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Pseudocentre

Let G be a group. The pseudocentre of G is defined as the following

subgroup: ﬂ .
Ce(9)
geG

e This subgroup was first introduced by J.Weigold in 1973

e J. Weigold, ”Pseudonilpotent Groups”, University College, Cardift,
(1973).
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@ The only result Weigold proved in his paper is the following;:

Theorem (J.Weigold, 1973)

Every non-trivial finite group has a non-trivial pseudocentre.

@ In our work we have improved it:

Let G be a non-trivial group. If N is a minimal normal subgroup of G,
then N < P(G).
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Min-n

Let G be a group. If G satisfies the minimal condition on normal
subgroups, then P(G) is not trivial.

Can this result be extended to classes of groups satisfying other
finiteness conditions?
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Let A be a free abelian group of rank 2 and consider the following

matrix:

(o)

Let G be the natural semidirect product of x by A. It’s easy to see

that P(G) < A. We observe also that z is self-centralizing.
Let f(n) be the Fibonacci sequence. For the action of x and for

properties of f(n) we have that [A, (z1??)] < A76™) So we obtain that

P(G) < N [A, (&™) < QNA“ﬁ”):{l}

neN
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e The following result proves that the previous counterexample is
one of smallest Hirsch length.

Let G be a group. If N is a non-trivial paracentral subgroup of GG, then
N N P(G) # 1. More precisely, if N is non-periodic, then N? < P(G),
while if N is periodic, then Soc(N) < P(G).

A subgroup N of a group G is said paracentral if every subgroup of N is normal

in G.
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Nilpotency

Of course, the center of a group is contained in the pseudocenter.

Moreover, if G is a nilpotent group of class 2, then the centralizers of
elements of G are normal, so P(G) = Z(G).
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One might think that in groups of higher nilpotency class the
pseudocenter always coincides with one of the terms of the upper
central series. However, this is not the case.

There exists a finite (metabelian) nilpotent group G of class 3 in which
the pseudocentre does not coincide with any term of the upper and
lower series of G.
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Let G be a group. If N is a normal subgroup of a group G, then
P(G)N/N < P(G/N).

The Lemma easily implies that P(G) < Z,,_1(G) whenever G is a
nilpotent group of class n.
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In certain special cases the pseudocenter of a nilpotent group coincides
with a term of the upper central series.
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Unitriangular matrix groups

Let p a prime and [, the finite field of order p" for some natural
number m. Let U := UT(n,F,) be the group of upper unitriangular

matrix over [F, of degree n for some natural number n. Then
P(U) = Z,(U), where p = [n/2].

Bernardo Giuseppe Di Siena jointly June 26th, 2025 12 /24



Relations with central series

Let G be a group. The followings hold:
o P(G) <G
o if H/K is a section of G such that [H,G’] < K then

[H, P(G)] < K. In particular, we have that Co(G') < Cq(P(G))
and P(G) < Cq(Z2(G)).
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By means of the previous theorem, we are able to derive the following
results:

o If G’ is hypercentral (resp. nilpotent), then P(G) is hypercentral
(resp. nilpotent).

e If GG is hypercyclic (resp. supersoluble), then P(G) is hypercentral
(resp. nilpotent).

Let X be a subgroup theoretical property.

@ A group G is said to be hyper-X if it has an ascending normal series with
factors belonging to X.

@ A group G is said to be hypo-X if it has an descending normal series with
factors belonging to X.
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Thanks to these properties, we expect that groups that coincides with
their pseudocentre, may yield extremal cases under suitable nilpotency
and solvability conditions.
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Pseudocentral groups
A group G is said to be pseudocentral if coincides with its pseudocenter. \

The class of pseudocentral groups is closed under homomorphic images
and direct products.

Clearly, by considering simple groups, we can conclude that it is not
closed under taking subgroups.
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Let G be a group. If G is pseudocentral, then G’ = G” and
Z5(G) = Z(G).

Within the class of pseudocentral groups, the notions of hypocentrality,
hypoabelianity, hypercentrality and hypercyclicity are all equivalent to
abelianity.
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Of course every group can be embedded in a pseudocentral group.

Can any group be embedded in a group with trivial pseudocenter?
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Free groups
Free groups have trivial pseudocentre. \

What can be stated in general about free products of groups?

Let G = H x K be the free product of the non-trivial groups H and K
with |H| > 2. Then P(G) = 1.
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Thanks to these results we can say that every group can also be
embedded in a group with trivial pseudocenter.
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Weigold in his work also defined pseudonilpotent groups starting from
the pseudocentre in the same way as nilpotent groups are defined
starting from the centre.

Let G be a group. Define P°(G) := G and P!(G) := P(G).Then for all
n € N then P""1(Q) is defined by:

P"H(G)/P"(G) := P(G/P"(G))

This is the upper pseudocentral series of G.
Then G is said to be pseudonilpotent if G = P™(G) for some natural
number n.

Bernardo Giuseppe Di Siena jointly June 26th, 2025 21 /24



Clearly every finite group is pseudonilpotent.

We have extended this result to the class of Cernikov groups.
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There is no relation between the pseudonilpotent class and the length
of the upper/lower central series. In fact, for every positive integer
n > 2, the dihedral group of order 2! has nilpotency class n and

pseudonilpotency class 2.

By means of suitable wreath products we built finite groups of
arbitrarily pseudonilpotent length.

However, the class of pseudonilpotent groups is so vast that it is very
difficult to say something about them.
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