Tensor products of Representations of $\operatorname{GL}_2(\mathfrak{o}_\ell)$

AGTA 2025 - Naples, Italy

Archita Gupta Indian Institute of Technology, Kanpur

June 27, 2025

Introduction

- Let G be a finite group. A **representation** of G is a homomorphism $\phi: G \mapsto GL(V)$, where V is a finite dimensional vector space over complex field.
- ► A sub-representation of a representation is a subspace *W* of *V* which is invariant under *G*-action.
- ► A representation V of a group G is irreducible if the only G-invariant subspaces of V are {0} and V itself.
- Question: What are all irreducible representations of G?
 Frobenius initiated the study of character theory (1896–1903), and Schur advanced representation theory in the 1920s.

J.-P. Serre (1977) Linear Representations of Finite Groups. Springer-Verlag, Graduate Texts in Mathematics, Vol. 42.

- All irreducible representations of an abelian group are one dimensional.
- ▶ S_n : Alfred Young (1930's)¹
- Dihedral Groups : Classical group theory ²
- $GL_n(\mathbb{F}_q)$: James A. Green (1955) ³
- Coxeter Groups : R. Brauer, I. schur⁴, N. Bourbaki (1920-60)⁵.
- ▶ Finite groups of Lie type : P. Deligne and G. Lusztig (1960-70)⁶.

- ⁴ Brauer , Schur (1937). On irreducible representations of groups. Ann. Math.
- ⁵ Bourbaki (1968). Groupes et algèbres de Lie.
- ⁶ Deligne Lusztig (1976). Representations of reductive groups over finite fields. Annals of Math.

 $^{^1}$ Young (1900). On quantitative substitutional analysis. Proc. Lond. Math. Soc. 2 Burnside (1911). Theory of Groups of Finite Order.

³ Green (1955). The characters of the finite general linear groups. Trans. AMS.

The group

• $GL_n(R)$, R is a finite commutative ring.

```
Structure theorem for finite commutative rings (Analogue of chinese remainder theorem )^7
```

Any finite commutative ring with identity is isomorphic to a direct sum of finite local rings (rings with unique maximal ideal).

- An important class of local rings are discrete valuation rings , which are local principal ideal domains that are not fields.
- ► Z_p, the rings of p-adic integers for any prime p, the valuation assigns to each p-adic integer x the largest integer k such that p^k divides x.
- ► Examples: For $\ell \ge 1$, $\mathbb{Z}/p^{\ell}\mathbb{Z}$, $F_p[t]/(t^{\ell})$, $\mathbb{Z}/p^{\ell}\mathbb{Z}[t]/(t^{\ell})$.

⁷ M. F. Atiyah I. G. Macdonald (1969). *Introduction to Commutative Algebra*, Addison-Wesley, Chapter 8.

Another approach

- F be a non Archimedean local field with finite residue field 𝔽_q of odd characteristic p. Example : ℚ_p, 𝔽_q((t)).
- ▶ o be the ring of integers of F. Example : p-adic integers \mathbb{Z}_p , $F_p[[t]]$.
- o is a DVR.
- ▶ \mathfrak{p} be the unique maximal ideal of \mathfrak{o} and π be a fixed generator of \mathfrak{p} .
- $\blacktriangleright \ \, {\sf For} \ \, \ell \geq 1, \ \, {\mathfrak o}_\ell \coloneqq {\mathfrak o}/{\mathfrak p}^\ell \ \, ({\mathfrak o}_1 = {\mathbb F}_q).$
- By profiniteness of GL_n(𝔅), every complex continuous irreducible representation of GL_n(𝔅) factors through some group GL_n(𝔅_ℓ)⁸.

Question

How to construct irreducible representations of $GL_n(\mathbb{Z}/p^{\ell}\mathbb{Z})$ and $GL_n(F_p[t]/(t^{\ell}))$ uniformly?

⁸ A. Jaikin-Zapirain (2014). "Smooth representations of $GL_n(\mathfrak{o})$ ", Journal of Algebra, 414, 37–51.

Conjecture (Onn, 2018)⁹

Let $\mathfrak o$ and $\mathfrak o'$ be the rings of integers of F and F' such that $\mathfrak o/p\cong \mathfrak o'/p'.$ Then

$$\mathbb{C}[GL_n(\mathfrak{o}_\ell)] \cong \mathbb{C}[GL_n(\mathfrak{o}_\ell')].$$

$$\blacktriangleright \operatorname{Irr}(GL_n(\mathfrak{o}_{\ell})) \xrightarrow{\operatorname{dim-preserving bijection}} \operatorname{Irr}(GL_n(\mathfrak{o}_{\ell}'))$$

n	l	Authors
2		Stasinski (2006), Onn (2008)
	2	Singla (2010)
3		Char(F) = 0: Avni, Klopsch, Onn, Voll (2015),
		Char(F) = p : Prasad, Onn, Singla (2024) ($p > 3$).

Table: History of construction of irreducible representations for $GL_n(\mathfrak{o}_\ell)$

▶ Conjecture status: True for (n, 2), $(2, \ell)$, $(3, \ell)$ and open otherwise.

⁹ Uri Onn, Representations of automorphism groups of finite O-modules of rank two, Adv. Math. 219 (2008), no. 6, 2058-2085.

Construction of $Irr(GL_2(\mathfrak{o}_\ell))$ using normal subgroups

Clifford Theory ¹⁰

Let N be a normal subgroup of G. For an irreducible representation φ of N, let $C_G(\varphi) = \{g \in G \mid \varphi^g \cong \varphi\}$. Then the following hold.

- 1. If ρ is an irreducible representation of G such that $\langle \rho |_N, \varphi \rangle \neq 0$, then $\rho |_N = e(\bigoplus_{g \in \Omega} \varphi^g)$ where Ω is the orbit containing φ under the action of G on Irr(N) and $e = \langle \rho |_N, \varphi \rangle$.
- 2. Suppose φ is an irreducible representation of *N*. Let $A = \{ \rho \in \operatorname{Irr}(G) \mid \langle \rho \mid_N, \varphi \rangle \neq 0 \}$ and $B = \{ \chi \in \operatorname{Irr}(C_G(\varphi)) \mid \langle \chi \mid_N, \varphi \rangle \neq 0 \}$. Then the map $\chi \mapsto \operatorname{Ind}_{C_G(\varphi)}^C(\chi)$ is a bijection from *A* to *B*.
- 3. Let φ be an irreducible representation of N such that it extends to G, say $\tilde{\varphi}$ (i.e. $\tilde{\varphi}|_N = \varphi$). Then the set of irreducible representations of G lying above φ is given by $Irr(G \mid \varphi) = \{\tilde{\varphi} \otimes \mu \mid \mu \in Irr(G/N)\}$.

¹⁰ I. M. Isaacs, Character Theory of Finite Groups, Academic Press, 1976.

Construction

 $\blacktriangleright \mathfrak{g}_{\ell} := M_2(\mathfrak{o}_{\ell}).$

For any integer *i* such that $1 \le i \le \ell$, let

$$\rho_{\ell,i} \colon GL_2(\mathfrak{o}_\ell) \to GL_2(\mathfrak{o}_i)$$

be the homomorphism induced by the canonical map $\mathfrak{o}_\ell \to \mathfrak{o}_i$.

▶ The *i*th principle congruence subgroup $Ker(\rho_{\ell,i}) = K^i = I + p^i g_{\ell}$.

▶ Let $i \ge \ell/2$. Fix an additive character $\psi : \mathfrak{o}_{\ell} \longrightarrow \mathbb{C}^{\times}$ such that $\pi^{\ell-1}\mathfrak{o}_{\ell} \not\subseteq Ker(\psi)$ Let $\beta \in M_2(\mathfrak{o}_{\ell})$. Define a homomorphism $\psi_{\beta} : K^{\lceil \frac{\ell}{2} \rceil} \longrightarrow \mathbb{C}^{\times}$ by,

$$\psi_{\beta}(1+\pi^{\lceil \frac{\ell}{2}\rceil}x)=\psi(\pi^{\lceil \frac{\ell}{2}\rceil}tr(\beta x)),\ x\in\mathfrak{p}^{i}\mathfrak{g}_{\ell}.$$

▶ Let $\beta \in M_2(\mathfrak{o}_\ell)$. Let $\overline{\beta}$ denote the image of β in $M_2(\mathbb{F}_q)$.

Regular representations for $GL_2(\mathfrak{o}_\ell)$

Definiton ¹¹

An element $\beta \in M_2(\mathfrak{o}_\ell)$ is said to be **regular** if the characteristic and minimal polynomials of $\overline{\beta}$ are the same.

Definition

An irreducible representation ρ of $GL_2(\mathfrak{o}_\ell)$ is called **regular** if $\rho \mid_{\mathcal{K}^{\lceil \ell/2 \rceil}}$ contains ψ_β with $\beta \in \mathfrak{g}_\ell$ regular.

Consider $\beta \in M_2(\mathfrak{o}_\ell)$ such that :

▶ $\bar{\beta}$ is scalar.

▶ $\bar{\beta}$ is regular.

 $\blacktriangleright \bar{\beta}$ is non scalar non regular.

¹¹ G. Hill, Regular elements and regular characters of $GL_n(\mathfrak{o})$,(1995)

Notice that for $\bar{\beta} \in M_2(\mathbb{F}_q)$, any $\bar{\beta}$ is either scalar or regular.

- For scalar β
 , Irr(GL₂(𝔅_ℓ) | ψ_β) is obtained by GL₂(𝔅_{ℓ-1}) and these are called lower level representations of GL₂(𝔅_ℓ).
- For regular $\overline{\beta}$, the construction is known via clifford's method ¹².
- For $n \ge 3$, $\overline{\beta}$ can be of non scalar non regular type. For example : For n = 3, the matrix

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

is neither a scalar nor a regular matrix since its characteristic polynomial is x^3 and minimal polynomial is x^2 .

- For n = 3, the construction for these type of representations is known.¹³.
- For $n \ge 4$ it is open.

¹² Roi Krakovski, Uri Onn and Pooja Singla, Regular characters of groups of type An over discrete valuation rings, J. Algebra 496 (2018), 116–137.

 13 Uri Onn, Amritanshu Prasad and Pooja Singla,Representation Zeta Functions of Groups of Type A2 in Positive Characteristic, IMRN, Volume 2025, Issue 2, January 2025,

Types of regular representations of $\operatorname{GL}_2(\mathfrak{o}_\ell)$

The regular representations of $G := \operatorname{GL}_2(\mathfrak{o}_\ell)$ lying above ψ_β looks like $\operatorname{Ind}_{C_G(\psi_\beta)}^G \phi$ for some representation ϕ of $C_G(\psi_\beta)$ lying above ψ_β .

By Clifford theory, all regular representations are of this form. Let ρ_{β} be a regular representation of $GL_2(\mathfrak{o}_{\ell})$ such that $\rho \mid_{\mathcal{K}^{\lceil \ell/2 \rceil}}$ contains ψ_{β} . Then we call ρ_{β}

- **Split semisimple** if $\overline{\beta}$ is conjugate to $\begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix}$ where $u \neq v$, $u, v \in \mathbb{F}_q$.
- Split non-semisimple if $\overline{\beta}$ is conjugate to $\begin{pmatrix} u & 1 \\ 0 & u \end{pmatrix}$, $u \in \mathbb{F}_q$.
- **Cuspidal** if characteristic polynomial of $\overline{\beta}$ is irreducible in \mathbb{F}_q .

Tensor products of representations

► If V, W are representations of a group G, then their tensor product is tensor product of vector spaces V ⊗ W with the linear action of G defined by,

$$g.(v \otimes w) = (g.v) \otimes (g.w),$$

for all $v \in V$ and $w \in W$.

- ► Tensor products of irreducible representations are not irreducible mostly: V ⊗ V is irreducible if and only if V is one-dimensional.
- ▶ The Clebsch–Gordan coefficients tell us how many times each irreducible representation appears when we break down the tensor product of two irreducible representations into a direct sum of irreducible parts. In quantum mechanics, these numbers for the groups *SO*(3), *SU*(3) appear in angular momentum coupling.
- The tensor products together with the Clebsch–Gordan procedure, can be used to generate additional irreducible representations if some are known already.

Approach

Mackey's tensor product theorem

Let G be a group and H, K be its subgroups. Let ϕ be a representation of H and ψ be a representation of K. Then

$$\mathrm{Ind}_{H}^{G}\phi\otimes\mathrm{Ind}_{K}^{G}\psi\cong\bigoplus_{g\in H\setminus G/K}\mathrm{Ind}_{H\cap K^{g}}^{G}(\phi\otimes\psi^{g})$$

To understand the multiplicity of a representation ρ as a constituent of $\rho_1\otimes\rho_2,$ we carry out the following steps:

- (A) Understand and simplify the double coset representatives of $H \setminus G/K$
- (B) Understand the decomposition of the representation $V(\phi_1, \phi_2^g) := \operatorname{Ind}_{H \cap K^g}^{\mathcal{G}}(\phi_1 \otimes \phi_2^g)$ for every $g \in H \setminus G/K$.
- (C) For distinct $g, h \in H \setminus G/K$, understand the intertwiners $\operatorname{Hom}_{G}(V(\phi_{1}, \phi_{2}^{g}), V(\phi_{1}, \phi_{2}^{h})).$

Main Results

Let ρ_1, ρ_2, ρ_3 be three regular representations of $GL_2(\mathfrak{o}_\ell)$. Define $m_{\rho_1\rho_2}^{\rho_3}$ to be the multiplicity of ρ_3 in $\rho_1 \otimes \rho_2$.

Main Theorem

Let $\ell \geq 1$ and ρ_1, ρ_2, ρ_3 be three regular irreducible representations of $\operatorname{GL}_2(\mathfrak{o}_\ell)$.

1. Let **cuspidal** $\in \{type(\rho_1), type(\rho_2), type(\rho_3)\}$. Then

$$m^{
ho_3}_{
ho_1
ho_2} \leq 1.$$

2. Let $|\{type(\rho_1), type(\rho_2), type(\rho_3)\}| = 2$. Then

$$m_{\rho_1\rho_2}^{\rho_3} \leq 2.$$

Further, $m_{\rho_1\rho_2}^{\rho_3} = 2$ only if the tuple $(type(\rho_1), type(\rho_2), type(\rho_3))$ is a permutation of (split semisimple, split non-semisimple, split semisimple).

3. Let $\{type(\rho_1), type(\rho_2), type(\rho_3)\} = \{split semisimple\}$. Then

$$m^{
ho_3}_{
ho_1
ho_2} \leq \ell+1$$

Corollary

Let ρ_1 and ρ_2 be regular irreducible representations of $GL_2(\mathfrak{o}_\ell)$ such that $type(\rho_1) = cuspidal$.

- 1. For $type(\rho_1) \neq type(\rho_2)$, the representation $\rho_1 \otimes \rho_2$ is multiplicity free.
- 2. The regular part of $\rho_1 \otimes \rho_2$ is multiplicity free.

Let $\ell \geq 1$. such that ρ_1 , ρ_2 , ρ_3 be regular representations of $GL_2(\mathfrak{o}_\ell)$ such that $type(\rho_1)$, $type(\rho_2)$, $type(\rho_3) = \{cuspidal\}$.

1. For
$$\ell = 1$$
, we have $m_{\rho_1 \rho_2}^{\rho_3} \leq 2$.

2. For $\ell \geq 2$, there exists $\rho_1 \rho_2, \rho_3$ such that $m_{\rho_1 \rho_2}^{\rho_3} \geq (q-2)$.

For $\ell \geq 2$, there exists regular irreducible **split non-semisimple** representations ρ_1, ρ_2 and ρ_3 of $\operatorname{GL}_2(\mathfrak{o}_\ell)$ such that $m_{\rho_1\rho_2}^{\rho_3}$ depends on the cardinality of the residue field \mathbb{F}_q .

- Archita Gupta and M Hassain, Tensor product of irreducible characters of GL₂(F_q), Journal of Algebra and its Applications, 2026.
- Archita Gupta, M Hassain and Pooja Singla, On kronecker Products for the general linear and unitary groups over the principal ideal local rings (in preparation).

Thank You!