphism and $[1]_{\varphi} = Z(P) \leq G$

for every g = yx^t ∈ G, with y ∈ P, we have that g[1]_φ ⊆ [g]_φ. On the other hand [g]_φ ⊆ g[1]_φ because

$$g_1^{-1}gg_1^{\varphi} = g_1^{-1}yx^tg_1^{\varphi} = x^ty[y,g_1]g_1^{-1}g_1^{\varphi} \in gZ(P) = g[1]_{\varphi}$$

• Then $[g]_{\varphi} = g[1]_{\varphi}$ that is φ -conjugation is a congruence in G. Notice that $n_{\varphi}(G) = \{p\}$. There exist non-abelian groups having an automorphism φ such that φ -conjugation is a congruence.

Let $G = P \times \langle x \rangle$, where *P* is an extraspecial *p*-group and $\langle x \rangle \simeq \mathbb{Z}_p$; put $P' = Z(P) = \langle z \rangle$ and consider the automorphism $\varphi \in \operatorname{Aut}(G)$ such that $y^{\varphi} = y$ for every $y \in P$ and $x^{\varphi} = xz$. Then we have:

• for every $g = yx^t \in G$, with $y \in P$, we have that

$$g^{-1}g^{\varphi} = x^{-t}y^{-1}y(x^t)^{\varphi} = x^{-t}x^tz^t = z^t \in Z(P) \subseteq Z(G)$$

then φ is a central automorphism and $[1]_{\varphi} = Z(P) \leq G$

for every g = yx^t ∈ G, with y ∈ P, we have that g[1]_φ ⊆ [g]_φ. On the other hand [g]_φ ⊆ g[1]_φ because

$$g_1^{-1}gg_1^{\varphi} = g_1^{-1}yx^tg_1^{\varphi} = x^ty[y,g_1]g_1^{-1}g_1^{\varphi} \in gZ(P) = g[1]_{\varphi}$$

• Then $[g]_{\varphi} = g[1]_{\varphi}$ that is φ -conjugation is a congruence in *G*. Notice that $n_{\varphi}(G) = \{p\}$. Let $G = \langle x, y | x^p = y^2 = 1, x^y = x^{-1} \rangle$ the dhiedral group of degree a prime number $p \ge 5$; then for every $\varphi \in Aut(G) \setminus Inn(G)$:

•
$$R(\varphi) = 2$$

• φ -cojugacy classes are $[1]_{\varphi} = \langle x \rangle$ and $[y]_{\varphi} = y[1]_{\varphi}$

•
$$n_{\varphi}(G) = \{p\}$$

Theorem (C.N. 2025)

Let *G* be a finite non-abelian group; if there exists $\varphi \in Aut(G)$ such that $n_{\varphi}(G) = \{p\}$ where *p* is the smallest prime divisor of |G|, then:

- $C = C_G(\varphi)$ is a non-abelian group such that $n(C) = \{1, p\};$
- $\varphi \in \operatorname{Aut}_{C}(G)$ is central;
- *G* is nilpotent of class 2.

Theorem (C.N. 2025)

Let *G* be a finite non-abelian group; if there exists $\varphi \in Aut(G)$ such that $n_{\varphi}(G) = \{p\}$ where *p* is the smallest prime divisor of |G|, then:

• $C = C_G(\varphi)$ is a non-abelian group such that $n(C) = \{1, p\};$

• $\varphi \in \operatorname{Aut}_{\mathcal{C}}(\mathcal{G})$ is central;

• *G* is nilpotent of class 2.

Theorem (C.N. 2025)

Let *G* be a finite non-abelian group; if there exists $\varphi \in Aut(G)$ such that $n_{\varphi}(G) = \{p\}$ where *p* is the smallest prime divisor of |G|, then:

• $C = C_G(\varphi)$ is a non-abelian group such that $n(C) = \{1, p\};$

- $\varphi \in \operatorname{Aut}_{C}(G)$ is central;
- *G* is nilpotent of class 2.

Theorem (C.N. 2025)

Let *G* be a finite non-abelian group; if there exists $\varphi \in Aut(G)$ such that $n_{\varphi}(G) = \{p\}$ where *p* is the smallest prime divisor of |G|, then:

• $C = C_G(\varphi)$ is a non-abelian group such that $n(C) = \{1, p\};$

- $\varphi \in \operatorname{Aut}_{\mathcal{C}}(G)$ is central;
- *G* is nilpotent of class 2.

Theorem (C.N. 2025)

Let *G* be a finite non-abelian group; if there exists $\varphi \in Aut(G)$ such that $n_{\varphi}(G) = \{p\}$ where *p* is the smallest prime divisor of |G|, then:

- $C = C_G(\varphi)$ is a non-abelian group such that $n(C) = \{1, p\};$
- $\varphi \in \operatorname{Aut}_{\mathcal{C}}(\mathcal{G})$ is central;
- G is nilpotent of class 2.

Let *G* be a group and $\varphi \in \text{Aut}(G)$; the φ -conjugacy class of 1 that is the set $[1]_{\varphi} = \{[x, \varphi] = x^{-1}x^{\varphi} | x \in G\} =: [G, \varphi]$ is a subgroup if:

- $\varphi = id_G$
- G is abelian
- $\varphi \in \operatorname{Aut}_{\mathcal{C}}(G)$ is central

Usually $[G, \varphi]$ is not a subgroup even if φ is inner, for instance: If $G = \mathbb{S}_3$ and $\varphi = \overline{(123)}$, then $[G, \varphi] = \{1, (132)\} \leq G$

For every $x, y \in G$ we have that

$$[\mathbf{X},\varphi]^{\mathbf{y}} = [\mathbf{X}\mathbf{y},\varphi][\mathbf{y},\varphi]^{-1}$$

Let *G* be a group and $\varphi \in \text{Aut}(G)$; the φ -conjugacy class of 1 that is the set $[1]_{\varphi} = \{[x, \varphi] = x^{-1}x^{\varphi} | x \in G\} =: [G, \varphi]$ is a subgroup if:

- $\varphi = id_G$
- G is abelian
- $\varphi \in \operatorname{Aut}_{C}(G)$ is central

Usually $[G, \varphi]$ is not a subgroup even if φ is inner, for instance: If $G = \mathbb{S}_3$ and $\varphi = \overline{(123)}$, then $[G, \varphi] = \{1, (132)\} \leq G$

For every $x, y \in G$ we have that

$$[\mathbf{X},\varphi]^{\mathbf{y}} = [\mathbf{X}\mathbf{y},\varphi][\mathbf{y},\varphi]^{-1}$$

Let *G* be a group and $\varphi \in \text{Aut}(G)$; the φ -conjugacy class of 1 that is the set $[1]_{\varphi} = \{[x, \varphi] = x^{-1}x^{\varphi} | x \in G\} =: [G, \varphi]$ is a subgroup if:

- $\varphi = id_G$
- G is abelian
- $\varphi \in \operatorname{Aut}_{C}(G)$ is central

Usually $[G, \varphi]$ is not a subgroup even if φ is inner, for instance: If $G = \mathbb{S}_3$ and $\varphi = \overline{(123)}$, then $[G, \varphi] = \{1, (132)\} \leq G$

For every $x, y \in G$ we have that

$$[\mathbf{X},\varphi]^{\mathbf{y}} = [\mathbf{X}\mathbf{y},\varphi][\mathbf{y},\varphi]^{-1}$$

Let *G* be a group and $\varphi \in \text{Aut}(G)$; the φ -conjugacy class of 1 that is the set $[1]_{\varphi} = \{[x, \varphi] = x^{-1}x^{\varphi} | x \in G\} =: [G, \varphi]$ is a subgroup if:

- $\varphi = id_G$
- G is abelian
- $\varphi \in \operatorname{Aut}_{C}(G)$ is central

Usually $[G, \varphi]$ is not a subgroup even if φ is inner, for instance: If $G = S_3$ and $\varphi = (123)$, then $[G, \varphi] = \{1, (132)\} \leq G$

For every $x, y \in G$ we have that

$$[\mathbf{X},\varphi]^{\mathbf{y}} = [\mathbf{X}\mathbf{y},\varphi][\mathbf{y},\varphi]^{-1}$$

Let *G* be a group and $\varphi \in \text{Aut}(G)$; the φ -conjugacy class of 1 that is the set $[1]_{\varphi} = \{[x, \varphi] = x^{-1}x^{\varphi} | x \in G\} =: [G, \varphi]$ is a subgroup if:

- $\varphi = id_G$
- G is abelian
- $\varphi \in \operatorname{Aut}_{C}(G)$ is central

Usually $[G, \varphi]$ is not a subgroup even if φ is inner, for instance: If $G = \mathbb{S}_3$ and $\varphi = \overline{(123)}$, then $[G, \varphi] = \{1, (132)\} \leq G$

For every $x, y \in G$ we have that

 $[\mathbf{X},\varphi]^{\mathbf{y}} = [\mathbf{X}\mathbf{y},\varphi][\mathbf{y},\varphi]^{-1}$

Let *G* be a group and $\varphi \in \text{Aut}(G)$; the φ -conjugacy class of 1 that is the set $[1]_{\varphi} = \{[x, \varphi] = x^{-1}x^{\varphi} | x \in G\} =: [G, \varphi]$ is a subgroup if:

- $\varphi = id_G$
- G is abelian
- $\varphi \in \operatorname{Aut}_{C}(G)$ is central

Usually $[G, \varphi]$ is not a subgroup even if φ is inner, for instance: If $G = \mathbb{S}_3$ and $\varphi = \overline{(123)}$, then $[G, \varphi] = \{1, (132)\} \leq G$

For every $x, y \in G$ we have that

$$[\mathbf{x},\varphi]^{\mathbf{y}} = [\mathbf{x}\mathbf{y},\varphi][\mathbf{y},\varphi]^{-1}$$

V.G. Bardakov, T. R. Nasybullov, M.V. Neshchadim (2013)

A finite group G such that $[G, \varphi] \leq G$ for every $\varphi \in \text{Inn}(G)$ is nilpotent.

D.L. Goncalves, T.R. Nasybullov (2019)

For every integer n > 2 and for every odd prime p there exists a finite p-group G of class $\geq n$ such that $[G, \varphi] \leq G$ for every $\varphi \in \text{Inn}(G)$.

Notice

However there exists $\phi \in Aut(G) \setminus Inn(G)$ such that $[G, \phi] \not\leq G$.

V.G. Bardakov, T. R. Nasybullov, M.V. Neshchadim (2013)

A finite group G such that $[G, \varphi] \leq G$ for every $\varphi \in \text{Inn}(G)$ is nilpotent.

D.L. Goncalves, T.R. Nasybullov (2019)

For every integer n > 2 and for every odd prime p there exists a finite p-group G of class $\geq n$ such that $[G, \varphi] \leq G$ for every $\varphi \in \text{Inn}(G)$.

Notice

However there exists $\phi \in Aut(G) \setminus Inn(G)$ such that $[G, \phi] \not\leq G$.

V.G. Bardakov, T. R. Nasybullov, M.V. Neshchadim (2013)

A finite group G such that $[G, \varphi] \leq G$ for every $\varphi \in \text{Inn}(G)$ is nilpotent.

D.L. Goncalves, T.R. Nasybullov (2019)

For every integer n > 2 and for every odd prime p there exists a finite p-group G of class $\geq n$ such that $[G, \varphi] \leq G$ for every $\varphi \in \text{Inn}(G)$.

Notice

However there exists $\phi \in Aut(G) \setminus Inn(G)$ such that $[G, \phi] \not\leq G$.

If $[G, \varphi]$ is a subgroup for every $\varphi \in Aut(G)$, then the group G is nilpotent. If in addition G is finitely generated, then G is abelian.

The last part of this conjecture is certainly false:

there exist finite non-abelian p-groups in which every automorphism is central (M.J. Curran p = 2, J.J. Malone p odd).

Notice: these groups are nilpotent of class 2.

Question

If $[G, \varphi]$ is a subgroup for every $\varphi \in Aut(G)$, then the group G is nilpotent. If in addition G is finitely generated, then G is abelian.

The last part of this conjecture is certainly false:

there exist finite non-abelian *p*-groups in which every automorphism is central (M.J. Curran p = 2, J.J. Malone *p* odd).

Notice: these groups are nilpotent of class 2.

Question

If $[G, \varphi]$ is a subgroup for every $\varphi \in Aut(G)$, then the group G is nilpotent. If in addition G is finitely generated, then G is abelian.

The last part of this conjecture is certainly false:

there exist finite non-abelian *p*-groups in which every automorphism is central (M.J. Curran p = 2, J.J. Malone *p* odd).

Notice: these groups are nilpotent of class 2.

Question

If $[G, \varphi]$ is a subgroup for every $\varphi \in Aut(G)$, then the group G is nilpotent. If in addition G is finitely generated, then G is abelian.

The last part of this conjecture is certainly false:

there exist finite non-abelian *p*-groups in which every automorphism is central (M.J. Curran p = 2, J.J. Malone *p* odd).

Notice: these groups are nilpotent of class 2.

Question

Theorem (C.N., 2024)

For every integer $n \in \mathbb{N}$ and for every odd prime p, there exists a finite p-group G of class n, such that $[G, \varphi] \leq G$ for every $\varphi \in Aut(G)$.

sketch of proof:

Let *n* be an integer $n \ge 2$, *p* be an odd prime and $G = A \rtimes \langle x \rangle$, where $A = \langle a \rangle \times \langle b \rangle \simeq \mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$, $\langle x \rangle \simeq \mathbb{Z}_{p^{n-1}}$ and $c^x = c^{1+p}$ for every $c \in A$.

It is easy to prove that:

- $G' = \langle a^p \rangle \times \langle b^p \rangle$
- G has class n
- G is a regular p-group, that is (hg)^p = h^pg^pz^p, with z ∈ G', for every h, g ∈ G

Theorem (C.N., 2024)

For every integer $n \in \mathbb{N}$ and for every odd prime p, there exists a finite p-group G of class n, such that $[G, \varphi] \leq G$ for every $\varphi \in Aut(G)$.

sketch of proof:

Let *n* be an integer $n \ge 2$, *p* be an odd prime and $G = A \rtimes \langle x \rangle$, where $A = \langle a \rangle \times \langle b \rangle \simeq \mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$, $\langle x \rangle \simeq \mathbb{Z}_{p^{n-1}}$ and $c^x = c^{1+p}$ for every $c \in A$.

It is easy to prove that:

- $G' = \langle a^p \rangle \times \langle b^p \rangle$
- G has class n
- G is a regular p-group, that is (hg)^p = h^pg^pz^p, with z ∈ G', for every h, g ∈ G

Theorem (C.N., 2024)

For every integer $n \in \mathbb{N}$ and for every odd prime p, there exists a finite p-group G of class n, such that $[G, \varphi] \leq G$ for every $\varphi \in Aut(G)$.

sketch of proof:

Let *n* be an integer $n \ge 2$, *p* be an odd prime and $G = A \rtimes \langle x \rangle$, where $A = \langle a \rangle \times \langle b \rangle \simeq \mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$, $\langle x \rangle \simeq \mathbb{Z}_{p^{n-1}}$ and $c^x = c^{1+p}$ for every $c \in A$.

It is easy to prove that:

- $G' = \langle a^p \rangle \times \langle b^p \rangle$
- G has class n
- G is a regular p-group, that is (hg)^p = h^pg^pz^p, with z ∈ G', for every h, g ∈ G

- For every $c \in A$ we have that $[c, \varphi] = c^{-1}c^{\varphi} \in A$ and $B = \{[c, \varphi] | c \in A\} \leq A$ because for every $c, d \in A$ $[c, \varphi][d, \varphi] = [c, \varphi]^d[d, \varphi] = [cd, \varphi] \in B$ and $[c, \varphi]^{-1} = [c^{-1}, \varphi] \in B$
- $[x, \varphi] \in A$ and $V = \{ [x^{\alpha}, \varphi] | \alpha \in \mathbb{Z} \} = \langle [x, \varphi] \rangle$
- B and V are subgroups of the abelian group A, then BV is a subgroup and BV = [G, φ]

Then $[G, \varphi] \leq G$ for every $\varphi \in \operatorname{Aut}(G)$.

• For every $c \in A$ we have that $[c, \varphi] = c^{-1}c^{\varphi} \in A$ and $B = \{[c, \varphi] | c \in A\} \leq A$ because for every $c, d \in A$ $[c, \varphi][d, \varphi] = [c, \varphi]^d[d, \varphi] = [cd, \varphi] \in B$ and $[c, \varphi]^{-1} = [c^{-1}, \varphi] \in B$

•
$$[x, \varphi] \in A$$
 and $V = \{ [x^{\alpha}, \varphi] | \alpha \in \mathbb{Z} \} = \langle [x, \varphi] \rangle$

B and V are subgroups of the abelian group A, then BV is a subgroup and BV = [G, φ]

Then $[G, \varphi] \leq G$ for every $\varphi \in Aut(G)$.

• For every $c \in A$ we have that $[c, \varphi] = c^{-1}c^{\varphi} \in A$ and $B = \{[c, \varphi] | c \in A\} \leq A$ because for every $c, d \in A$ $[c, \varphi][d, \varphi] = [c, \varphi]^d[d, \varphi] = [cd, \varphi] \in B$ and $[c, \varphi]^{-1} = [c^{-1}, \varphi] \in B$

•
$$[x, \varphi] \in A$$
 and $V = \{ [x^{\alpha}, \varphi] | \alpha \in \mathbb{Z} \} = \langle [x, \varphi] \rangle$

B and V are subgroups of the abelian group A, then BV is a subgroup and BV = [G, φ]

Then $[{m G}, arphi] \leq {m G}$ for every $arphi \in \operatorname{\mathsf{Aut}}({m G}).$

• For every $c \in A$ we have that $[c, \varphi] = c^{-1}c^{\varphi} \in A$ and $B = \{[c, \varphi] | c \in A\} \leq A$ because for every $c, d \in A$ $[c, \varphi][d, \varphi] = [c, \varphi]^d[d, \varphi] = [cd, \varphi] \in B$ and $[c, \varphi]^{-1} = [c^{-1}, \varphi] \in B$

•
$$[\mathbf{x}, \varphi] \in \mathbf{A}$$
 and $\mathbf{V} = \{ [\mathbf{x}^{\alpha}, \varphi] | \alpha \in \mathbb{Z} \} = \langle [\mathbf{x}, \varphi] \rangle$

B and V are subgroups of the abelian group A, then BV is a subgroup and BV = [G, φ]

Then $[G, \varphi] \leq G$ for every $\varphi \in \operatorname{Aut}(G)$.

Corollary

There exists an infinite non-nilpotent group *G* such that $[G, \varphi] \leq G$ for every $\varphi \in Aut(G)$.

proof:

For every $n \in \mathbb{N}$,

- fix an odd prime p_n such that $p_n \neq p_m$ for every m < n;
- consider a finite *p_n*-group *P_n* of class *n* such that [*P_n*, φ] ≤ *P_n* for every φ ∈ Aut(*P_n*).

Then $G := Dir_{n \in \mathbb{N}} P_n$ is non-nilpotent and $[G, \varphi] \leq G$ for every $\varphi \in Aut(G)$.

Corollary

There exists an infinite non-nilpotent group *G* such that $[G, \varphi] \leq G$ for every $\varphi \in Aut(G)$.

proof:

For every $n \in \mathbb{N}$,

- fix an odd prime p_n such that $p_n \neq p_m$ for every m < n;
- consider a finite *p_n*-group *P_n* of class *n* such that [*P_n*, φ] ≤ *P_n* for every φ ∈ Aut(*P_n*).

Then $G := Dir_{n \in \mathbb{N}} P_n$ is non-nilpotent and $[G, \varphi] \leq G$ for every $\varphi \in Aut(G)$.

M.J. Curran

There exist non-abelian finite 2-groups *G* such that $[G, \varphi] \leq G$ for every $\varphi \in Aut(G)$.

These 2-groups have class 2

Open question

M.J. Curran

There exist non-abelian finite 2-groups *G* such that $[G, \varphi] \leq G$ for every $\varphi \in Aut(G)$.

These 2-groups have class 2

Open question

M.J. Curran

There exist non-abelian finite 2-groups *G* such that $[G, \varphi] \leq G$ for every $\varphi \in Aut(G)$.

These 2-groups have class 2

Open question

M.J. Curran

There exist non-abelian finite 2-groups *G* such that $[G, \varphi] \leq G$ for every $\varphi \in Aut(G)$.

These 2-groups have class 2

Open question

If $G = A \rtimes \langle x \rangle$, where $A = \langle a \rangle \times \langle b \rangle \simeq \mathbb{Z}_{2^n} \times \mathbb{Z}_{2^n}$, $\langle x \rangle \simeq \mathbb{Z}_{2^{n-1}}$ and $c^x = c^3$ for every $c \in A$; then there exists $\varphi \in Aut(G)$ such that $[G, \varphi] \not\leq G$.

It is possible to prove that

if $c \in A$ has order 2^n , then xc has order 2^{n-1}

Hence

- for all c ∈ A of order 2ⁿ there exists φ ∈ Aut(G) such that y^φ = y for all y ∈ A, and x^φ = xc
- $[G, \varphi] = [\langle x \rangle, \varphi]$
- $|[G,\varphi]| = |[\langle X \rangle,\varphi]| = |\langle X \rangle : C_{\langle X \rangle}(\varphi)| \le 2^{n-1}$
- $x^{-1}x^{\varphi} = c \in [G, \varphi]$
- $[G, \varphi] \not\leq G$, since *c* has order 2^n

If $G = A \rtimes \langle x \rangle$, where $A = \langle a \rangle \times \langle b \rangle \simeq \mathbb{Z}_{2^n} \times \mathbb{Z}_{2^n}$, $\langle x \rangle \simeq \mathbb{Z}_{2^{n-1}}$ and $c^x = c^3$ for every $c \in A$; then there exists $\varphi \in Aut(G)$ such that $[G, \varphi] \not\leq G$.

It is possible to prove that

if $c \in A$ has order 2^n , then xc has order 2^{n-1}

Hence

- for all c ∈ A of order 2ⁿ there exists φ ∈ Aut(G) such that y^φ = y for all y ∈ A, and x^φ = xc
- $[G, \varphi] = [\langle x \rangle, \varphi]$
- $|[G,\varphi]| = |[\langle X \rangle,\varphi]| = |\langle X \rangle : C_{\langle X \rangle}(\varphi)| \le 2^{n-1}$
- $x^{-1}x^{\varphi} = c \in [G, \varphi]$
- $[G, \varphi] \not\leq G$, since *c* has order 2^n

If $G = A \rtimes \langle x \rangle$, where $A = \langle a \rangle \times \langle b \rangle \simeq \mathbb{Z}_{2^n} \times \mathbb{Z}_{2^n}$, $\langle x \rangle \simeq \mathbb{Z}_{2^{n-1}}$ and $c^x = c^3$ for every $c \in A$; then there exists $\varphi \in Aut(G)$ such that $[G, \varphi] \not\leq G$.

It is possible to prove that

if $c \in A$ has order 2^n , then xc has order 2^{n-1}

Hence

 for all c ∈ A of order 2ⁿ there exists φ ∈ Aut(G) such that y^φ = y for all y ∈ A, and x^φ = xc

•
$$[G, \varphi] = [\langle x \rangle, \varphi]$$

•
$$|[G,\varphi]| = |[\langle x \rangle,\varphi]| = |\langle x \rangle : C_{\langle x \rangle}(\varphi)| \le 2^{n-2}$$

•
$$x^{-1}x^{\varphi} = c \in [G, \varphi]$$

• $[G, \varphi] \not\leq G$, since *c* has order 2^n

Refereces

- C. Nicotera, On finite groups in which the twisted conjugacy classes of the unit element are subgroups, Arch. Math. Vol 123 (2024) pp. 225-232
- C. Nicotera, On twisted conjugacy classes in finite groups, to appear.