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What is a language?

Philosophical
● For the pre-Socratics and Eastern theogonies there is

identity between being and language ( Enūma elǐs,
Brhadāranyaka Upanisad, Rgveda- Heraclitus).

● Sophists conventionalism - Plato proponent of realism
Cratylus - Aristotle De Interpretatione logic,
categories, and moderate realism.

● The Scholastics of the high medieval period
(Abelardus, Scotus, Roscellinus, Thomas Aquinas)
Quaestio de Universalibus

● Biolinguistic-Psycholinguistics-Mentalism-Behaviorism.

Scientific
● Aristotle Organon

● For the Stoics, logic was a wide field of knowledge
that included the study of language, grammar,
rhetoric and epistemology.

● Rationalism Descarts - Leibniz De arte combinatoria

● Contemporary Philosophy: Wittgenstein, Frege,
Russell, de Saussure, Peano, Putnam, Chomsky
(decline of linguistic behaviorism).

Modern technology and necessity of programming → Formal languages:
Chomsky grouped logically possible phrase-structure grammar types into a series of
four nested subsets (Chomsky hierarchy).
Relevant to theoretical computer science, programming language theory, compilers,
and automata theory (Pānini , Hjelmslev).
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Languages

An alphabet is just a finite set A = {a1, a2, . . . an}.

A non-empty word over A is denoted by w(A).

We denote by A∗ the collection of all finite words on A.

A language L is a subset of A∗ or Aω.
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Languages-Grammars-Automata
A grammar is a set of rules we can use to generate a language
Grammar

M finite set of metasymbols;

S ∈ M the start symbol ;

A finite set (disjoint from M ) of symbols;

P set of production rules

(M ∪A)
∗M (M ∪A)

∗
→ (M ∪A)

∗.

An automaton is a machine that recognizes the words of a language.

More complicated languages correspond to more sophisticated grammar rules and more
complex machines.
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Regular languages

A = {0,1} M = {S ,M}

S → 1M ∣ M → 1M ∣ M → 0

S z→ 1M z→ 11M z→ 111M z→ 1110z→ 1110 L = {1n0 ∣ n ≥ 0}

Regular languages generated by regular grammars or equivalently by finite state
automata.
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Context-free languages

A = {a,b} M = {S ,M}

S → aMb ∣ M → aMb ∣ M → ε

S z→ aMb z→ aaMbb z→ aaaMbbb... L = {anbn ∣ n ≥ 0}

Context-free languages generated by context-free grammars or equivalently by
pushdown automata
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Chomsky Hierarchy

Regular ⊂ Context-free ⊂ Context-sensitive ⊂ Recursiv. enum.

L→ a ∣ L→ aM

w1Lw2 → w(A,M )

L→ w(A,M )

w1Lw2 → w1w(A,M )w2

with w1,w2 ∈ (A ∪M )
∗
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LANGUAGES vs GROUPS

A finitely generated group can be seen as a set of generators and a set of
relations.
A natural way to associate a language with a f.g. group is to consider all strings
that represent the identity in the group.

→ The word problem
(Max Dehn. Über unendliche diskontinuierliche Gruppen. Math. Ann., 71:116- 144, 1911.)
Is there an algorithm that determines whether a given w in the generators of G represents the
identity of G?
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Language of a group

To a finitely generated group G = ⟨A⟩ we associated the usual coding map

π ∶ A∗↠ G

where A is symmetric.

Associated to our group we have the so-called word-problem language

WP(G ,A) ∶= {w ∈ A∗ ∣ wπ1G}.

We say that a group is C if a word problem is C as a language.
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Examples

● Z2, S = {a±1,b±1
}.

aa−1, a−2b2a2b−2, [w ,w ′
], .... ∈WP(Z2,S);

b−1ab,b4, ∈ coWP(Z2,S).

● F2, S = {a±1,b±1
}.

aa−1,ww−1
∈WP(F2,S);

a−2b2a2b−2, [w ,w ′
], .... ∈ coWP(F2,S).

Question

In general, can the structure of the group be captured by the complexity of its WP?



Examples

● Z2, S = {a±1,b±1
}.

aa−1, a−2b2a2b−2, [w ,w ′
], .... ∈WP(Z2,S);

b−1ab,b4, ∈ coWP(Z2,S).

● F2, S = {a±1,b±1
}.

aa−1,ww−1
∈WP(F2,S);

a−2b2a2b−2, [w ,w ′
], .... ∈ coWP(F2,S).

Question

In general, can the structure of the group be captured by the complexity of its WP?



Examples

● Z2, S = {a±1,b±1
}.

aa−1, a−2b2a2b−2, [w ,w ′
], .... ∈WP(Z2,S);

b−1ab,b4, ∈ coWP(Z2,S).

● F2, S = {a±1,b±1
}.

aa−1,ww−1
∈WP(F2,S);

a−2b2a2b−2, [w ,w ′
], .... ∈ coWP(F2,S).

Question

In general, can the structure of the group be captured by the complexity of its WP?



Examples

● Z2, S = {a±1,b±1
}.

aa−1, a−2b2a2b−2, [w ,w ′
], .... ∈WP(Z2,S);

b−1ab,b4, ∈ coWP(Z2,S).

● F2, S = {a±1,b±1
}.

aa−1,ww−1
∈WP(F2,S);

a−2b2a2b−2, [w ,w ′
], .... ∈ coWP(F2,S).

Question

In general, can the structure of the group be captured by the complexity of its WP?



What is known?

Theorem (Anisimov, 1971)

A group is regular if and only if it is finite.

Theorem (Herbst, 1991)

A group is one-counter if and only if it is virtually cyclic.

Theorem (Muller-Schupp, 1983)

A group is context-free if and only if it is virtually free.

In terms of Cayley graphs of G wrt the symmetric gen. set S g → gs :
finite ↔ regular, quasi-isometric to a tree ↔ context-free.
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ET0L languages

Inspired by the biologist Lindenmayer to model plant growth

In the case of Extended Tabled 0-interaction Lindenmayer(ET0L), we have the
following:

Alphabet: A
Alphabet of non-terminals: P
Starting symbol: S
Tables: T = {τ1, τ2, . . . , τk}
Rational control: R ⊆ T ∗ is a regular language of tables

A table τ is a set of rules one applies simultaneously. A rule maps a non-terminal to
an element in (A ∪ P)

∗.



ET0L Example

A = {a,b} P = {S ,p}

Our tables are T = {τ1, τ2, τ3} where

τ1 ∶

⎧
⎪⎪
⎨
⎪⎪
⎩

S ↦ Sap

p ↦ p
τ2 ∶

⎧
⎪⎪
⎨
⎪⎪
⎩

S ↦ S

p ↦ ap
τ3 ∶

⎧
⎪⎪
⎨
⎪⎪
⎩

S ↦ ε

p ↦ b
R = T ∗

Then, the language is

L = {an1ban2ban3b⋯bankb ∣ 1 ≤ n1 ≤ n2 ≤ n3 ≤ ⋯ ≤ nk}.

The above is called the language of partitions.

S
τ1
z→ Sap

τ2
z→ Saap

τ1
z→ Sapaap

τ1
z→ Sapapaap

τ3
z→ ababaab
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We know that

Context-free ⊂ ET0L ⊂ indexed ⊂ Context-sensitive

So far, only regular and CF languages we have an analog group characterization
(finite-virtually free).
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Possible research lines

● New results in the spirit of Anisimov and Muller-Shupp.

● The generalized WP: consider H subgroup of G and the language of all strings
over the generators representing an element of H (if H = 1 the WP=the
generalized WP).

● Characterizations in terms of co-WP (→ Lehnert’s Conjecture).
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New results in the spirit of Anisimov and Muller-Shupp

The intersection of two or more context-free languages is not, in general, context-free.

A language is called poly-context-free if it is the intersection of a finite number of
context-free languages.

Conjecture (Brough)

A group is poly-CF if and only if it is a f.g. finite index subgroup of direct products of
free groups.

Conjecture (Ciobanu, Elder, Ferov)

A group with ET0L WP is virtually free.

Conjecture (Holt, Rees)

A group with indexed WP is virtually free.
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Generalized WP → Bounded automaton groups
Class of groups with special and exotic properties.

Finitely generated groups of automorphisms of rooted regular trees (generated by
input/output transducers)

To be a bounded automaton group, the number of active vertces is bounded for every
level.



Generalized WP → Bounded automaton groups
Class of groups with special and exotic properties.
Finitely generated groups of automorphisms of rooted regular trees (generated by
input/output transducers)

To be a bounded automaton group, the number of active vertces is bounded for every
level.



Generalized WP → Bounded automaton groups
Class of groups with special and exotic properties.
Finitely generated groups of automorphisms of rooted regular trees (generated by
input/output transducers)

To be a bounded automaton group, the number of active vertces is bounded for every
level.



Generalized WP → Bounded automaton groups
Class of groups with special and exotic properties.
Finitely generated groups of automorphisms of rooted regular trees (generated by
input/output transducers)

To be a bounded automaton group, the number of active vertces is bounded for every
level.



The prototype is the Grigorchuk group.

The automaton and the automorphisms generating the Grigorchuk group



Properties

The Grigorchuk group G has the following properties:

● It is finitely generated, infinite, non-finitely presented, residually finite, and torsion
(BURNSIDE PROBLEM)

● G admits an L−presentation (LYSIONOK)

● G has intermediate growth (MILNOR PROBLEM)

● G is amenable but non-elementary amenable (DAY PROBLEM)

● G is just infinite

● G has solvable word problem and solvable coniugacy problem

● G contains a finite index subgroup H such that H ×H ≤ H (BRANCH GROUP)

● G is co-Et0L (Ciobanu, Elder, Ferov+ Bihop, Elder) and does not embed into the
Thompson group V (Röver).

V is an example of finitely presented, infinite, simple group
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The generalized WP

The action of a bounded automaton group on the boundary of the tree gives rise to
the language of the stabilizers of boundary points. I.e. Given an element of the
boundary of the tree (an infinite word), among all possible strings in the generators of
a bounded automaton group we consider only those that fix such a vertex.

These subgroups have a graph interpretation: loops in Cayley graphs g → gs ⇒ loops
in Schreier graphs Hg → Hgs
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Question

What is the language of the boundary stabilizers of bounded automaton groups?
(=What is the language recognized by the infinite Schreier graphs?)

Theorem (B-D-M-N-P-R)

Languages of the boundary stabilizers of groups generated by bounded automata are
(co-)ET0L.

A. Bishop, D. D’Angeli, F. Matucci, T. Nagnibeda, D. Perego, E. Rodaro, On the subgroup membership problem in bounded automata groups,
submitted
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Characterizations in terms of co-WP (Lehnert’s Conjecture)

● Grigorchuk group is co-ET0L (and πM with M compact 3-manifold admits a
normal form which is ET0L) (Ciobanu, Elder, Ferov).

● In general, finitely generated bounded automata groups are co-ET0L (Bishop,
Elder).

● Set of solutions of a system of equations in many classes of groups E(D)T0L

⎧
⎪⎪
⎨
⎪⎪
⎩

f (x) = 1G

g(x) = 1G
g1,g2 ∈ G are solutions ⇒ g1#g2 ∈ L.

● Z ∗Z2 is co-ET0L (Al Kohli).

*Authors: Ciobanu, Diekert, Duncan, Elder, Evetts, Holt, Jez, Kufleitner, Levine, Rees
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Thompson V is finite (Röver);

● Z ∗Z2 does not embed into V (Bleak-SalazarDiaz 2013).

Goal: prove that Grigorchuk or Z ∗Z2 is co-CF.
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Inverse graphs

Possible strategy: We start with a more general definition:

Directed Oriented edges E

Labeled A symmetric, E ∶ E → A

Involutive every e ∈ E has an opposite
+ labels preserved

Deterministic at most one for each label
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a−1
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Inverse graph = all of the above + connected

Cayley graphs, Schreier graphs, Schützenberger graphs, etc are inverse



Inverse graphs

Possible strategy: We start with a more general definition:

Directed Oriented edges E

Labeled A symmetric, E ∶ E → A

Involutive every e ∈ E has an opposite
+ labels preserved

Deterministic at most one for each label

a

a−1

a

a

Inverse graph = all of the above + connected

Cayley graphs, Schreier graphs, Schützenberger graphs, etc are inverse



Inverse graphs

Possible strategy: We start with a more general definition:

Directed Oriented edges E

Labeled A symmetric, E ∶ E → A

Involutive every e ∈ E has an opposite
+ labels preserved

Deterministic at most one for each label

a

a−1

a

a

Inverse graph = all of the above + connected

Cayley graphs, Schreier graphs, Schützenberger graphs, etc are inverse



Inverse graphs

Possible strategy: We start with a more general definition:

Directed Oriented edges E

Labeled A symmetric, E ∶ E → A
a

Involutive every e ∈ E has an opposite
+ labels preserved

Deterministic at most one for each label

a

a−1

a

a

Inverse graph = all of the above + connected

Cayley graphs, Schreier graphs, Schützenberger graphs, etc are inverse



Inverse graphs

Possible strategy: We start with a more general definition:

Directed Oriented edges E

Labeled A symmetric, E ∶ E → A
a

Involutive every e ∈ E has an opposite
+ labels preserved

Deterministic at most one for each label

a

a−1

a

a

Inverse graph = all of the above + connected

Cayley graphs, Schreier graphs, Schützenberger graphs, etc are inverse



Inverse graphs

Possible strategy: We start with a more general definition:

Directed Oriented edges E

Labeled A symmetric, E ∶ E → A
a

Involutive every e ∈ E has an opposite
+ labels preserved

Deterministic at most one for each label

a

a−1

a

a

Inverse graph = all of the above + connected

Cayley graphs, Schreier graphs, Schützenberger graphs, etc are inverse



Inverse graphs

Possible strategy: We start with a more general definition:

Directed Oriented edges E

Labeled A symmetric, E ∶ E → A
a

Involutive every e ∈ E has an opposite
+ labels preserved

Deterministic at most one for each label

a

a−1

a

a

Inverse graph = all of the above + connected

Cayley graphs, Schreier graphs, Schützenberger graphs, etc are inverse



Inverse graphs

Possible strategy: We start with a more general definition:

Directed Oriented edges E

Labeled A symmetric, E ∶ E → A
a

Involutive every e ∈ E has an opposite
+ labels preserved

Deterministic at most one for each label

a

a−1

a

a

Inverse graph = all of the above + connected

Cayley graphs, Schreier graphs, Schützenberger graphs, etc are inverse



Transition groups

An inverse graph Γ is complete when for every vertex x and every a ∈ A there exists an

edge x
a
→ y .

In this way, any a ∈ A induces a permutation σa on the vertices. The transition group
of Γ is

G(Γ) ∶= ⟨σa ∣ a ∈ A⟩.



Transition groups

An inverse graph Γ is complete when for every vertex x and every a ∈ A there exists an

edge x
a
→ y .

In this way, any a ∈ A induces a permutation σa on the vertices. The transition group
of Γ is

G(Γ) ∶= ⟨σa ∣ a ∈ A⟩.

Examples:

1. The transition group of a Cayley graph is the group itself.

2. G( ) is isomorphic to Z2 C2.



Context-free inverse graphs

Definition

An inverse graph Γ on the symmetric alphabet A is called context-free if the language
of the closed walks on some root p is a context-free language:

L(Γ,p) = {w ∈ A∗ ∶ p
w
Ð→p} is a context-free language

● For a Cayley graph L(Γ,p) =WP(G ;A), so this definition extends the group case.
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Erasing from Γ a disk D(p,n) centered at p of radius n we obtain some connected
components called end-cones.

Theorem (Ceccherini Silberstein and Woess, Rodaro)

Γ is a context-free graph iff there are finitely many end-cones up to end-isomorphism:
an isomorphism of labeled digraphs ψ preserving the frontier points.

The transition group of a context-free inverse graph is denoted by CF-TR
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Context-free graphs: recognize CF languages and have finitely many end cone types
(Ceccherini Silberstein and Woess, Rodaro)

x0

Bn+1

Γ(x)

Γ1∆(x)

Γ(y)

Γ1∆(y)

Γ(z)

Γ2∆(z)

End

cones:
connected component of Γ −Bn

Morphisms:

ψ ∶ Γ(x)→ Γ(y) iso of inv. graphs

s.t. ∆(x)ψ = ∆(y)

End cone types:
Equiv. classes Γ0,Γ1, . . . ,Γm, . . .



Context-free graphs: recognize CF languages and have finitely many end cone types
(Ceccherini Silberstein and Woess, Rodaro)

x0

Bn+1

Γ(x)

Γ1∆(x)

Γ(y)

Γ1∆(y)

Γ(z)

Γ2∆(z)

End

cones:
connected component of Γ −Bn

Morphisms:

ψ ∶ Γ(x)→ Γ(y) iso of inv. graphs

s.t. ∆(x)ψ = ∆(y)

End cone types:
Equiv. classes Γ0,Γ1, . . . ,Γm, . . .



Context-free graphs: recognize CF languages and have finitely many end cone types
(Ceccherini Silberstein and Woess, Rodaro)

x0

Bn+1

Γ(x)Γ1

∆(x)

Γ(y)Γ1

∆(y)

Γ(z)Γ2

∆(z)
End

cones:
connected component of Γ −Bn

Morphisms:

ψ ∶ Γ(x)→ Γ(y) iso of inv. graphs

s.t. ∆(x)ψ = ∆(y)

End cone types:
Equiv. classes Γ0,Γ1, . . . ,Γm, . . .



Context-free graphs: recognize CF languages and have finitely many end cone types
(Ceccherini Silberstein and Woess, Rodaro)

x0

Bn+1

Γ(x)

Γ1

∆(x)

Γ(y)

Γ1

∆(y)

Γ(z)

Γ2

∆(z)

End

cones:
connected component of Γ −Bn

Morphisms:

ψ ∶ Γ(x)→ Γ(y) iso of inv. graphs

s.t. ∆(x)ψ = ∆(y)

End cone types:
Equiv. classes Γ0,Γ1, . . . ,Γm, . . .



Theorem

The following transition group contains Z∞, thus in particular it is not poly-CF.



Theorem

The following transition group is not residually finite.



Theorem (D-M-P-R)

● CF-TR is a subclass of co-CF.

● A group G belongs to CF-TR with respect to a connected graph iff it has a
core-free subgroup H whose Schreier graph is a context-free. (core-free=trivial
normal subgroup in H)

● CF-TR is closed by taking f.g. subgroups, direct products and finite index
overgroups. In particular, groups that are virtually subgroups of the direct
products of free groups are CF-TR

● They are never torsion (unless it is finite), in particular, Grigorchuk’s group is not
CF-TR.

● Checking if an element has torsion is decidable.

● Thomson F is CF-TR.

● If Brough conjecture holds (Poly-CF=virtually a finitely generated subgroup of the
direct product of free groups) then Poly-CF is properly contained in CF-TR.









GOAL:

1. Find a CF-TR that is not in V .

2. Can we construct a product which group is Z ∗Z2? (Lehnert)

3. Clarify the exact relationship among the classes co-CF, CF-TR, subgroups of V,
poly-CF.

D. D’Angeli, F. Matucci, D. Perego, E. Rodaro, Context-free graphs and their transition groups, submitted
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Grazie

’A bona parola mògne, ’a trista pògne


