On a Simultaneous Ping-Pong game

Geoffrey Janssens

AGTA conference 2025

Joint work with Doryan Temmerman and François Thilmany

Geoffrey Janssens

On a Simultaneous Ping-Pong game

AGTA conference 2025 1 / 19

A group Γ is *linear* if for some field K:

 $\exists \, \rho: \Gamma \hookrightarrow \mathit{GL}_n(K)$

A group Γ is *linear* if for some field K:

$$\exists \rho: \Gamma \hookrightarrow GL_n(K)$$

Mal'cev Theorem (1940)

Linear groups are residually finite

\rightsquigarrow profinite topology is Hausdorff

A group Γ is *linear* if for some field K:

$$\exists \rho: \Gamma \hookrightarrow GL_n(K)$$

Mal'cev Theorem (1940)

Linear groups are residually finite

 \rightsquigarrow profinite topology is Hausdorff

 \rightsquigarrow a group theoretical aspect of why repr.th. of finite groups works

Linear groups come in two very different flavours...

Linear groups come in two very different flavours...

Tits Alternative (1972)

Let $\Gamma \leq GL_n(F)$ finitely generated. Then one of following:

- $\bullet \ \Gamma \text{ is virtually solvable}$
- **2** Γ contains a free subgroup F_2

Linear groups come in two very different flavours...

Tits Alternative (1972)

Let $\Gamma \leq GL_n(F)$ finitely generated. Then one of following:

- $\textbf{0} \ \Gamma \text{ is virtually solvable}$
- **2** Γ contains a free subgroup F_2

 \rightsquigarrow yield many dichotomies (word growth, Day conjecture, ...)

Some natural questions arise :

(i) How to verify in which case?

Some natural questions arise :

- (i) How to verify in which case?
- (ii) If $\Gamma = \langle S \rangle$ with S finite and Γ not virtually solvable. Which S^n contain F_2 generators?

Some natural questions arise :

- (i) How to verify in which case?
- (ii) If $\Gamma = \langle S \rangle$ with S finite and Γ not virtually solvable. Which S^n contain F_2 generators?
- (iii) How 'large' is the F_2 in Γ ?

(i) How to verify in which case?

Margulis-Soifer

$\exists \ {\rm free \ subgroup \ in} \ \Gamma \Leftrightarrow \exists \ {\rm max. \ subgroup \ of \ infinite \ index}$

(i) How to verify in which case?

(ii) If $\Gamma = \langle S \rangle$ with S finite and Γ not virtually solvable. Which S^m contain F_2 generators?

Uniform Tits Alternative (Breuillard, 2008)

If
$$\Gamma = \langle S \rangle \leq GL_n(F)$$
, then

$$\exists d(n) \in \mathbb{N} \text{ and } a, b \in S^{d(n)}$$
: $\langle a, b \rangle \cong F_2$

- (i) How to verify in which case?
- (ii) If $\Gamma = \langle S \rangle$ with S finite and Γ not virtually solvable. Which S^m contain F_2 generators?
- (iii) How 'large' is the F_2 in Γ ?

$$GL_n(F) = \{ x \in F^{n^2} \mid \underbrace{\det(x)}_{polynomial} \neq 0 \}$$

 \rightsquigarrow 3 topologies: Zariski, profinite and Euclidean (if $F \leq \mathbb{C}$)

- (i) How to verify in which case?
- (ii) If $\Gamma = \langle S \rangle$ with S finite and Γ not virtually solvable. Which S^m contain F_2 generators?
- (iii) How 'large' is the F_2 in Γ ?

$$GL_n(F) = \{ x \in F^{n^2} \mid \underbrace{\det(x)}_{polynomial} \neq 0 \}$$

 \rightsquigarrow 3 topologies: Zariski, profinite and Euclidean (if $F \leq \mathbb{C}$)

 $\langle \mathbf{g}, \gamma \rangle \cong \langle \mathbf{g} \rangle * \langle \gamma \rangle.$

$$\langle g, \gamma \rangle \cong \langle g \rangle * \langle \gamma \rangle.$$

Conjecture (Bekka–Cowling–de la Harpe, 1994)

Let Γ be a Zariski-dense subgroup of a connected semisimple real Lie group ${\bf G}$ without compact factors.

Does every finite subset $S \subset \Gamma$ admit a simultaneous ping-pong partner?

$$\langle \mathbf{g}, \gamma \rangle \cong \langle \mathbf{g} \rangle * \langle \gamma \rangle.$$

Conjecture (Bekka–Cowling–de la Harpe, 1994)

Let Γ be a Zariski-dense subgroup of a connected semisimple real Lie group ${\bf G}$ without compact factors.

Does every finite subset $S \subset \Gamma$ admit a simultaneous ping-pong partner?

Example: $\mathbf{G} = \prod_{i=1}^{q} SL_{n_i}(\mathbb{R})$ and Γ finite index in $\prod_{i=1}^{q} SL_{n_i}(\mathbb{Z})$.

$$\langle \mathbf{g}, \gamma \rangle \cong \langle \mathbf{g} \rangle * \langle \gamma \rangle.$$

Conjecture (Bekka–Cowling–de la Harpe, 1994)

Let Γ be a Zariski-dense subgroup of a connected semisimple real Lie group ${\bf G}$ without compact factors.

Does every finite subset $S \subset \Gamma$ admit a simultaneous ping-pong partner?

Historical motivation: obtain simplicity of associated C*-algebra

э

э

Let S a class of groups. Then G is a an S-almost direct product of G_1, \ldots, G_m if $\exists K \in S$ such that $G/K \cong G_1 \times \cdots \times G_m$

Let S a class of groups. Then G is a an S-almost direct product of G_1, \ldots, G_m if $\exists K \in S$ such that $G/K \cong G_1 \times \cdots \times G_m$

Obstruction: 'Almost faithful embedding'

Let

- $S := \{G \mid \text{no free subgroup in } G\}$
- Γ an *S*-almost direct product of G_1, \ldots, G_m .

•
$$A, B \leq \Gamma$$
 s.t. $\langle A, B \rangle \cong A *_{A \cap B} B$

BCH conjecture is ill-posed in semisimple non-simple case 😡

Let S a class of groups. Then G is a an S-almost direct product of G_1, \ldots, G_m if $\exists K \in S$ such that $G/K \cong G_1 \times \cdots \times G_m$

Obstruction: 'Almost faithful embedding'

Let

- $S := \{G \mid \text{no free subgroup in } G\}$
- Γ an *S*-almost direct product of G_1, \ldots, G_m .

•
$$A, B \leq \Gamma$$
 s.t. $\langle A, B \rangle \cong A *_{A \cap B} B$

$$\implies \exists i: \ker(\langle A, B \rangle \to G_i) \subseteq A \cap B.$$

Some positive results

Take $x \in S \subset \Gamma$ and Chevalley decompose:

unipotent semisimple

Image: Image:

æ

Some positive results

Take $x \in S \subset \Gamma$ and Chevalley decompose:

\rightsquigarrow 'dynamical properties' of x_{ss} crucial

э

Some positive results

Take $x \in S \subset \Gamma$ and Chevalley decompose:

 \rightsquigarrow 'dynamical properties' of x_{ss} crucial

Known results

- **(**) If G simple of real rank 1 (e.g. $SL_2(\mathbb{R})$) and all S (BCH, 1994)
- If G simple not of type A_n, D_{2n+1}, E₆ and x_{ss} 'very proximal' (Poznansky, 2009)
- If $\Gamma = SL_n(\mathbb{Z})$ and x_{ss} torsion or 'very proximal' (Soifer-Vishkautsan, 2010)

$$\mathbf{G} = \prod_{i} GL_{n_{i}}(D_{i}) \times \prod_{j} SL_{n_{j}}(D_{j})$$

$$\Gamma = \text{ any Zariski-dense in } \mathbf{G}$$

with D_{ℓ} f.d. division algebra over any field *F*.

э

$$\mathbf{G} = \prod_{i} GL_{n_{i}}(D_{i}) \times \prod_{j} SL_{n_{j}}(D_{j})$$

$$\Gamma = \text{ any Zariski-dense in } \mathbf{G}$$

with D_{ℓ} f.d. division algebra over any field F.

Example: Γ commensurable with $\prod_i GL_{n_i}(\mathcal{O}_i) \times \prod_j SL_{n_j}(\mathcal{O}_j)$ where \mathcal{O}_ℓ is an order in D_ℓ .

$$\mathbf{G} = \prod_{i} GL_{n_{i}}(D_{i}) \times \prod_{j} SL_{n_{j}}(D_{j})$$

$$\Gamma = \text{ any Zariski-dense in } \mathbf{G}$$

$$S = \{ \text{ finite set of } \underline{\text{finite subgroups of } \mathbf{G} \}$$

with D_{ℓ} f.d. division algebra over any field F.

æ

$$\mathbf{G} = \prod_{i} GL_{n_{i}}(D_{i}) \times \prod_{j} SL_{n_{j}}(D_{j})$$

$$\Gamma = \text{ any Zariski-dense in } \mathbf{G}$$

$$S = \{ \text{ finite set of finite subgroups of } \mathbf{G} \}$$

with D_{ℓ} f.d. division algebra over any field F.

Spoiler

For any reductive group G, Zariski-dense Γ and S as above we reduce the (modified) conjecture to 2 concrete, and of independent interest to verify, properties.

Ping-Pong lemma (Klein, Schottky \sim 1880)

Let $G_1, G_2 \leq \Gamma$ s.t. $|G_1| > 2$ and

- Γ acts on the set P
- $P_1, P_2 \subset P$ distinct and non-empty
- $g(P_i) \subseteq P_j$ for every $1 \neq g \in G_i$ and $\{i, j\} = \{1, 2\}$

 $\Longrightarrow \langle G_1, G_2 \rangle \cong G_1 \star G_2.$

Let
$$\Gamma = \langle a, b \rangle$$
 with $a = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}$.

A B A A B A

< □ > < 同 >

3

Let
$$\Gamma = \langle a, b \rangle$$
 with $a = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}$.
 $\Gamma \curvearrowright \mathbb{C} : \begin{cases} a \mapsto \varphi_a(z) = z + m \\ b \mapsto \varphi_b(z) = \frac{z}{mz+1} \end{cases}$

A B A A B A

< □ > < 同 >

3

Let
$$\Gamma = \langle a, b \rangle$$
 with $a = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}$.
 $\Gamma \curvearrowright \mathbb{C} : \begin{cases} a \mapsto \varphi_a(z) = z + m \\ b \mapsto \varphi_b(z) = \frac{z}{mz+1} \end{cases}$

Consider

$$P_{a} = \{z \in \mathbb{C} \mid |z| < 1\} \text{ and } P_{b} = \{z \in \mathbb{C} \mid |z| > 1\}$$
$$\rightsquigarrow \varphi_{a}(P_{a}) \subseteq P_{b} \text{ and } \varphi_{b}(P_{b}) \subseteq P_{a}$$

Geoffrey Janssens

< □ > < 同 >

æ

Let
$$\Gamma = \langle a, b \rangle$$
 with $a = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}$.
 $\Gamma \curvearrowright \mathbb{C} : \begin{cases} a \mapsto \varphi_a(z) = z + m \\ b \mapsto \varphi_b(z) = \frac{z}{mz+1} \end{cases}$

Consider

$$P_{a} = \{ z \in \mathbb{C} \mid |z| < 1 \} \text{ and } P_{b} = \{ z \in \mathbb{C} \mid |z| > 1 \}$$
$$\rightsquigarrow \varphi_{a}(P_{a}) \subseteq P_{b} \text{ and } \varphi_{b}(P_{b}) \subseteq P_{a}$$
$$\Longrightarrow \langle a, b \rangle \cong \langle a \rangle * \langle b \rangle.$$

Geoffrey Janssens

AGTA conference 2025

- ∢ ⊒ →

< □ > < 同 >

æ

10/19

Let
$$\Gamma = \langle a, b \rangle$$
 with $a = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}$.
 $\Gamma \curvearrowright \mathbb{C} : \begin{cases} a \mapsto \varphi_a(z) = z + m \\ b \mapsto \varphi_b(z) = \frac{z}{mz+1} \end{cases}$

Consider

$$P_{a} = \{z \in \mathbb{C} \mid |z| < 1\} \text{ and } P_{b} = \{z \in \mathbb{C} \mid |z| > 1\}$$
$$\rightsquigarrow \varphi_{a}(P_{a}) \subseteq P_{b} \text{ and } \varphi_{b}(P_{b}) \subseteq P_{a}$$
$$\implies \langle a, b \rangle \cong \langle a \rangle * \langle b \rangle.$$

<u>*Remark:*</u> φ_a is 'propulsing' and φ_b is 'attracting'

э

Doing projective dynamics since 1972

Tits take home message:

"propulsing and attracting is about eigenvalues when acting on an appropriate projective space, over a carefully chosen local field."

Doing projective dynamics since 1972

Tits take home message:

"propulsing and attracting is about eigenvalues when acting on an appropriate projective space, over a carefully chosen local field."

For $x \in \Gamma \leq GL(V)$ define

 $A(x) = \bigoplus$ of generalized eigenspaces of the eigenvalues of max absolute value and write $V = A(x) \oplus A^{co}(x)$.

 \rightsquigarrow x is *proximal* if dim A(x) = 1 and *very proximal* if $x^{\pm 1}$ proximal.

Tits take home message:

"propulsing and attracting is about eigenvalues when acting on an appropriate projective space, over a carefully chosen local field."

For $x \in \Gamma \leq GL(V)$ define

 $A(x) = \bigoplus$ of generalized eigenspaces of the eigenvalues of max absolute value and write $V = A(x) \oplus A^{co}(x)$.

 \rightsquigarrow x is *proximal* if dim A(x) = 1 and *very proximal* if $x^{\pm 1}$ proximal.

Proximal = contractive: if x is proximal, then

$$\forall p \in \mathbb{P}(V) \setminus A^{co}(x) : (x^n.p)_n \to A(x)$$

 ♀ Γ can be realised in various ways as a linear group.
 → make x proximal via other representation of Γ
 Previous can <u>not</u> always, e.g. x torsion
 → x_{ss} is very proximal is a restrictive condition when x is fixed

- Γ can be realised in various ways as a linear group. \rightsquigarrow make x proximal via other representation of Γ
- **2** Previous can <u>not</u> always, e.g. x torsion

 $\rightsquigarrow x_{ss}$ is very proximal is a restrictive condition when x is fixed

Optimizion proximal is for V a vector space, but generalised the classical theory to modules over division algebras

General reduction theorem (J.-Temmerman-Thilmany 2025)

If $\forall i \in I$, $\exists \rho_i : \mathbf{G} \to PGL(V_i)$, with V_i a f.d. D_i -module, s.t.

General reduction theorem (J.-Temmerman-Thilmany 2025)

If $\forall i \in I$, $\exists \rho_i : \mathbf{G} \to PGL(V_i)$, with V_i a f.d. D_i -module, s.t.

• $\rho_i(\Gamma)$ contains a proximal element;

②
$$\forall$$
 h ∈ *H_i* \ (*C_i* := *H_i* ∩ *Z*(**G**)) and \forall *p* ∈ $\mathbb{P}(V_i)$:

$$\operatorname{span}\{\rho_i(xhx^{-1})p \mid x \in \Gamma\} = \mathbb{P}(V_i)$$

General reduction theorem (J.-Temmerman-Thilmany 2025)

If $\forall i \in I$, $\exists \rho_i : \mathbf{G} \to PGL(V_i)$, with V_i a f.d. D_i -module, s.t.

• $\rho_i(\Gamma)$ contains a proximal element;

$$\forall h \in H_i \setminus (C_i := H_i \cap \mathcal{Z}(\mathbf{G})) \text{ and } \forall p \in \mathbb{P}(V_i):$$

$$\operatorname{span}\{\rho_i(xhx^{-1})p \mid x \in \Gamma\} = \mathbb{P}(V_i)$$

Then

$$\{\gamma \in \Gamma \mid \langle H_i, \gamma \rangle \cong H_i *_{C_i} (\langle \gamma \rangle \times C_i) \text{ for all } i\}$$

is dense in Γ for the join of the profinite topology and the Zariski topology.

General reduction theorem (J.-Temmerman-Thilmany 2025)

If $\forall i \in I$, $\exists \rho_i : \mathbf{G} \to PGL(V_i)$, with V_i a f.d. D_i -module, s.t.

• $\rho_i(\Gamma)$ contains a proximal element;

$$\forall h \in H_i \setminus (C_i := H_i \cap \mathcal{Z}(\mathbf{G})) \text{ and } \forall p \in \mathbb{P}(V_i):$$

$$\operatorname{span}\{\rho_i(xhx^{-1})p \mid x \in \Gamma\} = \mathbb{P}(V_i)$$

Then

$$\{\gamma \in \Gamma \mid \langle H_i, \gamma \rangle \cong H_i *_{C_i} (\langle \gamma \rangle \times C_i) \text{ for all } i\}$$

is dense in Γ for the join of the profinite topology and the Zariski topology.

Remark: ρ_i with (1) always exists, but condition (2) is poorly understood !

Existence for product of SL and GL

$$\begin{split} \mathbf{G} &= \prod_{i} GL_{n_{i}}(D_{i}) \times \prod_{j} SL_{n_{j}}(D_{j}) \\ H_{\ell} \leq \mathbf{G} \text{ finite subgroups having an almost-embedding in a simple component } GL_{n_{\ell}} \text{ with } n_{\ell} \geq 2 \text{ (!)} \end{split}$$

 $\rightsquigarrow \rho_{st} : GL_{n_{\ell}} \rightarrow PGL(D_{n_{\ell}}^{\times n_{\ell}}) :$ left multiplication

Existence for product of SL and GL

$$\begin{split} \mathbf{G} &= \prod_i \, GL_{n_i}(D_i) \times \prod_j \, SL_{n_j}(D_j) \\ H_\ell &\leq \mathbf{G} \text{ finite subgroups having an almost-embedding in a simple component } GL_{n_\ell} \text{ with } n_\ell \geq 2 \ (!) \end{split}$$

 $\rightsquigarrow \rho_{st}: GL_{n_{\ell}} \rightarrow PGL(D_{n_{\ell}}^{\times n_{\ell}}):$ left multiplication

Theorem (JTT, 2025)

The standard representation ρ_{st} extended to ${\bf G}$ satisfies the both conditions.

Existence for product of SL and GL

 $\mathbf{G} = \prod_{i} GL_{n_{i}}(D_{i}) \times \prod_{j} SL_{n_{j}}(D_{j})$ $H_{\ell} \leq \mathbf{G} \text{ finite subgroups having an almost-embedding in a simple }$

component $GL_{n_{\ell}}$ with $n_{\ell} \geq 2$ (!)

 $\rightsquigarrow \rho_{st}: GL_{n_{\ell}} \rightarrow PGL(D_{n_{\ell}}^{\times n_{\ell}}):$ left multiplication

Theorem (JTT, 2025)

The standard representation ρ_{st} extended to ${\bf G}$ satisfies the both conditions.

Remark: ρ_{st} satisfies a strong (2):

$$\operatorname{span}\{\rho_{st}(xhx^{-1}), 1 \mid x \in \Gamma\} = M_{n_{\ell}}(D_{n_{\ell}})$$

14/19

If A is a f.d. semisimple algebra, then

$$A \cong M_{n_1}(D_1) \times \cdots \times M_{n_q}(D_q).$$

If A is a f.d. semisimple algebra, then

$$A \cong M_{n_1}(D_1) \times \cdots \times M_{n_q}(D_q).$$

 \rightsquigarrow consider $\mathbf{G}=\mathcal{U}(A)$!

If A is a f.d. semisimple algebra, then

$$A \cong M_{n_1}(D_1) \times \cdots \times M_{n_q}(D_q).$$

 \rightsquigarrow consider $\mathbf{G} = \mathcal{U}(A)$!

Theorem (Siegel, \sim 1950)

Let \mathcal{O} be an order in A (e.g $M_n(\mathbb{Z})$ in $M_n(\mathbb{Q})$). Then $\mathcal{U}(\mathcal{O})$ is a finitely presented group which is Zariski-dense in $\mathcal{U}(A)$.

If A is a f.d. semisimple algebra, then

$$A \cong M_{n_1}(D_1) \times \cdots \times M_{n_q}(D_q).$$

 \rightsquigarrow consider $\mathbf{G} = \mathcal{U}(A)$!

Theorem (Siegel, \sim 1950)

Let \mathcal{O} be an order in A (e.g $M_n(\mathbb{Z})$ in $M_n(\mathbb{Q})$). Then $\mathcal{U}(\mathcal{O})$ is a finitely presented group which is Zariski-dense in $\mathcal{U}(A)$.

 \rightsquigarrow almost embedding in GL_n with $n \ge 2$ can be optimized in that case

A is a f.d. semisimple algebra

Theorem (JTT, 2025)

Let \mathcal{O} an order in A, Γ Zariski-dense in $\mathcal{U}(\mathcal{O})$ and $H \leq \mathcal{U}(A)$. Then H has ping-pong partner $\gamma \in \Gamma$ iff H almost embeds in simple component of A which is

- neither a field
- nor a totally definite quaternion algebra

In that case, profinite densely many partners.

A is a f.d. semisimple algebra

Theorem (JTT, 2025)

Let \mathcal{O} an order in A, Γ Zariski-dense in $\mathcal{U}(\mathcal{O})$ and $H \leq \mathcal{U}(A)$. Then H has ping-pong partner $\gamma \in \Gamma$ iff H almost embeds in simple component of A which is

- neither a field
- nor a totally definite quaternion algebra

In that case, profinite densely many partners.

What theorem doesn't tell:

```
(i) How construct \gamma?
```

(ii) When H has such almost-embedding?

 $\rightsquigarrow {\it K}^{\gamma}$ made via a linear $1^{\it st}$ order deformation

 $\rightsquigarrow {\it K}^{\gamma}$ made via a linear $1^{\it st}$ order deformation

 $\rightsquigarrow 1^{\textit{st}}$ order deformations can be done inside $\mathcal O$

 $\rightsquigarrow {\it K}^{\gamma}$ made via a linear $1^{\it st}$ order deformation

 $\rightsquigarrow 1^{\textit{st}}$ order deformations can be done inside $\mathcal O$

Conclusion

Via 1^{st} order deformations there exists a down to earth linear algebra method

Let A = FG a group algebra

э

Let A = FG a group algebra

 \rightsquigarrow representation theory to the rescue !

э

Let A = FG a group algebra

 \rightsquigarrow representation theory to the rescue !

Theorem (JTT, 2025)

If H has a faithful irreducible representation, then the required strong almost embedding exists.

Example: H has cyclic Sylow subgroups.

Thank you Francesco !!

э