Some results about the nilpotent graph of a finite group AGTA 2025, Naples

Michele Gaeta

University of Salerno

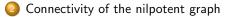
23 - 28 June 2025

Michele (

2

< ロ > < 回 > < 回 > < 回 > < 回 >

Contents



Diameter of the nilpotent graph

3

Michele Gaeta	migaeta@unisa.it)

æ

・ロト ・四ト ・ヨト ・ヨト

Let G be a group and $\mathcal P$ a group property. $\Gamma(G)=(V,E)$:

3

Let G be a group and \mathcal{P} a group property. $\Gamma(G) = (V, E)$:

• V = G;

3

Let G be a group and \mathcal{P} a group property. $\Gamma(G) = (V, E)$:

• V = G;

• $(g,h) \in E$ if and only if $g \neq h$ and $\langle g,h \rangle$ has the property \mathcal{P} .

3

Theorem (Morgan, Parker, 2013)

If G is a finite group with trivial center then every connected component of the commuting graph of G has diameter at most 10.

A. Morgan, C. Parker, *The diameter of the commuting graph of a finite group with trivial center*, J. Algebra 393 (2013) 41-59.

Theorem (Morgan, Parker, 2013)

If G is a finite group with trivial center then every connected component of the commuting graph of G has diameter at most 10.

A. Morgan, C. Parker, *The diameter of the commuting graph of a finite group with trivial center*, J. Algebra 393 (2013) 41-59.

Theorem (Parker, 2013)

If G is a finite soluble group with trivial center then the commuting graph of G is disconnected or its diameter is at most 8.

C. Parker, *The commuting graph of a soluble group*, Bull. Lond. Math. Soc., **45** (4) 2013, pp. 839–848.

Definition

Let G be a group. Then G is an A-group if the Sylow subgroups of G are all abelian.

2

< ロ > < 回 > < 回 > < 回 > < 回 >

Definition

Let G be a group. Then G is an A-group if the Sylow subgroups of G are all abelian.

Theorem (Carleton, Lewis, 2025)

Let G be a solvable A-group such that G/Z(G) is neither a Frobenius nor 2-Frobenius group. Then, the diameter of the commuting graph of G is at most 6.

R. Carleton, M. L. Lewis, *The commuting graph of a solvable A-group*, J. Group Theory, **28** (1) 2025, pp. 165–178.

Theorem (Burness, Lucchini, Nemmi, 2023)

Let G be a finite insoluble group. Then soluble graph of G is connected and its diameter is at most 5.

T. Burness, A. Lucchini, D. Nemmi, *On the soluble graph of a finite group*, J. Combin. Theory Ser. A, **194** 2023, 105708.

P. J. Cameron, *Graphs defined on groups*, Int. J. Group Theory, **11** (2) 2022, pp. 53–107.

V. Grazian, C. Monetta, *A conjecture related to the nilpotency of groups with isomorphic non-commuting graphs*, J. Algebra, **633** 2023, pp. 389–402.

H. Shahverdi, *Finite groups with isomorphic non-commuting graphs have the same nilpotency property*, J. Algebra, **642** 2024, pp. 60–64.

Connectivity of the nilpotent graph

2

イロト 不良 トイヨト イヨト

C. Delizia, M. L. Lewis, M. Gaeta, C. Monetta, *Neighborhoods, connectivity, and diameter of the nilpotent graph of a finite group*, arxiv:2502.03308.

C. Delizia, M. L. Lewis, M. Gaeta, C. Monetta, *Neighborhoods, connectivity, and diameter of the nilpotent graph of a finite group*, arxiv:2502.03308.

Let G be a finite group. $\Gamma(G) = (V, E)$:

C. Delizia, M. L. Lewis, M. Gaeta, C. Monetta, *Neighborhoods, connectivity, and diameter of the nilpotent graph of a finite group*, arxiv:2502.03308.

Let G be a finite group. $\Gamma(G) = (V, E)$:

•
$$V = G \setminus Z_{\infty}(G);$$

C. Delizia, M. L. Lewis, M. Gaeta, C. Monetta, *Neighborhoods, connectivity, and diameter of the nilpotent graph of a finite group*, arxiv:2502.03308.

Let G be a finite group. $\Gamma(G) = (V, E)$:

•
$$V = G \setminus Z_{\infty}(G);$$

• $(g,h) \in E$ if and only if $g \neq h$ and $\langle g,h \rangle$ is nilpotent.

10/18

イロト 不得下 イヨト イヨト

Theorem

For any group G the number of connected components of $\Gamma(G)$ equals the number of connected components of $\Gamma(G/Z_{\infty}(G))$, and there is a correspondence between the connected components of $\Gamma(G)$ and $\Gamma(G/Z_{\infty}(G))$ that maps connected components of diameter 1 to connected components of diameter 0 or 1 and preserves the diameter of connected components whose diameter is greater than 1.

Theorem

For any group G the number of connected components of $\Gamma(G)$ equals the number of connected components of $\Gamma(G/Z_{\infty}(G))$, and there is a correspondence between the connected components of $\Gamma(G)$ and $\Gamma(G/Z_{\infty}(G))$ that maps connected components of diameter 1 to connected components of diameter 0 or 1 and preserves the diameter of connected components whose diameter is greater than 1.

Corollary

If G is a group, then $\Gamma(G)$ is connected if and only if $\Gamma(G/Z_{\infty}(G))$ is connected.

Proposition

If G is a Frobenius group or a 2-Frobenius group, then $\Gamma(G)$ is disconnected.

	migaeta(

2

Proposition

If G is a Frobenius group or a 2-Frobenius group, then $\Gamma(G)$ is disconnected.

Proposition

If G is a solvable group with trivial center then $\Gamma(G)$ is disconnected if and only if G is a Frobenius group or a 2-Frobenius group.

Proposition

If G is a Frobenius group or a 2-Frobenius group, then $\Gamma(G)$ is disconnected.

Proposition

If G is a solvable group with trivial center then $\Gamma(G)$ is disconnected if and only if G is a Frobenius group or a 2-Frobenius group.

Theorem

Let G be a non-nilpotent solvable group. Then $\Gamma(G)$ is disconnected if and only if $G/Z_{\infty}(G)$ is a Frobenius group or a 2-Frobenius group.

12/18

Diameter of the nilpotent graph

	igaeta@	

2

イロト 不良 トイヨト イヨト

Let G be a finite group. The commuting graph $\Gamma_{comm}(G) = (V, E)$:

3

Let G be a finite group. The commuting graph $\Gamma_{comm}(G) = (V, E)$:

• $V = G \setminus Z(G);$

3

Let G be a finite group. The commuting graph $\Gamma_{comm}(G) = (V, E)$:

• $V = G \setminus Z(G);$

• $(g,h) \in E$ if and only if $g \neq h$ and gh = hg.

3

Theorem

Let G be a group. Then $\Gamma(G)$ coincides with $\Gamma_{comm}(G)$ if and only if G is an A-group.

2

< ロ > < 回 > < 回 > < 回 > < 回 >

Theorem

Let G be a group. Then $\Gamma(G)$ coincides with $\Gamma_{comm}(G)$ if and only if G is an A-group.

It follows that for an A-group G the diameter of $\Gamma(G)$ is at most 6.

Theorem

Let G be a group. Then $\Gamma(G)$ coincides with $\Gamma_{comm}(G)$ if and only if G is an A-group.

It follows that for an A-group G the diameter of $\Gamma(G)$ is at most 6.

[Theorem 1.1] R. Carleton, M. L. Lewis, *The commuting graph of a solvable A-group*, J. Group Theory, **28** (1) 2025, pp. 165–178.

Theorem (Morgan, Parker, 2013)

If G is a finite group with trivial center then every connected component of the commuting graph of G has diameter at most 10. Moreover, if G is solvable and the commuting graph of G is connected, then its diameter is at most 8.

Theorem (Morgan, Parker, 2013)

If G is a finite group with trivial center then every connected component of the commuting graph of G has diameter at most 10. Moreover, if G is solvable and the commuting graph of G is connected, then its diameter is at most 8.

C. Parker, *The commuting graph of a soluble group*, Bull. Lond. Math. Soc., **45** (4) 2013, pp. 839–848.

A. Morgan, C. Parker, *The diameter of the commuting graph of a finite group with trivial center*, J. Algebra 393 (2013) 41-59.

Theorem (Morgan, Parker, 2013)

If G is a finite group with trivial center then every connected component of the commuting graph of G has diameter at most 10. Moreover, if G is solvable and the commuting graph of G is connected, then its diameter is at most 8.

C. Parker, *The commuting graph of a soluble group*, Bull. Lond. Math. Soc., **45** (4) 2013, pp. 839–848.

A. Morgan, C. Parker, *The diameter of the commuting graph of a finite group with trivial center*, J. Algebra 393 (2013) 41-59.

Corollary

Let G be a non-nilpotent group. Then the connected components of $\Gamma(G)$ have diameter at most 10. Moreover, if G is solvable and $\Gamma(G)$ is connected, then $\operatorname{diam}(\Gamma(G)) \leq 8$.

16/18

Proposition

Let G be a solvable group and suppose that $\Gamma(G)$ is disconnected. Then the diameter of one connected component is at most 5 and the other connected components have diameters at most 2.

< ロ > < 回 > < 回 > < 回 > < 回 >

Proposition

Let G be a solvable group and suppose that $\Gamma(G)$ is disconnected. Then the diameter of one connected component is at most 5 and the other connected components have diameters at most 2.

Proposition

Let G be a solvable group with trivial center such that $\Gamma(G)$ is connected. If the Fitting subgroup of G is cyclic, then the diameter of $\Gamma(G)$ is at most 5.

Proposition

Let G be a solvable group and suppose that $\Gamma(G)$ is disconnected. Then the diameter of one connected component is at most 5 and the other connected components have diameters at most 2.

Proposition

Let G be a solvable group with trivial center such that $\Gamma(G)$ is connected. If the Fitting subgroup of G is cyclic, then the diameter of $\Gamma(G)$ is at most 5.

Theorem

Let G be a non-nilpotent $\{p,q\}$ -group with trivial center. If $\Gamma(G)$ is connected, then diam $(\Gamma(G)) \leq 6$.

Thank you!

æ

< ロ > < 回 > < 回 > < 回 > < 回 >