Finite and locally finite groups containing an element with small centralizer

Evgeny Khukhro

Charlotte Scott Research Centre for Algebra University of Lincoln, U.K.

> AGTA conference Naples, 23–28 June 2025

< 同 ト < 三 ト < 三 ト

Small centralizers

One of main avenues in group theory: small centralizer $C_G(g) \Rightarrow$ structure of G.

Brauer–Fowler (1955): if G is finite and $g \in G$ is an involution, then G has a soluble subgroup of index bounded in terms of $|C_G(g)|$.

Using the classification of finite simple groups, Hartley (1992) generalized Brauer–Fowler theorem for any order of g:

G has a soluble subgroup of index bounded in terms of $|C_G(g)|$.

These results can be stated in terms of automorphisms $\varphi \in \operatorname{Aut} G$: structure of G in terms of φ and the fixed-point subgroup $C_G(\varphi)$.

・ロト ・四ト ・ヨト ・ヨト

Coprime automorphisms: solubility

There are especially nice results for finite groups with coprime automorphisms $\varphi \in \operatorname{Aut} G$, when $(|\varphi|, |G|) = 1$.

Thompson (1959): if $|\varphi|$ is a prime and $C_G(\varphi) = 1$, the G is nilpotent.

 $\begin{array}{l} \hline \mbox{Rowley (1995) using CFSG: } C_G(A) = 1 \mbox{ and } (|G|, |A|) = 1 \Rightarrow G \mbox{ is soluble;} \\ \hline C_G(\varphi) = 1 \Rightarrow G \mbox{ is soluble for any } |\varphi|. \end{array}$

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの

Fitting height

Recall that the Fitting subgroup F(G) of a finite group G is the largest normal nilpotent subgroup of G.

The Fitting series of G is defined as $F_1(G) = F(G)$, and by induction $F_{i+1}(G)$ is the inverse image of $F(G/F_i(G))$.

If G is soluble, then the least number h such that $F_h(G) = G$ is called the Fitting height h(G) of G.

イロト イヨト イヨト 一座

Coprime automorphisms: Fitting height

Once G is soluble, next task is bounding the Fitting height.

Let G be a soluble finite group and $A \leq \operatorname{Aut} G$ soluble with (|G|, |A|) = 1.

Thompson (1964): the Fitting height h(G) is bounded in terms of $\overline{h(C_G(A))}$ and the composition length $\alpha(A)$, namely, $h(G) \leq 5^{\alpha(A)} \cdot h(C_G(A))$.

・ 回 ト ・ ヨ ト ・ ヨ ト ・

Coprime automorphisms: Fitting height

Once G is soluble, next task is bounding the Fitting height.

Let G be a soluble finite group and $A \leq \operatorname{Aut} G$ soluble with (|G|, |A|) = 1.

Thompson (1964): the Fitting height h(G) is bounded in terms of $\overline{h(C_G(A))}$ and the composition length $\alpha(A)$, namely, $h(G) \leq 5^{\alpha(A)} \cdot h(C_G(A))$.

Bounds in Thompson's theorem improved in numerous papers:

 \ldots , Kurzweil (1971), \ldots , culminating in definitive results by

Turull (1984): $h(G) \leq 2\alpha(A) + h(C_G(A));$

Hartley–Isaacs (1990): subgroup H of index $\leq f(|A|, |C_G(A)|)$ with $\overline{h(H) \leq 2\alpha(A) + 1}$.

イロト イヨト イヨト 一座

Coprime automorphisms: Fitting height

Once G is soluble, next task is bounding the Fitting height.

Let G be a soluble finite group and $A \leq \operatorname{Aut} G$ soluble with (|G|, |A|) = 1.

 $\begin{array}{l} \hline \text{Thompson (1964): the Fitting height } h(G) \text{ is bounded in terms of } \\ \hline \overline{h(C_G(A))} \text{ and the composition length } \alpha(A) \text{, namely,} \\ h(G) \leqslant 5^{\alpha(A)} \cdot h(C_G(A)). \end{array}$

Bounds in Thompson's theorem improved in numerous papers:

 \ldots , Kurzweil (1971), \ldots , culminating in definitive results by

Turull (1984): $h(G) \leq 2\alpha(A) + h(C_G(A));$

 $\frac{\text{Hartley-Isaacs (1990)}:}{h(H)\leqslant 2\alpha(A)+1.}: \text{ subgroup } H \text{ of index } \leqslant f(|A|,|C_G(A)|) \text{ with }$

A rank analogue of the Hartley–Isaacs theorem was proved by Mazurov–Khukhro (2006): there is $H \leq G$ with |G:H| bounded in terms of |A| and the (Prüfer) rank of $C_G(A)$ (instead of $|C_G(A)|$) and with $h(H) \leq 5(4^{\alpha(A)} - 1)/3$.

Brauer–Fowler and Hartley theorems can be regarded as on non-coprime automorphisms. Thus have reduction to soluble groups.

Next task is bounding the Fitting height.

Brauer–Fowler and Hartley theorems can be regarded as on non-coprime automorphisms. Thus have reduction to soluble groups. Next task is bounding the Fitting height.

For $A \leq \operatorname{Aut} G$, no such bounds in general!

Bell and Hartley (1990): for any non-nilpotent finite group A there are soluble groups G of arbitrarily high Fitting height admitting $A \leq \operatorname{Aut} G$ with $C_G(A) = 1$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Brauer–Fowler and Hartley theorems can be regarded as on non-coprime automorphisms. Thus have reduction to soluble groups. Next task is bounding the Fitting height.

For $A \leq \operatorname{Aut} G$, no such bounds in general!

Bell and Hartley (1990): for any non-nilpotent finite group A there are soluble groups G of arbitrarily high Fitting height admitting $A \leq \operatorname{Aut} G$ with $C_G(A) = 1$.

However, still true for nilpotent fixed-point-free $A \leq \operatorname{Aut} G$.

Dade (1969): if G is soluble while A is nilpotent with $C_G(A) = 1$, then $\overline{h(G)}$ is bounded in terms of $\alpha(A)$ (special case of Dade's theorem on Carter subgroups); the bound is exponential.

Brauer–Fowler and Hartley theorems can be regarded as on non-coprime automorphisms. Thus have reduction to soluble groups. Next task is bounding the Fitting height.

For $A \leq \operatorname{Aut} G$, no such bounds in general!

Bell and Hartley (1990): for any non-nilpotent finite group A there are soluble groups \overline{G} of arbitrarily high Fitting height admitting $A \leq \operatorname{Aut} G$ with $C_G(A) = 1$.

However, still true for nilpotent fixed-point-free $A \leq \operatorname{Aut} G$.

Dade (1969): if G is soluble while A is nilpotent with $C_G(A) = 1$, then $\overline{h(G)}$ is bounded in terms of $\alpha(A)$ (special case of Dade's theorem on Carter subgroups); the bound is exponential.

Difficult problem of improving Dade's bound to a linear one, even for cyclic $A = \langle \varphi \rangle$. (Some special cases tackled by Ercan and Güloğlu.)

So far the best general result is the quadratic bound $7\alpha(\langle \varphi \rangle)^2$ obtained by Jabara (2017).

Statement of the results

Theorem

If a finite group G admits an automorphism φ of order n having $m = |C_G(\varphi)|$ fixed points, then G has a soluble subgroup whose index and Fitting height are (m, n)-bounded.

▲ ศ 🛛 ト ▲ 三 ト

Statement of the results

Theorem

If a finite group G admits an automorphism φ of order n having $m = |C_G(\varphi)|$ fixed points, then G has a soluble subgroup whose index and Fitting height are (m, n)-bounded.

Because the automorphism in the Theorem is not assumed to be coprime, the result also applies to any element with given order of centralizer.

Corollary 1

If a finite group G contains an element g with centralizer of order $m = |C_G(g)|$, then G has a soluble subgroup whose index and Fitting height are m-bounded.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Application to locally finite groups

Recall: Corollary 1

If a finite group G contains an element g with centralizer of order $m = |C_G(g)|$, then G has a soluble subgroup whose index and Fitting height are m-bounded.

Hence we have an affirmative answer to Hartley's problem of 1995 (Problem 13.8(a) in the "Kourovka Notebook" recorded by Belyaev).

Corollary 2

If a locally finite group G has an element g with centralizer of order $m = |C_G(g)|$, then G has a locally soluble subgroup of finite m-bounded index which has a normal series of finite m-bounded length with locally nilpotent factors.

Obtained by inverse limit argument applying Corollary 1 to every finite subgroup of G containing g.

イロト イヨト イヨト ・

Recall: Theorem

If a finite group G admits an automorphism φ of order n having $m = |C_G(\varphi)|$ fixed points, then G has a soluble subgroup whose index and Fitting height are (m, n)-bounded.

The reduction to the soluble case is by Hartley's generalized Brauer–Fowler theorem based on the classification of finite simple groups.

Thus, we can assume that G is soluble, so we need to obtain a bound in terms of m, n for the Fitting height of G.

Recall: Theorem

If a finite group G admits an automorphism φ of order n having $m = |C_G(\varphi)|$ fixed points, then G has a soluble subgroup whose index and Fitting height are (m, n)-bounded.

The reduction to the soluble case is by Hartley's generalized Brauer–Fowler theorem based on the classification of finite simple groups.

Thus, we can assume that G is soluble, so we need to obtain a bound in terms of m, n for the Fitting height of G.

The proof is by induction on $|\varphi|$ and $|C_G(\varphi)|$, using the theorem of Busetto-Jabara (2016): if G = UV = VW = UW is a finite soluble group for three different Hall subgroups U, V, W, then

$$h(G) \leqslant h(U) + h(V) + h(W) - 2.$$

(Jabara's quadratic bound for h(G) when $C_G(\varphi) = 1$ used this result.)

Recall: Theorem

If a finite group G admits an automorphism φ of order n having $m = |C_G(\varphi)|$ fixed points, then G has a soluble subgroup whose index and Fitting height are (m, n)-bounded.

The basis of induction on $|\varphi|$ is the case $|\varphi| = p^k q^l$ due to Hartley (unpublished 1994) and Khukhro (2015).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Recall: Theorem

If a finite group G admits an automorphism φ of order n having $m = |C_G(\varphi)|$ fixed points, then G has a soluble subgroup whose index and Fitting height are (m, n)-bounded.

The basis of induction on $|\varphi|$ is the case $|\varphi| = p^k q^l$ due to Hartley (unpublished 1994) and Khukhro (2015).

For $|\varphi|$ divisible by at least **three** primes, the idea is to use the Busetto–Jabara factorization result. But for non-coprime automorphism φ there may not be φ -invariant Sylow or Hall subgroups.

(In Jabara's paper, although for non-coprime, the existence of φ -invariant Hall subgroups was guaranteed by $C_G(\varphi) = 1$.)

A crucial step in the proof of the Theorem is a reduction to the situation where φ -invariant Hall subgroups do exist.

It is well-known that $|C_{G/N}(\varphi)| \leq |C_G(\varphi)|$ for any normal φ -invariant subgroup of G. But when equality holds?

・ 同 ト ・ ヨ ト ・ ヨ ト

It is well-known that $|C_{G/N}(\varphi)| \leq |C_G(\varphi)|$ for any normal φ -invariant subgroup of G. But when equality holds?

Lemma 1

If N is a normal φ -invariant subgroup of G such that $|C_{G/N}(\varphi)| = |C_G(\varphi)|$, then $N \subseteq \{[g, \varphi] = g^{-1}g^{\varphi} \mid g \in G\}$.

▲ 伺 ▶ ▲ ヨ ▶ ▲ ヨ ▶ …

It is well-known that $|C_{G/N}(\varphi)| \leq |C_G(\varphi)|$ for any normal φ -invariant subgroup of G. But when equality holds?

Lemma 1

If N is a normal φ -invariant subgroup of G such that $|C_{G/N}(\varphi)| = |C_G(\varphi)|$, then $N \subseteq \{[g, \varphi] = g^{-1}g^{\varphi} \mid g \in G\}$.

Proof: We have $|G: C_G(\varphi)| = |\{[g, \varphi] \mid g \in G\}|.$

く 何 ト く ヨ ト く ヨ ト

It is well-known that $|C_{G/N}(\varphi)| \leq |C_G(\varphi)|$ for any normal φ -invariant subgroup of G. But when equality holds?

Lemma 1

If N is a normal φ -invariant subgroup of G such that $|C_{G/N}(\varphi)| = |C_G(\varphi)|$, then $N \subseteq \{[g, \varphi] = g^{-1}g^{\varphi} \mid g \in G\}$.

Proof: We have $|G: C_G(\varphi)| = |\{[g, \varphi] \mid g \in G\}|.$

Clearly, $[\bar{x}, \varphi]$ is the image of $[x, \varphi]$ under $G \to G/N$.

Hence, $|\{[g,\varphi]\mid g\in G\}|\leqslant |N|\cdot|\{[\bar{g},\varphi]\mid g\in G/N\}|,$ whence

$$\frac{|G|}{|C_G(\varphi)|} \leqslant |N| \cdot \frac{|G/N|}{|C_{G/N}(\varphi)|} = \frac{|G|}{|C_{G/N}(\varphi)|}, \text{ so that } |C_G(\varphi)| \geqslant |C_{G/N}(\varphi)|.$$

く 目 ト く ヨ ト く ヨ ト

It is well-known that $|C_{G/N}(\varphi)| \leq |C_G(\varphi)|$ for any normal φ -invariant subgroup of G. But when equality holds?

Lemma 1

If N is a normal φ -invariant subgroup of G such that $|C_{G/N}(\varphi)| = |C_G(\varphi)|$, then $N \subseteq \{[g, \varphi] = g^{-1}g^{\varphi} \mid g \in G\}$.

Proof: We have $|G: C_G(\varphi)| = |\{[g, \varphi] \mid g \in G\}|.$

Clearly, $[\bar{x}, \varphi]$ is the image of $[x, \varphi]$ under $G \to G/N$.

Hence, $|\{[g,\varphi]\mid g\in G\}|\leqslant |N|\cdot|\{[\bar{g},\varphi]\mid g\in G/N\}|,$ whence

$$\frac{|G|}{|C_G(\varphi)|} \leqslant |N| \cdot \frac{|G/N|}{|C_{G/N}(\varphi)|} = \frac{|G|}{|C_{G/N}(\varphi)|}, \text{ so that } |C_G(\varphi)| \geqslant |C_{G/N}(\varphi)|.$$

For $|C_G(\varphi)| = |C_{G/N}(\varphi)|$, we must have "=" instead of " \leq " throughout. Then the full inverse image of every $[\bar{x}, \varphi]$ consists only of elements $[x', \varphi]$. In particular, so does the inverse image of $1 = [1, \varphi]$, which is N_{\pm} , \Box_{\pm}

Lemma 2

Suppose that N is a normal φ -invariant subgroup such that $|C_{G/N}(\varphi)| = |C_G(\varphi)|$. Then for every set of primes $\pi \subseteq \pi(N)$ the group N has a φ -invariant Hall π -subgroup.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma 2

Suppose that N is a normal φ -invariant subgroup such that $|C_{G/N}(\varphi)| = |C_G(\varphi)|$. Then for every set of primes $\pi \subseteq \pi(N)$ the group N has a φ -invariant Hall π -subgroup.

Proof: By Lemma 1, we have $N \subseteq \{g^{-1}g^{\varphi} \mid g \in G\}$.

A (1) < A (2) < A (2) </p>

Lemma 2

Suppose that N is a normal φ -invariant subgroup such that $|C_{G/N}(\varphi)| = |C_G(\varphi)|$. Then for every set of primes $\pi \subseteq \pi(N)$ the group N has a φ -invariant Hall π -subgroup.

Proof: By Lemma 1, we have $N \subseteq \{g^{-1}g^{\varphi} \mid g \in G\}$.

Let S be a Hall π -subgroup of N.

If $S^{\varphi} \neq S$, then $S^{\varphi} = S^a$ for some $a \in N$.

There is $g \in G$ such that $a = g^{-1}g^{\varphi}$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Lemma 2

Suppose that N is a normal φ -invariant subgroup such that $|C_{G/N}(\varphi)| = |C_G(\varphi)|$. Then for every set of primes $\pi \subseteq \pi(N)$ the group N has a φ -invariant Hall π -subgroup.

Proof: By Lemma 1, we have $N \subseteq \{g^{-1}g^{\varphi} \mid g \in G\}$.

Let S be a Hall π -subgroup of N.

If $S^{\varphi} \neq S$, then $S^{\varphi} = S^a$ for some $a \in N$.

There is $g \in G$ such that $a = g^{-1}g^{\varphi}$.

Then $S^{g^{-1}}$ is also a Hall π -subgroup of N, which is φ -invariant:

$$(S^{g^{-1}})^{\varphi} = S^{a(g^{-1})^{\varphi}} = S^{g^{-1}g^{\varphi}(g^{-1})^{\varphi}} = S^{g^{-1}}.$$

・ロット (雪) (き) (き)

Key lemma

Lemma 3

Suppose that N is a normal φ -invariant subgroup such that $|C_{G/N}(\varphi)| = |C_G(\varphi)|$. Then the Fitting height h(N) is (m, n)-bounded.

Key lemma

Lemma 3

Suppose that N is a normal φ -invariant subgroup such that $|C_{G/N}(\varphi)| = |C_G(\varphi)|$. Then the Fitting height h(N) is (m, n)-bounded.

Proof: Induction on $|\varphi|$.

If $|\varphi|$ is divisible by at most two primes, the result follows by Hartley (unpublished 1994) and Khukhro (2015).

Hence we can assume that $|\varphi|$ divisible by at least three primes p,q,r.

Key lemma

Lemma 3

Suppose that N is a normal φ -invariant subgroup such that $|C_{G/N}(\varphi)| = |C_G(\varphi)|$. Then the Fitting height h(N) is (m, n)-bounded.

Proof: Induction on $|\varphi|$.

If $|\varphi|$ is divisible by at most two primes, the result follows by Hartley (unpublished 1994) and Khukhro (2015).

Hence we can assume that $|\varphi|$ divisible by at least three primes p,q,r.

By Lemma 2, N has φ -invariant Hall p'-, q'-, r'-subgroups U, V, W.

On the Hall p'-subgroup U, the Sylow p-subgroup $\langle \varphi_p \rangle$ induces a **coprime** automorphism. Its centralizer $C_U(\varphi_p)$ admits the cyclic automorphism group $\langle \varphi \rangle / \langle \varphi_p \rangle$ of smaller order, with centralizer equal to $C_U(\varphi)$. By induction, the Fitting height of $C_U(\varphi_p)$ is (m, n-1)-bounded.

Key lemma (continued)

Recall: φ_p is a **coprime** automorphism of the Hall p'-subgroup U, and we know that the Fitting height of $C_U(\varphi_p)$ is (m, n-1)-bounded.

Now by Thompson's theorem (or Turull's with better bound) the Fitting height of U is (m, n-1)-bounded. The same argument applies to the Hall subgroups V, W.

Key lemma (continued)

Recall: φ_p is a **coprime** automorphism of the Hall p'-subgroup U, and we know that the Fitting height of $C_U(\varphi_p)$ is (m, n-1)-bounded.

Now by Thompson's theorem (or Turull's with better bound) the Fitting height of U is (m, n-1)-bounded. The same argument applies to the Hall subgroups V, W.

Since N = UV = UW = VW, by the Busetto–Jabara theorem

 $h(N) \leqslant h(U) + h(V) + h(W) - 2.$

イロト イヨト イヨト 一座

Recall: G is a finite **soluble** group with an automorphism φ of order n having $m = |C_G(\varphi)|$ fixed points; we need show that the Fitting height of G is (m, n)-bounded.

Induction on $|C_G(\varphi)|$.

When $C_G(\varphi) = 1$, the result follows by Dade's theorem (with better bound of Jabara).

く 何 ト く ヨ ト く ヨ ト

Recall: G is a finite **soluble** group with an automorphism φ of order n having $m = |C_G(\varphi)|$ fixed points; we need show that the Fitting height of G is (m, n)-bounded.

Induction on $|C_G(\varphi)|$.

When $C_G(\varphi) = 1$, the result follows by Dade's theorem (with better bound of Jabara).

Let g(m, n) be the function furnished by Lemma 3.

If $F_{g(m,n)+1}(G) = G$, then we are done.

くぼう くほう くほう

Recall: G is a finite **soluble** group with an automorphism φ of order n having $m = |C_G(\varphi)|$ fixed points; we need show that the Fitting height of G is (m, n)-bounded.

Induction on $|C_G(\varphi)|$.

When $C_G(\varphi) = 1$, the result follows by Dade's theorem (with better bound of Jabara).

Let g(m, n) be the function furnished by Lemma 3.

If $F_{g(m,n)+1}(G) = G$, then we are done.

Otherwise, $h(F_{g(m,n)+1}(G)) > g(m,n)$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Recall: G is a finite **soluble** group with an automorphism φ of order n having $m = |C_G(\varphi)|$ fixed points; we need show that the Fitting height of G is (m, n)-bounded.

Induction on $|C_G(\varphi)|$.

When $C_G(\varphi) = 1$, the result follows by Dade's theorem (with better bound of Jabara).

Let g(m, n) be the function furnished by Lemma 3.

If $F_{g(m,n)+1}(G) = G$, then we are done.

Otherwise, $h(F_{g(m,n)+1}(G)) > g(m,n)$ and therefore $|C_{G/F_{g(m,n)+1}(G)}(\varphi)| < |C_G(\varphi)|$ by Lemma 3.

Recall: G is a finite **soluble** group with an automorphism φ of order n having $m = |C_G(\varphi)|$ fixed points; we need show that the Fitting height of G is (m, n)-bounded.

Induction on $|C_G(\varphi)|$.

When $C_G(\varphi) = 1$, the result follows by Dade's theorem (with better bound of Jabara).

Let g(m, n) be the function furnished by Lemma 3.

If $F_{g(m,n)+1}(G) = G$, then we are done.

Otherwise, $h(F_{g(m,n)+1}(G)) > g(m,n)$ and therefore $|C_{G/F_{g(m,n)+1}(G)}(\varphi)| < |C_G(\varphi)|$ by Lemma 3. By induction, $h(G/F_{g(m,n)+1}(G)) \leq f(m-1,n)$. As a result,

$$h(G) \leqslant g(m,n) + 1 + f(m-1,n).$$

ロトス団トメミトメミト

Open problems on bounding Fitting height

By analogy with the coprime theorem of Hartley and Isaacs (1990):

Conjecture 1

If a finite group G admits an automorphism φ of order n having $m = |C_G(\varphi)|$ fixed points, then G has a soluble subgroup of (m, n)-bounded index whose Fitting height is n-bounded, or even $\alpha(\langle \varphi \rangle)$ -bounded.

So far this result is known (even in the 'strong' version with $\alpha(\langle \varphi \rangle)$ -bounded Fitting height) for automorphisms of prime-power order due to Hartley and Turau (1987).

A 回 > A 回 > A 回 >

Open problems in terms of rank

By analogy with the coprime theorems of Mazurov and Khukhro (2006):

Conjecture 2

If a finite soluble group G admits an automorphism φ of order n such that the fixed point subgroup $C_G(\varphi)$ has (Prüfer) rank r, then the Fitting height of G is (n, r)-bounded,

or even there is a normal subgroup N such that the rank of G/N is $(n,r)\mbox{-bounded},$ while the Fitting height of N is $n\mbox{-bounded}.$

(四) (ヨ) (ヨ)

Open problems in terms of rank

By analogy with the coprime theorems of Mazurov and Khukhro (2006):

Conjecture 2

If a finite soluble group G admits an automorphism φ of order n such that the fixed point subgroup $C_G(\varphi)$ has (Prüfer) rank r, then the Fitting height of G is (n, r)-bounded,

or even there is a normal subgroup N such that the rank of G/N is $(n,r)\mbox{-bounded},$ while the Fitting height of N is $n\mbox{-bounded}.$

Unlike coprime case and unlike results with order restriction on $C_G(\varphi)$, examples show that here one cannot drop the solubility condition on G.

< 回 > < 回 > < 回 >

Open problems in terms of rank

By analogy with the coprime theorems of Mazurov and Khukhro (2006):

Conjecture 2

If a finite soluble group G admits an automorphism φ of order n such that the fixed point subgroup $C_G(\varphi)$ has (Prüfer) rank r, then the Fitting height of G is (n, r)-bounded,

or even there is a normal subgroup N such that the rank of G/N is $(n,r)\mbox{-bounded},$ while the Fitting height of N is $n\mbox{-bounded}.$

Unlike coprime case and unlike results with order restriction on $C_G(\varphi)$, examples show that here one cannot drop the solubility condition on G.

The affirmative answer to even the 'weak' version of Conjecture 2 would provide an affirmative solution to Hartley's problem 13.8(b) in Kourovka Notebook about a locally soluble locally finite group containing an element with Chernikov centralizer. So far even this weak rank version is only known for $|\varphi| = p^k q^l$ due to Hartley (unpublished, 1994).

Bounds for the Fitting height reduce further studies to the case of nilpotent groups. Perhaps the most important problem is to obtain a group-theoretic analogue of Kreknin's theorem on Lie algebras.

Conjecture 3

If a (finite) nilpotent group G admits an automorphism φ of order n with $C_G(\varphi) = 1$, then the derived length of G is n-bounded.

Bounds for the Fitting height reduce further studies to the case of nilpotent groups. Perhaps the most important problem is to obtain a group-theoretic analogue of Kreknin's theorem on Lie algebras.

Conjecture 3

If a (finite) nilpotent group G admits an automorphism φ of order n with $C_G(\varphi) = 1$, then the derived length of G is n-bounded.

The known cases are when φ is of prime order due to Higman (1957) and Kreknin and Kostrikin (1963), or of order 4 due to Kovács (1961).

・ 何 ト ・ ヨ ト ・ ヨ ト

Bounds for the Fitting height reduce further studies to the case of nilpotent groups. Perhaps the most important problem is to obtain a group-theoretic analogue of Kreknin's theorem on Lie algebras.

Conjecture 3

If a (finite) nilpotent group G admits an automorphism φ of order n with $C_G(\varphi) = 1$, then the derived length of G is n-bounded.

The known cases are when φ is of prime order due to Higman (1957) and Kreknin and Kostrikin (1963), or of order 4 due to Kovács (1961).

For these cases nice results have also been obtained for almost fixed-point-free automorphisms: for φ of prime order by Khukhro (1990), and for φ of order 4 by Khukhro and Makarenko (2006).

イロト イヨト イヨト ・

Bounds for the Fitting height reduce further studies to the case of nilpotent groups. Perhaps the most important problem is to obtain a group-theoretic analogue of Kreknin's theorem on Lie algebras.

Conjecture 3

If a (finite) nilpotent group G admits an automorphism φ of order n with $C_G(\varphi) = 1$, then the derived length of G is n-bounded.

The known cases are when φ is of prime order due to Higman (1957) and Kreknin and Kostrikin (1963), or of order 4 due to Kovács (1961).

For these cases nice results have also been obtained for almost fixed-point-free automorphisms: for φ of prime order by Khukhro (1990), and for φ of order 4 by Khukhro and Makarenko (2006).

Definitive general results have also been obtained for almost fixed-point-free *p*-automorphisms of finite *p*-groups by Alperin (1961), Jaikin-Zapirain (2000), Khukhro (1985, 1993), Medvedev (1999), Shalev (1993) $= -\infty$

Thank you!

э

イロト イヨト イヨト イヨト