

Dedekind Skew Braces 1/21

Massimiliano Di Matteo

Dedekind Skew Braces

Massimiliano Di Matteo

Università degli Studi della Campania "Luigi Vanvitelli" Dipartimento di Matematica e Fisica

Advances in Group Theory and Applications 2025 Napoli, June 23–28, 2025

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Dedekind Groups

Dedekind Skew Braces 2/21

Massimiliano Di Matteo

Definition

A group is called **Dedekind** if all its subgroups are normal.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Dedekind Groups

Dedekind Skew Braces 2/21

Massimiliano Di Matteo

Definition

A group is called **Dedekind** if all its subgroups are normal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For example, all abelian groups are Dedekind.

Dedekind Groups

Dedekind Skew Braces 2/21

Massimiliano Di Matteo

Definition

A group is called **Dedekind** if all its subgroups are normal.

For example, all abelian groups are Dedekind.

The smallest non-abelian Dedekind group is Q_8 , the quaternion group.

Characterization of Dedekind Groups

Dedekind Skew Braces 3/21

Massimiliano Di Matteo

Richard Dedekind

Ueber Gruppen, deren sämmtliche Theiler Normaltheiler sind Mathematische Annalen 48 (1897), 548–561.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Characterization of Dedekind Groups

Dedekind Skew Braces 3/21

Massimiliano Di Matteo **Richard Dedekind** Ueber Gruppen, deren sämmtliche Theiler Normaltheiler sind Mathematische Annalen 48 (1897), 548–561.

Reinhold Baer

Situation der Untergruppen und Struktur der Gruppe Sitz.-Ber. Heidelberg. Akad. Wiss. 2, pp. 12–17, 1933.

Characterization of Dedekind Groups

Dedekind Skew Braces 3/21

Massimiliano Di Matteo **Richard Dedekind** Ueber Gruppen, deren sämmtliche Theiler Normaltheiler sind Mathematische Annalen 48 (1897), 548–561.

Reinhold Baer

Situation der Untergruppen und Struktur der Gruppe Sitz.-Ber. Heidelberg. Akad. Wiss. 2, pp. 12–17, 1933.

Theorem (Dedekind, Baer)

A group G is Dedekind if and only if G is abelian or $G = Q_8 \times A \times E$, where

• Q_8 is the quaternion group of order 8;

• A is an abelian group in which all elements have odd order;

• E is an elementary abelian 2-group.

Nilpotency of Dedekind Groups

Dedekind Skew Braces 4/21

Massimiliano Di Matteo This theorem also tells us that Dedekind groups are always *nilpotent*, which means there is a finite chain of normal subgroups

$$\{1\} = H_0 \lhd H_1 \lhd \cdots \lhd H_{n-1} \lhd H_n = G$$

such that for all $i = 0, \ldots, n-1$,

$$\frac{H_{i+1}}{H_i} \leq Z\left(\frac{G}{H_i}\right).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Nilpotency of Dedekind Groups

Dedekind Skew Braces 4/21

Massimiliano Di Matteo This theorem also tells us that Dedekind groups are always *nilpotent*, which means there is a finite chain of normal subgroups

$$\{1\} = H_0 \lhd H_1 \lhd \cdots \lhd H_{n-1} \lhd H_n = G$$

such that for all $i = 0, \ldots, n-1$,

$$\frac{H_{i+1}}{H_i} \leq Z\left(\frac{G}{H_i}\right).$$

The smallest length of a chain of this type is called the *nilpotency class*.

Nilpotency of Dedekind Groups

Dedekind Skew Braces 4/21

Massimiliano Di Matteo This theorem also tells us that Dedekind groups are always *nilpotent*, which means there is a finite chain of normal subgroups

$$\{1\} = H_0 \lhd H_1 \lhd \cdots \lhd H_{n-1} \lhd H_n = G$$

such that for all $i = 0, \ldots, n-1$,

$$\frac{H_{i+1}}{H_i} \leq Z\left(\frac{G}{H_i}\right).$$

The smallest length of a chain of this type is called the *nilpotency class*.

Corollary

The nilpotency class of a Dedekind group is at most 2.

Skew Braces

Dedekind Skew Braces 5/21

Massimiliano Di Matteo

Definition

A (left) skew brace is a triple $(B, +, \circ)$, where (B, +) and (B, \circ) are groups such that

$$a \circ (b+c) = a \circ b - a + a \circ c,$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

for all $a, b, c \in B$.

Skew Braces

Dedekind Skew Braces 5/21

Massimiliano Di Matteo

Definition

A (left) skew brace is a triple $(B, +, \circ)$, where (B, +) and (B, \circ) are groups such that

$$a \circ (b+c) = a \circ b - a + a \circ c$$
,

for all $a, b, c \in B$.

The following function plays an important role in the study of skew braces:

$$\lambda : a \in (B, \circ) \mapsto \lambda_a \in Aut(B, +)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where $\lambda_a(b) = -a + a \circ b$, for all $b \in B$.

Skew Braces

Dedekind Skew Braces 5/21

Massimiliano Di Matteo

Definition

A (left) skew brace is a triple $(B, +, \circ)$, where (B, +) and (B, \circ) are groups such that

$$a \circ (b+c) = a \circ b - a + a \circ c$$
,

for all $a, b, c \in B$.

The following function plays an important role in the study of skew braces:

$$\lambda : a \in (B, \circ) \mapsto \lambda_a \in Aut(B, +)$$

where $\lambda_a(b) = -a + a \circ b$, for all $b \in B$. If (G, \cdot) is a group, then (G, \cdot, \cdot) is a skew brace, called *trivial*.

Substructures in Skew Braces

Dedekind Skew Braces 6/21

Massimiliano Di Matteo

- Let $(B, +, \circ)$ be a skew brace. A subset X of B is said to be:
 - a sub-skew brace if it is a subgroup of both (B, +) and (B, ◦);
 - a *left-ideal* if it is a subgroup of (B, +) and λ_a(X) = X, for all a ∈ B;
 - S an *ideal* if it is a left-ideal that is normal in both (B, +) and (B, ◦);

Substructures in Skew Braces

Dedekind Skew Braces 6/21

Massimiliano Di Matteo

- Let $(B, +, \circ)$ be a skew brace. A subset X of B is said to be:
 - a sub-skew brace if it is a subgroup of both (B, +) and (B, ◦);
 - a *left-ideal* if it is a subgroup of (B, +) and λ_a(X) = X, for all a ∈ B;
 - S an *ideal* if it is a left-ideal that is normal in both (B, +) and (B, ◦); in this case B/I is a skew brace with induced operations.

Substructures in Skew Braces

Dedekind Skew Braces 6/21

Massimiliano Di Matteo

- Let $(B, +, \circ)$ be a skew brace. A subset X of B is said to be:
 - a sub-skew brace if it is a subgroup of both (B, +) and (B, \circ) ;
 - a *left-ideal* if it is a subgroup of (B, +) and λ_a(X) = X, for all a ∈ B;
 - S an *ideal* if it is a left-ideal that is normal in both (B, +) and (B, ◦); in this case B/I is a skew brace with induced operations.

 $\zeta(B) = Z(B, +) \cap \ker(\lambda) \cap Z(B, \circ)$, which is called the *center* of the skew brace, is always an ideal.

Dedekind Skew Braces

Dedekind Skew Braces 7/21

Massimiliano Di Matteo

Andrea Caranti, Ilaria Del Corso, M.D.M., Maria Ferrara, Marco Trombetti Dedekind Skew Braces

to appear

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dedekind Skew Braces

Dedekind Skew Braces 7/21

Massimiliano Di Matteo

Andrea Caranti, Ilaria Del Corso, M.D.M., Maria Ferrara, Marco Trombetti Dedekind Skew Braces

to appear

Definition

A skew brace is called **Dedekind** if all its sub-skew braces are ideals.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dedekind Skew Braces

Dedekind Skew Braces 7/21

Massimiliano Di Matteo

Andrea Caranti, Ilaria Del Corso, M.D.M., Maria Ferrara, Marco Trombetti Dedekind Skew Braces

to appear

Definition

A skew brace is called **Dedekind** if all its sub-skew braces are ideals.

If (G, \cdot) is a Dedekind group, (G, \cdot, \cdot) and (G, \cdot, \cdot^{op}) are Dedekind skew braces, where $a \cdot^{op} b = b \cdot a$.

Dedekind Skew Braces

Massimiliano Di Matteo

A non trivial example of a Dedekind skew brace is B =SmallSkewbrace(8,39), in which $(B, +) \simeq (Q_8, +)$ and $(B, \circ) \simeq (C_8, \cdot)$. In this case ker $(\lambda) = \langle -1 \rangle$ and

 $\begin{array}{cccc} \lambda_i:i\mapsto j & \lambda_j:i\mapsto -j & \lambda_k:i\mapsto -i \\ j\mapsto -i & j\mapsto i & j\mapsto -j \\ k\mapsto k & k\mapsto k & k\mapsto k \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Dedekind Braces

Dedekind Skew Braces 9/21

Massimiliano Di Matteo

A.Ballester-Bolinches, R.Esteban-Romero, L.A.Kurdachenko, V.Pérez-Calabuig On left braces in which every subbrace is an ideal Results in Mathematics, 2024

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dedekind Braces

Dedekind Skew Braces 9/21

Massimiliano Di Matteo

A.Ballester-Bolinches, R.Esteban-Romero, L.A.Kurdachenko, V.Pérez-Calabuig On left braces in which every subbrace is an ideal Results in Mathematics, 2024

Theorem

If B is a finite Dedekind skew brace in which (B, +) is abelian, then B is centrally nilpotent.

Central nilpotency in Skew Braces

Dedekind Skew Braces 10/21

Massimiliano Di Matteo

What does central nilpotency mean?

Central nilpotency in Skew Braces

Dedekind Skew Braces 10/21

Massimiliano Di Matteo

What does central nilpotency mean? There is a finite chain of ideals

$$\{0\} = I_0 \lhd I_1 \lhd \cdots \lhd I_{n-1} \lhd I_n = B$$

such that for all $i = 0, \ldots, n-1$,

$$\frac{I_{j+1}}{I_j} \leq \zeta \left(\frac{B}{I_j}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Central nilpotency in Skew Braces

Dedekind Skew Braces 10/21

Massimiliano Di Matteo

What does central nilpotency mean? There is a finite chain of ideals

$$\{0\} = I_0 \lhd I_1 \lhd \cdots \lhd I_{n-1} \lhd I_n = B$$

such that for all $i = 0, \ldots, n-1$,

$$\frac{I_{j+1}}{I_j} \leq \zeta \left(\frac{B}{I_j}\right).$$

The smallest length of a chain of this type is called the *central nilpotency class*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hypercentrality in Groups

Dedekind Skew Brace 11/21

Massimiliano Di Matteo If (G, \cdot) is a group, we can define $Z_0(G) = \{1\}$ and known $Z_n(G)$ for an ordinal n, $Z_{n+1}(G)$ is the normal subgroup such that

$$\frac{Z_{n+1}(G)}{Z_n(G)} = Z\left(\frac{G}{Z_n(G)}\right);$$

instead, if α is a limit ordinal

$$Z_{lpha}(G) = igcup_{eta < lpha} Z_{eta}(G).$$

Hypercentrality in Groups

Dedekind Skew Braces 11/21

Massimiliano Di Matteo If (G, \cdot) is a group, we can define $Z_0(G) = \{1\}$ and known $Z_n(G)$ for an ordinal n, $Z_{n+1}(G)$ is the normal subgroup such that

$$\frac{Z_{n+1}(G)}{Z_n(G)} = Z\left(\frac{G}{Z_n(G)}\right);$$

instead, if $\boldsymbol{\alpha}$ is a limit ordinal

$$Z_{lpha}(G) = igcup_{eta < lpha} Z_{eta}(G).$$

Definition

A group G is called hypercentral if and only if there exists an ordinal α such that $Z_{\alpha}(G) = G$.

Hypercentrality in Skew Braces

Dedekind Skew Braces 12/21

Massimiliano Di Matteo

Replacing the group G with a skew brace B and using the center of the skew brace, we can define similarly $\zeta_{\alpha}(B)$ for every ordinal α .

Hypercentrality in Skew Braces

Dedekind Skew Braces 12/21

Massimiliano Di Matteo

Replacing the group G with a skew brace B and using the center of the skew brace, we can define similarly $\zeta_{\alpha}(B)$ for every ordinal α .

Definition

A skew brace B is called hypercentral if and only if there exists an ordinal α such that $\zeta_{\alpha}(B) = B$.

Hypercentrality in Dedekind Skew Braces

Dedekind Skew Braces 13/21

Massimiliano Di Matteo

With this definition, we can generalize the theorem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Hypercentrality in Dedekind Skew Braces

Dedekind Skew Braces 13/21

Massimiliano Di Matteo

With this definition, we can generalize the theorem.

Theorem

Every locally finite Dedekind skew brace is hypercentral.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hypercentrality in Dedekind Skew Braces

Dedekind Skew Braces 13/21

Massimiliano Di Matteo

With this definition, we can generalize the theorem.

Theorem

Every locally finite Dedekind skew brace is hypercentral.

Corollary

Every finite Dedekind skew brace is centrally nilpotent.

Central nilpotency class

Dedekind Skew Braces 14/21

Massimiliano Di Matteo Unfortunately, we cannot define a bound for the central nilpotency class.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Central nilpotency class

Dedekind Skew Braces 14/21

Massimiliano Di Matteo Unfortunately, we cannot define a bound for the central nilpotency class.

Let $(B, +) = (\mathbb{Z}_{2^n}, +)$ and define

$$a\circ b=a+(-1)^ab,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

for all $a, b \in B$.

Central nilpotency class

Dedekind Skew Braces 14/21

Massimiliano Di Matteo Unfortunately, we cannot define a bound for the central nilpotency class.

Let $(B, +) = (\mathbb{Z}_{2^n}, +)$ and define

$$a\circ b=a+(-1)^ab,$$

for all $a, b \in B$.

 $(B, +, \circ)$ is a skew brace such that (B, \circ) is isomorphic to the dihedral group of order 2^n and the central nilpotency class of this brace is always n - 1.

Skew Braces of Cyclic Type

Dedekind Skew Braces 15/21

Massimiliano Di Matteo To identify Dedekind skew braces, one needs to consider hypercentral groups.

Theorem

Let $(B, +, \circ)$ be a finite skew brace such that either (B, +) or (B, \circ) is cyclic and the other nilpotent. Then B is Dedekind.

Skew Braces of Cyclic Type

Dedekind Skew Braces 15/21

Massimiliano Di Matteo To identify Dedekind skew braces, one needs to consider hypercentral groups.

Theorem

Let $(B, +, \circ)$ be a finite skew brace such that either (B, +) or (B, \circ) is cyclic and the other nilpotent. Then B is Dedekind.

Theorem

Let $(B, +, \circ)$ be a skew brace such that either (B, +) or (B, \circ) is infinite cyclic. Then following conditions are equivalent:

(1) B is trivial.

(2) B is Dedekind.

(3) (B,+) and (B,\circ) are nilpotent.

Braces of locally cyclic type and $\ker(\lambda)\neq 0$

Dedekind Skew Brace 16/21

Massimiliano Di Matteo

Theorem

Let $(B, +, \circ)$ be a non-trivial skew brace in which (B, +) is locally cyclic and torsion-free and $K = \text{Ker}(\lambda) \neq 0$. Then |B/K| = 2 and

$$\mathsf{a}\circ\mathsf{b}=\mathsf{a}+(-1)^{arphi(\mathsf{a}+\mathsf{K})}\mathsf{b}$$

for all $a, b \in B$, where $\varphi : (B/K, +) \to \mathbb{Z}_2$ is an isomorphism. Thus, (B, \circ) is isomorphic to the dihedral group $\mathbb{Z}_2 \ltimes (B, +)$ and B is not Dedekind.

Converse of the theorem

Dedekind Skew Braces 17/21

Massimiliano Di Matteo

Theorem

Let (X, +) be any subgroup of $(\mathbb{Q}, +)$ containing the rational number 1. If 2X < X, then we can define a group (X, \circ) by putting

$$x \circ y = x + (-1)^{\varphi(x+2X)} y$$

for every $x, y \in X$, where $\varphi : X/2X \to \mathbb{Z}_2$ is an isomorphism. Then $(X, +, \circ)$ defines a skew brace such that $\text{Ker}(\lambda) = 2X \neq \{0\}.$

Braces of locally cyclic type and ker(λ) = 0

Dedekind Skew Braces 18/21

Massimiliano Di Matteo

Theorem

Let $(B, +, \circ)$ be a non-trivial skew brace in which (B, +) is locally cyclic and torsion-free and Ker $(\lambda) = 0$. Then (B, \circ) is abelian and there is a rational number $0 \neq \frac{m_1}{m_2} \in B$ such that for all $a, b \in B$

$$a\circ b=a+b-ab+rac{m_1}{m_2}ab.$$

In this case, (B, +) is actually isomorphic to a sub-ring of $(\mathbb{Q}, +)$. Moreover, B is not Dedekind.

Converse of the second theorem

Dedekind Skew Brace 19/21

Massimiliano Di Matteo

Theorem

Let (X, +) be any subgroup of $(\mathbb{Q}, +)$ containing the rational number 1. If X is a sub-ring of \mathbb{Q} for which there exists a non-zero rational number $\frac{m_1}{m_2}$ for which the operation

$$x \circ y = x + y - xy + \frac{m_1}{m_2}xy$$
 $(x, y \in X)$

defines an abelian group (X, \circ) , then $(X, +, \circ)$ is a skew brace with Ker $(\lambda) = \{0\}$.

Skew Braces in ${\mathbb Q}$ e ${\mathbb Z}$

Dedekind Skew Brace 20/21

Massimiliano Di Matteo Skew braces in which (B, +) is isomorphic to $(\mathbb{Z}, +)$ have already been characterized.

Wolfgang Rump Classification of Cyclic Braces J. Pure Appl. Algebra, 209(3):671–685, 2007

Skew Braces in ${\mathbb Q}$ e ${\mathbb Z}$

Dedekind Skew Brace 20/21

Massimiliano Di Matteo Skew braces in which (B, +) is isomorphic to $(\mathbb{Z}, +)$ have already been characterized.

Wolfgang Rump *Classification of Cyclic Braces* J. Pure Appl. Algebra, 209(3):671–685, 2007

Corollary

If $(B, +, \circ)$ is a skew brace such that $(B, +) \simeq (\mathbb{Q}, +)$, then B is trivial.

Dedekind Skew Braces 21/21

Massimiliano Di Matteo

HANK **FOR YOUR** ATTENTION