AGTA 2025

On PI-theory for algebras graded by a group

Antonio loppolo

June 23-27, 2025

General setting

- *F* := ground field (characteristic zero);
- A := associative algebra over F;
- $M_n(F) \rightsquigarrow$ algebra of $n \times n$ matrices over F.

Polynomial identities

 $X = \{x_1, x_2, \ldots\}$ countable set of non-commuting variables.

 $F\langle X \rangle$ is the free algebra of polynomials on X over F.

Definition

A polynomial $f = f(x_1, ..., x_n) \in F\langle X \rangle$ is a polynomial identity of the algebra A, and we write $f \equiv 0$, if, for any $a_1, ..., a_n \in A$,

$$f(a_1,\ldots,a_n)=0.$$

Pl-algebras: they satisfy at least one non-trivial polynomial identity.

Example

The commutator $[x_1, x_2] \equiv 0$ on any commutative algebra *C*.

Matrix algebras

Standard polynomial:
$$St_m(x_1, \ldots, x_m) = \sum_{\sigma \in S_m} (-1)^{\sigma} x_{\sigma(1)} \cdots x_{\sigma(m)}.$$

Theorem (Amitsur, Levitzki - 1950)

 $St_{2n}(x_1,...,x_{2n}) \equiv 0 \text{ on } M_n(F).$

Combinatorial approach in PI-theory.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ● ● ● ● ●

Identities of an algebra

5

Problem: finding all identities satisfied by a given algebra *A*.

 $\mathsf{Id}(A) = \{ f \in F \langle X \rangle : f \equiv 0 \text{ on } A \}.$

Example (Drensky - 1981)

 $\mathsf{Id}(M_2(F)) = \langle St_4, [[x_1, x_2]^2, x_3] \rangle.$

 $Id(M_3(F)) \rightsquigarrow no idea !!!$

Theorem (Kemer - 1987)

If charF = 0, Id(A) is finitely generated.

・ロト・日本・日本・日本・日本・日本

Multilinear polynomials: every variables at degree 1 in any monomial.

$$P_n = \operatorname{span}_F \left\{ x_{\sigma(1)} \dots x_{\sigma(n)} \mid \sigma \in S_n \right\}.$$

Definition

The *n*-th codimension of an algebra *A* is the non-negative integer:

$$c_n(A) = \dim_F \frac{P_n}{P_n \cap \operatorname{Id}(A)} \leq n!$$

<ロト < 部 ト < 注 ト < 注 ト 三 の < @</p>

Analytical approach in PI-theory

- **Regev 1972**: If A is a PI-algebra, $c_n(A)$ is exponentially bounded.
- **Kemer 1979**: characterizes algebras with polynomial growth of $c_n(A)$.
- **Giambruno, Zaicev 1999**: existence of $\exp(A) = \lim \sqrt[n]{c_n(A)} \in \mathbb{N}$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ・ つ へ (?)

Algebras graded by a group

Graded algebras

Let $G = \{1, g_2, \dots, g_m\}$ be a finite group.

Definition

An algebra A is said G-graded if it can be decomposed as

$$A = \bigoplus_{g \in G} A_g$$
, with $A_g A_h \subseteq A_{gh}$.

Example (trivial grading)

 $A_1 = A$ and $A_h = \{0\}$, for any $h \in G \setminus \{1\}$.

Superalgebras

Superalgebra: algebra graded by $\mathbb{Z}_2 := \{1, g\}$.

$$A = \underset{bosons}{A_1} \oplus \underset{fermions}{A_g}$$

Example

$$M_2(F) = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \mid a, d \in F \right\} \oplus \left\{ \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} \mid b, c \in F \right\}.$$

Theorem (Kemer - 1988)

For any algebra A there exists a finite dimensional superalgebra B such that

 $\mathsf{Id}(A) = \mathsf{Id}(G(B)).$

Graded identities

•
$$F\langle X \rangle :=$$
 free algebra on $X = \{x_1, x_2, \ldots\}$
• $X = \bigcup_{g \in G} X_g$, where $X_g = \{x_1^{(g)}, x_2^{(g)}, \ldots\}$

 $F\langle X, G \rangle :=$ free *G*-graded algebra

Definition

A graded polynomial $f = f\left(x_1^{(g_1)}, \dots, x_{t_1}^{(g_1)}, \dots, x_1^{(g_m)}, \dots, x_{t_m}^{(g_m)}\right) \in F\langle X, G \rangle$ is a graded identity of the *G*-graded algebra $A = \bigoplus_{g \in G} A_g$ if, for all $a_i^{(g_j)} \in A_{g_j}$

$$f\left(a_{1}^{(g_{1})},\ldots,a_{t_{1}}^{(g_{1})},\ldots,a_{1}^{(g_{m})},\ldots,a_{t_{m}}^{(g_{m})}
ight)=0$$

Upper triangular matrices

$$UT_2 = \left\{ \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{0} & \mathsf{c} \end{pmatrix} \mid \mathsf{a}, \mathsf{b}, \mathsf{c} \in \mathsf{F}
ight\}$$

Theorem (Malcev - 1981)

 $\mathsf{Id}(UT_2) = \langle [x_1, x_2] [x_3, x_4] \rangle.$

G-grading:
$$UT_2 = \underbrace{\left\{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \mid a, c \in F \right\}}_{A_1} \oplus \underbrace{\left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \mid b \in F \right\}}_{A_h}$$
$$x_1^{(h)} x_2^{(h)} \equiv 0.$$

12

Graded codimensions

- $P_n^G :=$ multilinear graded polynomials
- Id^G(A) := graded identities

Definition

$$c_n^G(A) = \dim_F \frac{P_n^G}{P_n^G \cap \operatorname{Id}^G(A)}$$

Some results

- Polynomial growth:
 - Giambruno, Mishchenko, Zaicev 2001 (superalgebras)
 - Valenti 2011 (general case)
- Exponent:
 - Benanti, Giambruno, Pipitone 2003 (superalgebras)
 - Aljadeff, Giambruno, La Mattina 2010/13 (graded algebras)
 - Gordienko 2013 (algebras with generalized Hopf action)
- **Exponent** < 2: **I.**, Martino 2019
- Colenghts: Cota, I., Martino, Vieira 2024
- Fundamental structures: Pascucci 2025

