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Introduction

Definition
A skew brace is a set B equipped with two operations + and ◦ such that

• (B,+) and (B,◦) are groups;
• B satisfies the skew left distributivity property i.e. for any a,b,c ∈ B

a◦ (b+c) = a◦b−a+a◦c

A skew brace is trivial if + equals ◦, it is almost trivial if ◦ equals +op.
Any group can be equipped with the structure of a trivial, or an almost trivial, skew
brace. We put λa(b) =−a+a◦b. Then λ : a 7→ λa is an homorphism from (B,◦) to
Aut(B,+).
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Skew braces have been introduced by Guarnieri and Vendramin [3] in order to
study the set-theoretic solution of the Yang-Baxter equation i.e., couples (X , r)
where X is a set and

r : X ×X 7→ X ×X

is a bijective map such that

(r × Id)(Id×r)(r × Id) = (Id×r)(r × Id)(Id×r)

Given a skew brace B, define a map r : B×B 7→ B×B by

r : (a,b) 7→ (λa(b),λ−1
λa(b)

((a+b)−1 ◦a◦ (a+b))).

Then the couple (B, r) is a set-theoretic solution of the Yang-Baxter equation.
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Structures of finite Morley rank

Rather than study the interactions with the Yang-Baxter equation, we will analyze
the algebraic structure of infinite skew-braces from a model theoretic point of
view. In particular, we will assume that the skew braces have finite Morley rank.

Definition
Given M a structure and φ(x) a formula in L (M), we say

• RM(φ(x))≥ 0 if φ(x) has a realisation;
• RM(φ(x))≥ n+1 if there exist disjoint formulas {φi (x)}i<ω such that

φi (M)⊆ φ(M) and RM(φi (x))≥ n.

A structure is said to have finite Morley rank if RM(x = x) is finite.

Definition
Given a structure M, a subset X ⊆M is definable if it coincides with the set of
realizations of a formula φ(x) ∈ L (M).

If the set X is defined by φ(x), we put RM(φ(x)) = RM(X ).
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Groups of finite Morley rank

Groups of finite Morley rank have been extensively studied by many model
theorists (see [2],[1]). They include, for example, algebraic groups (over
algebraically closed field).

Proposition
Given G a definable group of finite Morley rank and a definable subgroup H of G, we
have RM(H) = RM(G) iff |G : H| is finite.

In particular we will be interested in connected groups of finite Morley rank.

Definition
Given a definable group G, the connected component of G, denoted G0, is the
intersection of all definable subgroup of finite index. A group G is said to be connected
if G = G0.

Proposition
Let G be a definable group of finite Morley rank. Then G0 is a definable definably
characteristic subgroup of finite index.
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Characterization of groups of small Morley rank

We have a characterization of connected groups of small Morley rank.

Cherlin-Frecon’s Theorem
Let G be a definable connected group of finite Morley rank. Then

• If RM(G) = 1, then G is abelian.

• If RM(G) = 2, then G is soluble. If G is not nilpotent, G/Z (G)≃ K+⋊K× for a
definable field K of Morley rank 1.

• If RM(G) = 3 and G is simple non soluble, then G ≃ PSL2(K ) for some field K of
Morley rank 1.
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Algebraic properties of skew braces

Definition
We define two homomorphisms λ ,µ : (B,◦) to Aut(B,+) as follows

λb : a 7→ −b+b ◦a µb : a 7→ b ◦a−b.

For a,b ∈ B, we define
a∗b =−a+a◦b+b = λa(b)−b.

It is not difficult to see that µ = λ op where λ op is the λ function for the skew-brace
Bop := (B,+op,◦).
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Strong left ideals and ideals

Definition
An additive normal subgroup L of B is a strong left ideal if λb(L) = L for every b ∈ B.
Observe that, by λ -invariance, a strong left ideal is always a multiplicative subgroup. A
strong left ideal L is an ideal if (L,◦) is normal in (B,◦). Equivalently λℓ(b)−b ≤ L for
ℓ ∈ L and b ∈ B.
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Nilpotency and solubility in skew braces

Let L,L1 be skew sub-braces in B. We denote by L1 ∗L the additive subgroup
generated by {ℓ1 ∗ ℓ}ℓ1∈L1,ℓ∈L.

Definition
B is weakly soluble if there exists n < ω and a chain of skew sub-braces

B = L0 ≥ L1 ≥ ...≥ Ln = {0}

such that Li ∗Li , [Li ,Li ]+ ≤ Li+1.
B is strongly left nilpotent if there exists n < ω and a chain of strong left ideals

B = L0 ≥ L1 ≥ ...≥ Ln = {0}

such that L∗Li , [L,Li ]+ ≤ Li+1.
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Definition
B is bi-soluble if (B,+) and (B,◦) are soluble as groups. B is bi-nilpotent if (B,+) and
(B,◦) are nilpotent as groups.

We have the following easy lemma.

Lemma

If B is strongly left nilpotent, B is bi-nilpotent.
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Connected component

Finally, we state an easy Lemma that can be found in [4].

Lemma
Let (B+,◦) be a definable skew brace of finite Morley rank. Then (B,+)0 = (B,◦)0 is an
ideal in B.
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Left chief series

Definition
Let L be a definable strong left ideal in B. Then the series of definable strong left ideals
in B

L = L0 ≥ L1 ≥ L2 ≥ ...≥ Ln = {0}

is a (definable) left chief series for L if every quotient is infinite and definably minimal
as strong B-left ideal i.e., for every i ≤ n−1 and definable strong left ideal L with
Li ≥ L ≥ Li+1, either (L/Li+1,+) or (Li/L,+) is finite.

If we want to emphasize B, we call it a B-left chief series.
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Jordan-Hölder theorem

We have the following Jordan-Hölder theorem for left chief series.

Theorem
Let L be a strong left ideal in B and (Li )i≤m,(L′

i )i≤n two left chief series for L. Then
n = m. Therefore the left chief length of L, defined as the length of a left chief series
for L, is well-defined.
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Bi-soluble and bi-nilpotent skew braces

Theorem
A bi-soluble definable connected skew brace of finite Morley rank with left chief length
at most 3 is weakly soluble.

Theorem
A bi-nilpotent definable connected skew-brace of finite Morley rank is strongly left
nilpotent.
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Skew braces of Morley rank 1

We now characterize skew braces of small Morley rank.

Proposition
Let (B,+,◦) be a definable connected skew brace of Morley rank 1. Then B is trivial and
abelian i.e. (B,+) = (B,◦) is an abelian group.

Therefore, in this case, the characterization restricts to the characterization of
connected abelian group of Morley rank 1 (see for example [1]).
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Skew braces of Morley rank 2

We first introduce a family of skew braces of Morley rank 2. Let K be a definable
field of Morley rank 1 and φ+,φ◦ two homorphisms from K× to Aut(K+) such that

φ+(k)◦φ◦(k ′) = φ◦(k ′)◦φ+(k)

as elements in Aut(K+).
Now put

BK ,φ+,φ ◦ := (K ×K×,+,◦)

with
(K ×K×,+) = K ⋊φ+ K×

and
(K ×K×,◦) = K ⋊φ ◦ K×.

It is easy to verify that this is a skew brace.
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Theorem

Let B be a connected skew brace of Morley rank 2. Then one of the following
alternatives holds:
(1) B is strong left nilpotent;
(2) B is 2-step soluble not strongly left-nilpotent and Ann(B) is finite. Moreover, either

B/Ann(B) or Bop/Ann(B) is isomorphic to a skew-brace of the form BK ,φ+,φ◦ .
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Skew braces of Morley rank 3

Given the classification of connected groups of Morley rank 3, we have a priori four
possibilities for a connected skew brace of Morley rank 3.
(a) (B,+) and (B,◦) are soluble, i.e. B is bi-soluble;
(b) (B,+)/Z (B,+)≃ PSL2(K ) for some algebraically closed field K of Morley

rank 1, and (B,◦) is soluble;
(c) (B,+) is soluble, and (B,◦)/Z (B,◦)≃ PSL2(K ) for some algebraically closed

field K of Morley rank 1;
(d) (B,+)/Z (B,+)≃ PSL2(K ) and (B,◦)/Z (B,◦)≃ PSL2(F ) for some algebraically

closed fields K and F of Morley rank 1.

Theorem
In case (a), B is weakly soluble. The cases (b) and (c) are impossible. In case (d)
Z (B,◦) = Z (B,+) = Ann(B) and (B,+,◦) is trivial or almost trivial. In particular F = K .
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