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Motivation: Orthogonal latin squares

A latin square is an n × n array filled with n different symbols,
each occurring exactly once in each row and exactly once in
each column.

Two Latin squares of the same size are orthogonal if, when they
are superimposed, the ordered paired entries are all distinct.

J A K Q
Q K A J
A J Q K
K Q J A

♢ ♡ ♠ ♣
♠ ♣ ♢ ♡
♣ ♠ ♡ ♢
♡ ♢ ♣ ♠

J ♢ A ♡ K ♠ Q ♣
Q ♠ K ♣ A ♢ J ♡
A ♣ J ♠ Q ♡ K ♢
K ♡ Q ♢ J ♣ A ♠



Euler’s work in 1776 is usually cited as the beginning of the
study of orthogonal latin squares (“Graeco-Roman squares”).
But there was a predecessor. Here is a picture from the 1725
four-volume edition of Jacques Ozanam’s (1640–1718)
Récréations mathématiques et physiques. . .



Transversals

A transversal of a latin square of size n is a set of n entries such
that no two entries share the same row, column, or symbol.

In the card example, the suit square determines 4 transversals
of the letter square (and vice versa).

J A K Q
Q K A J
A J Q K
K Q J A

J ♢ A ♡ K ♠ Q ♣
Q ♠ K ♣ A ♢ J ♡
A ♣ J ♠ Q ♡ K ♢
K ♡ Q ♢ J ♣ A ♠

A latin square of size n has an orthogonal mate if and only if it
has n disjoint tranversals which partition the cells of the square.



Groups

After Arthur Cayley (1821–1895) observed that the operation
table (which we now call a Cayley table) of a group is a latin
square, it was natural to use group tables, especially for abelian
groups, to construct orthogonal latin squares.

It’s not clear who was the first to do this. There were some
constructions in the late 1930s by:

Raj Chandra Bose (1901–1987),
Ronald A. Fisher (1890–1962) and Frank Yates
(1902–1994) in their book Statistical Tables, and
W.L. Stevens (??–??), a protégé of Fisher



Complete mappings
Complete mappings for groups were introduced by Henry B.
Mann (1905–2000) in 1942. The definition works for any
magma.

H.B. Mann

A complete mapping of a magma M
is a bijection α : M → M such that
the mapping θ : M → M defined by
xθ = x · xα is also a bijection. The
bijection θ is called an orthomorphism
(a term introduced in 1961).

In (quasi)groups, complete mappings
and orthomorphisms determine each
other, so it is a matter of taste which
one to emphasize.



Complete mappings and transversals
Observation: A mapping α : Q → Q is a complete mapping if
and only if there exists a transversal determined by assigning to
each row i, the entry in column iα.
In the card example, let’s label the rows and columns:

· A K Q J
A J ♢ A K Q
K Q K A ♢ J
Q A J Q K ♢
J K Q ♢ J A

The complete mapping α for the ♢ transversal is:

Aα = A, Kα = Q, Qα = J, Jα = K

and the orthomorphism θ is:

Aθ = J, K θ = A, Qθ = K , Jθ = Q



One complete mapping is enough for groups

Mann’s key observation was that for groups, having just one
complete mapping α is equivalent to having an orthogonal
mate. List the group elements e = g1, g2, . . . ,gn. Here is α’s
transversal:

(g1, gα
1 ), (g2, gα

2 ), . . . (gn, gα
n )

Then we obtain n − 1 more disjoint transversals as follows:

(g1, gα
1 g2), (g2, gα

2 g2), . . . (gn, gα
n g2)

...

(g1, gα
1 gn), (g2, gα

2 gn), . . . (gn, gα
n gn)

This depends heavily on associativity! It doesn’t work for
quasigroups; having one transversal doesn’t guarantee there
are any others.



Hall and Paige

In 1955, Marshall Hall Jr (1910–1990) and Lowell J. Paige
(1919–2010) took the next step of asking precisely which finite
groups have complete mappings.

Marshall Hall Jr. Lowell J. Paige



The Hall-Paige Conjecture

Hall and Paige observed that the cyclic groups C2n do not have
complete mappings. (Try it yourself for small n.) They
conjectured that this is essentially the only obstruction.

Conjecture. A finite group G has a complete mapping if and
only if the Sylow 2-subgroups of G are either trivial or
noncyclic.

Among other things, Hall and Paige (1955) proved;
The condition is necessary;
An has a complete mapping for all n;
Every finite solvable group satisfies the Conjecture.



From Conjecture to Theorem

In 2009, Stewart Wilcox proved that a minimal counterexample
to the Hall-Paige conjecture must be a nonabelian simple
group.

The alternating groups have complete mappings, so that left
the simple groups of Lie type and the sporadic simple groups
as possible counterexamples.

Wilcox proved that no finite simple group of Lie type, with the
possible exception of the Tits group, could be a minimal
counterexample.

The Mathieu groups were already known to have complete
mappings (Dalla Volta and Gavioli, 1993).



From Conjecture to Theorem II

Still in 2009, Tony Evans took care of the Tits group and all but
one of the remaining sporadic groups: the Janko group J4.

During the same time period, John Bray showed that J4 has a
complete mapping. However, he didn’t publish the result right
away.

Bray finally published his proof in 2020 as part of a larger paper
with Qi Cai, Peter Cameron, Pablo Spiga, and Hua Zhang, who
needed the Hall-Paige Conjecture to be a theorem in order to
prove some results in permutation group theory.



What now?

So much for groups. The study of complete mappings for
quasigroups, or equivalently, of transversals for latin squares,
continues. One of the main motivating problems is Ryser’s
Conjecture: Every latin square of odd order has a transversal.

We decided to try a different direction. The notions of complete
mapping, orthomorphism, transversal and so on make sense in
any magma.

So as the talk title says, what about complete mappings for
finite semigroups? Can we characterize, at least conjecturally,
which finite semigroups have complete mappings?



Refresher
Given a semigroup (or just a magma) S, a complete mapping of
S is a bijection α : S → S such that the mapping
θ : S → S; x 7→ x · xα (called an orthomorphism) is also a
bijection.

The correspondence between complete mappings and
transversals is the same as before. Here is the Brandt
semigroup of order 5. It has exactly two transversals.

· 0 1 2 3 4
0 0∗,† 0 0 0 0
1 0 1∗ 0 3† 0
2 0 0 2† 0 4∗

3 0 0 3∗ 0 1†

4 0 4† 0 2∗ 0



Zeros

As is common in semigroup theory, special attention must be
paid to semigroups with a zero (absorbing element).
Fortunately, complete mappings and orthomorphisms behave
exactly as one would hope.

Proposition. Let S be a semigroup with zero 0, and let
α : S → S be a complete mapping with orthomorphism
θ : S → S; x 7→ x · xα. Then 0α = 0θ = 0.



Monoids

What if you hate semigroups but love monoids?

Well, first, you can always change what you hate into
something you love by adjoining an identity element. Second. . .

Proposition. If a finite monoid has a complete mapping and
orthomorphism, then it has a complete mapping and
orthomorphism fixing the identity element.



Regularity

A semigroup S is (von Neumann) regular if for each x ∈ S,
there exists x ′ ∈ S such that

xx ′x = x and x ′xx ′ = x ′.

Such an x ′ is called an inverse of x . Inverses need not be
unique.

Theorem. Let S be a finite semigroup with a complete mapping
α : S → S and orthomorphism θ : S → S; x 7→ x · xα. Then:

S is regular, and
there exists an inverse mapping x 7→ x ′ satisfying
x ′ · xθ = xα for all x ∈ S.



Unlike in the (quasi)group case, orthomorphisms do not
determine complete mappings, despite what the previous result
might suggest.

Example. Let S be a finite left zero semigroup with |S| > 1,
that is, S satisfies xy = x for all x , y ∈ S.
Every permutation α of S is a complete mapping with the
identity mapping as orthomorphism:

xθ = x · xα = x

In addition, x 7→ xα =: x ′ is an inverse mapping, and
x ′ · xθ = xα.



Inverse semigroups

A semigroup S is an inverse semigroup if every x ∈ S has a
unique inverse x−1 ∈ S such that xx−1x = x , x−1xx−1 = x−1.

Example: The symmetric inverse monoid IX on a set X is the
set of all partial bijections on the set X under composition of
partial mappings.

In finite inverse semigroups, orthomorphisms determine
complete mappings.

Proposition. Let S be a finite inverse semigroup, let θ : S → S
be a permutation, and define α : S → S; x 7→ x−1 · xθ. The
following are equivalent:

α is a permutation;
α is a complete mapping with orthomorphism θ.



Ideals

A subset I of a semigroup S is a
left ideal if xI ⊆ I for all x ∈ S;
right ideal if Ix ⊆ I for all x ∈ S;
ideal if it is both a left and a right ideal.

Theorem. Let α : S → S be a complete mapping of a finite
semigroup S with orthomorphism θ. Then:

If I ⊆ S is a right ideal, then Iθ = I.
If I ⊆ S is an ideal, then Iα = I.



Rees quotients

Corresponding to any ideal I of a semigroup S is a Rees
quotient:

S/I ≡ (S − I) ∪ {I}

where I is a zero. (This is isomorphic to modding out a
congruence corresponding to I, but this description is easier to
work with.)

Proposition. A semigroup S with ideal I has a complete
mapping if and only if both I and S/I have complete mappings.

This reduces the study of complete mappings to two cases:
semigroups with zero and simple semigroups (no proper
ideals). We will make a further reduction momentarily.



Principal ideals

For an element a of a semigroup S, define:
S1a = {a} ∪ Sa, principal left ideal;
aS1 = {a} ∪ aS, principal right ideal;
S1aS1 = SaS ∪ Sa ∪ aS ∪ {a}, principal ideal

Proposition. Let α : S → S be a complete mapping of a finite
semigroup S with orthomorphism θ. For each a ∈ S,

(aS1)θ = aθS1

(S1aS)α = S1aαS1.



Green’s preorders and equivalences
Green’s preorders:

a ⪯L b ⇐⇒ S1a ⊆ S1b

a ⪯R b ⇐⇒ aS1 ⊆ bS1

a ⪯J b ⇐⇒ S1aS1 ⊆ S1bS1

Green’s equivalences:

a L b ⇐⇒ a ⪯L b and b ⪯L a
a R b ⇐⇒ a ⪯R b and b ⪯R a
a J b ⇐⇒ a ⪯J b and b ⪯J a

Theorem. Let α : S → S be a complete mapping of a finite
semigroup S with orthomorphism θ.

θ preserves ⪯R, hence R
α preserves ⪯J , hence J



Complete mappings of partial semigroups

Since a complete mapping of a finite semigroup S preserves
J -classes, it is tempting to say that a complete mapping of S
exists if and only if each J -class has a “complete mapping”.

However, J -classes are not necessarily subsemigroups.
Instead, each J -class J is a partial semigroup: For x , y ∈ J,
define x ∗ y = xy if xy ∈ J; otherwise x ∗ y is undefined.

We’ll say that a bijection α : J → J is a complete mapping if the
mapping θ : J → J; x 7→ x ∗ xα is defined for all x ∈ J and is a
bijection.

Proposition. A finite semigroup S has a complete mapping if
and only if each J -class, viewed as a partial semigroup, has a
complete mapping.



Adjoining a zero

Given a partial semigroup (J, ∗), we can construct a semigroup
(J0, ⋆) by adjoining a zero: J0 := J ∪ {0} where

x ⋆ y =

{
x ∗ y if x ∗ y is defined
0 if x ∗ y is not defined or if x = 0 or if y = 0

Lemma. If (J, ∗) is a partial semigroup, then J has a complete
mapping as a partial semigroup if and only if J0 has a complete
mapping.



[0]-simple semigroups

David Rees (1918–2013)

It follows that to characterize which
finite semigroups have complete
mappings, it is enough to do so
for [0]-simple semigroups, that is,
semigroups that are either:

simple, consisting of one
J -class, or
0-simple, consisting of a zero
0 and one J -class above it.

Fortunately, there is a nice representation of finite [0]-simple
semigroups. . . .



Rees’ Theorem for simple semigroups
Let’s start with the easier simple case (no zero).

Given a group G and nonempty sets I,Λ,
a Rees matrix is a map P : Λ× I → G
P is normalized if its first row and first column consist of
1’s, the identity element of G.
This data determines a Rees matrix semigroup

M[G; I,Λ;P] = I × G × Λ

with multiplication

(a, g, α)(b, h, β) := (a, g Pβ,a h, β) .

Theorem (Rees). A finite semigroup S is simple if and only if it
is isomorphic to a Rees matrix semigroup M[G; I,Λ;P] for
some group G, nonempty sets I,Λ and normalized Rees matrix
P : Λ× I → G.



Complete mappings for finite simple semigroups

We can give a complete (pun intended) characterization of the
existence of complete mappings for finite simple semigroups.

Theorem. A Rees matrix semigroup M[G; I,Λ;P] with
normalized P has a complete mapping if and only if one of the
following holds:

G has a complete mapping (that is, G has trivial or
noncyclic Sylow 2-subgroups);
|I| · |Λ| is even;
P has at least one entry of even order.



Rees 0-matrix semigroups

The idea is similar, but with the following modifications:

M0[G; I,Λ;P] = (I × G × Λ) ∪ {0}
the Rees 0-matrix P : Λ× I → G ∪ {0} has no row or
column consisting entirely of zeros.

(a, g, α)(b, h, β) =

{
(a, g Pβ,a h, β) if Pβ,a ̸= 0
0 otherwise

Theorem (Rees). A finite semigroup S is 0-simple if and only if
it is isomorphic to a Rees 0-matrix semigroup M0[G; I,Λ;P] for
some group G, nonempty sets I,Λ and normalized 0-Rees
matrix P : Λ× I → G ∪ {0}.



For Rees 0-matrix semigroups, there are two cases to consider:
when the group G has a complete mapping and when it does
not.

We don’t have the full answer in either case. We have a
conjecture in the former case and various sufficient conditions
in the latter.

The pattern of a Rees 0-matrix P : Λ× I → G0 is the matrix Q
obtained by replacing every nonzero entry of P with 1, the
identity element of G.



Conjecture

Let Q be a Λ× I zero-one matrix. The following are equivalent:
(a) For any group G with a complete mapping, and any

0-Rees matrix P : Λ× I → G ∪ {0} with pattern Q,
M0[G; I,Λ;P] has a complete mapping.

(b) M0(1, I,Λ,Q) has a complete mapping, where 1 denotes
the trivial group.

(c) For any s rows of Q, there are at least s|I|/|Λ| columns
which contain nonzero entries in some of the chosen rows.

(d) For any r columns of Q, there are at least r |Λ|/|I| rows
which contain nonzero entries in some of the chosen
columns.

We know: (a) ⇐⇒ (b), (c) ⇐⇒ (d), (b) =⇒ (d).

We know all four statements are equivalent if |I| = |Λ| and in
several other cases.



Final remarks

For the case where the group G does not have a complete
mapping, we do not have a conjectural characterization. It
seems that we need to resolve the case where G has a
complete mapping first. We have some sufficient conditions
which are based on the conditions (c),(d) of the conjecture.

We were able to characterize precisely which finite inverse
semigroups have complete mappings. As an application, the
following makes a nice conclusion.

Theorem. Let In be the symmetric inverse monoid on n
symbols. Then In has a complete mapping if and only if
n ≡ 0, 1 (mod 4).



If you want to learn more, the preprint will be up on the arXiv as
soon as my coauthors are finished with it. In the meantime. . .

Grazie per l’attenzione


