Vanishing Elements of Prime Power Order

(Joint work with Rahul Kitture)

Sonakshee Arora

Indian Institute of Technology Jammu, India

Advances in Group Theory and Applications, 2025 Università degli Studi di Napoli, Italy

Quick Introduction (All groups G considered here are finite groups)

▶ A \mathbb{C} -representation of a group G (of dimension n) is a homomorphism

 $\rho: \mathcal{G} \to \mathrm{GL}_n(\mathbb{C}).$

3

Quick Introduction (All groups G considered here are finite groups)

▶ A \mathbb{C} -representation of a group G (of dimension n) is a homomorphism

 $\rho: \mathcal{G} \to \mathrm{GL}_n(\mathbb{C}).$

▶ If *P* is $n \times n$ invertible matrix, then the new representation

$$ho': \mathsf{g} \mapsto \mathsf{P}
ho(\mathsf{g})\mathsf{P}^{-1}$$

is a representation equivalent to ρ .

э

▶ If *P* is $n \times n$ invertible matrix, then the new representation

$$ho': \mathsf{g} \mapsto \mathsf{P}
ho(\mathsf{g})\mathsf{P}^{-1}$$

is a representation equivalent to ρ .

▶ ρ is **reducible** if it is equivalent to ρ' which is in a block-sum (otherwise, it is irreducible):

$$ho'(x) = egin{bmatrix}
ho_1(x) & \mathbf{0} \\ \mathbf{0} &
ho_2(x) \end{bmatrix}$$
 (for all $x \in G$).

▶ If *P* is $n \times n$ invertible matrix, then the new representation

$$ho': \mathsf{g} \mapsto \mathsf{P}
ho(\mathsf{g})\mathsf{P}^{-1}$$

is a representation equivalent to ρ .

▶ ρ is **reducible** if it is equivalent to ρ' which is in a block-sum (otherwise, it is irreducible):

$$\rho'(x) = \begin{bmatrix} \rho_1(x) & \mathbf{0} \\ \mathbf{0} & \rho_2(x) \end{bmatrix}$$
 (for all $x \in G$).

▶ Character of ρ is the map $\chi : G \to \mathbb{C}$, $\chi(x) := \operatorname{Trace}(\rho(x))$.

イロト 不得 トイラト イラト 一日

▶ If *P* is $n \times n$ invertible matrix, then the new representation

$$ho': \mathsf{g} \mapsto \mathsf{P}
ho(\mathsf{g})\mathsf{P}^{-1}$$

is a representation equivalent to ρ .

▶ ρ is **reducible** if it is equivalent to ρ' which is in a block-sum (otherwise, it is irreducible):

$$\rho'(x) = \begin{bmatrix} \rho_1(x) & \mathbf{0} \\ \mathbf{0} & \rho_2(x) \end{bmatrix}$$
 (for all $x \in G$).

▶ Character of ρ is the map $\chi : G \to \mathbb{C}$, $\chi(x) := \operatorname{Trace}(\rho(x))$.

• Character χ is said to be **irreducible** if ρ is irreducible.

イロト 不得 トイヨト イヨト 二日

Vanishing Elements:

An element x in a group G is said to be **vanishing element** if

イロト イボト イヨト イヨト

э

Vanishing Elements:

An element x in a group G is said to be **vanishing element** if $\chi(x) = 0$ for some **irreducible** character χ of G (over \mathbb{C}).

Example

Consider character table of group S_3 given below:

	(1)	(12)	(123)
χ_1	1	1	1
χ_2	1	-1	1
χ_{3}	2	0	-1

► (Burnside, 1903) Every non-abelian finite group contains a vanishing element.

Vanishing Elements:

An element x in a group G is said to be **vanishing element** if $\chi(x) = 0$ for some **irreducible** character χ of G (over \mathbb{C}).

Example

Consider character table of group S_3 given below:

	(1)	(12)	(123)
χ_1	1	1	1
χ_2	1	-1	1
χ_{3}	2	0	-1

► (Burnside, 1903) Every non-abelian finite group contains a vanishing element.

► (Malle, Navarro, Olsson, 2000) Every non-abelian finite group contains a vanishing element of prime power order.

イロト 不得 トイヨト イヨト 二日

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem: (Dolfi, Pacifici, San	ius, 201	0)	
All vanishing elements have conjugacy-class size not divisible by <i>p</i>	brace	G has normal <i>p</i> -complement & abelian Sylow <i>p</i> -subgroups	}

Example

$C_3 \rtimes C_4$	1	2	3	4A	4B	6	
class size	1	1	2	3	3	2	
χ1	1	1	1	1	1	1	
χ_2	1	1	1	-1	-1	1	
χ_{3}	1	-1	1	i	-i	-1	
χ_4	1	-1	1	-i	i	-1	
χ_{5}	2	2	-1	0	0	-1	
χ_{6}	2	-2	-1	0	0	1	

Sonakshee Arora (IIT Jammu)

イロト 不得 トイヨト イヨト

 $\left\{ \begin{matrix} \text{No vanishing elements} \\ \text{of prime power order have} \\ \text{square-free conjugacy-class size} \end{matrix} \right\} \Longrightarrow \left\{ \begin{matrix} \text{s} \\ \text{square-free conjugacy-class size} \end{matrix} \right\}$

$$\Rightarrow \begin{cases} \text{group is} \\ \text{super-solvable} \end{cases}$$

Theorem: (Bianchi, Lewis, Pacifici, 2019)

In a finite group G, all the vanishing elements have conjugacy-class size p if and only if

- either G = (p-group with class sizes 1 or $p) \times (abelian p'$ -group)
- or G/Z(G) is a Frobenius group with Frobenius kernel of order p.

Theorem: (Bianchi, Lewis, Pacifici, 2019)

In a finite group G, all the vanishing elements have conjugacy-class size p if and only if

- either G = (p-group with class sizes 1 or $p) \times (abelian p'$ -group)
- or G/Z(G) is a Frobenius group with Frobenius kernel of order p.

Theorem: (Neda Ahanjideh, 2023)

All vanishing elements have same conjugacy-class size

$$\implies \begin{cases} \text{group is} \\ \text{solvable} \end{cases}$$

イロト イヨト イヨト ・

Theorem (-, Kitture, 2025) Let G be a non-abelian finite simple group, other than A_5 and $SL_2(\mathbb{F}_8)$.

Then G contains a **vanishing element** x of some **prime power order**, whose class size is divisible by **three** distinct primes.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem (-, Kitture, 2025) Let G be a non-abelian finite simple group, other than A_5 and $SL_2(\mathbb{F}_8)$.

Then G contains a **vanishing element** x of some **prime power order**, whose class size is divisible by **three** distinct primes.

► We used **classification of finite simple groups** in proof.

- G be a non-solvable group
- Sol(G) = largest solvable normal subgroup of G(solvable radical)

▶ (S. Robati, 2020) If **all** vanishing elements of G have conjugacy-class size divisible by at most two distinct primes then

- G be a non-solvable group
- Sol(G) = largest solvable normal subgroup of G(solvable radical)

▶ (S. Robati, 2020) If **all** vanishing elements of G have conjugacy-class size divisible by at most two distinct primes then

$$G/Sol(G) \cong A_5$$
 or $SL_2(\mathbb{F}_8)$.

• G be a non-solvable group

• Sol(G) = largest solvable normal subgroup of G(solvable radical)

▶ (S. Robati, 2020) If **all** vanishing elements of G have conjugacy-class size divisible by at most two distinct primes then

$$G/Sol(G) \cong A_5$$
 or $SL_2(\mathbb{F}_8)$.

► (- , - , 2025) If all vanishing elements of **prime-power order** have conjugacy-class size divisible by at most two distinct primes, then

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- G be a non-solvable group
- Sol(G) = largest solvable normal subgroup of G(solvable radical)

▶ (S. Robati, 2020) If **all** vanishing elements of G have conjugacy-class size divisible by at most two distinct primes then

$$G/Sol(G) \cong A_5$$
 or $SL_2(\mathbb{F}_8)$.

► (- , - , 2025) If all vanishing elements of **prime-power order** have conjugacy-class size divisible by at most two distinct primes, then

$$G/\mathrm{Sol}(G) \cong A_5 \times \cdots \times A_5 \quad \text{ or } \quad \mathrm{SL}_2(\mathbb{F}_8) \times \cdots \times \mathrm{SL}_2(\mathbb{F}_8).$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- G be a non-solvable group
- Sol(G) = largest solvable normal subgroup of G(solvable radical)

▶ (S. Robati, 2020) If **all** vanishing elements of G have conjugacy-class size divisible by at most two distinct primes then

$$G/Sol(G) \cong A_5$$
 or $SL_2(\mathbb{F}_8)$.

► (- , - , 2025) If all vanishing elements of **prime-power order** have conjugacy-class size divisible by at most two distinct primes, then

 $G/Sol(G) \cong A_5 \times \cdots \times A_5$ or $SL_2(\mathbb{F}_8) \times \cdots \times SL_2(\mathbb{F}_8)$. Example: Let $G = A_5 \times S_3$.

イロト 不得 トイヨト イヨト 二日

- G be a non-solvable group
- Sol(G) = largest solvable normal subgroup of G(solvable radical)

 \triangleright (S. Robati, 2020) If **all** vanishing elements of G have conjugacy-class size divisible by at most two distinct primes then

$$G/Sol(G) \cong A_5$$
 or $SL_2(\mathbb{F}_8)$.

► (-, -, 2025) If all vanishing elements of **prime-power order** have conjugacy-class size divisible by at most two distinct primes, then

 $G/Sol(G) \cong A_5 \times \cdots \times A_5$ or $SL_2(\mathbb{F}_8) \times \cdots \times SL_2(\mathbb{F}_8)$.

Example: Let $G = A_5 \times S_3$. It has vanishing elements of order 6.

- G be a non-solvable group
- Sol(G) = largest solvable normal subgroup of G(solvable radical)

 \triangleright (S. Robati, 2020) If **all** vanishing elements of G have conjugacy-class size divisible by at most two distinct primes then

$$G/Sol(G) \cong A_5$$
 or $SL_2(\mathbb{F}_8)$.

► (-, -, 2025) If all vanishing elements of **prime-power order** have conjugacy-class size divisible by at most two distinct primes, then

 $G/Sol(G) \cong A_5 \times \cdots \times A_5$ or $SL_2(\mathbb{F}_8) \times \cdots \times SL_2(\mathbb{F}_8)$.

Example: Let $G = A_5 \times S_3$. It has vanishing elements of order 6. And their conjugacy class size is divisible by three distinct primes.

• G be a non-solvable group

• Sol(G) = largest solvable normal subgroup of G(solvable radical)

 \triangleright (S. Robati, 2020) If **all** vanishing elements of G have conjugacy-class size divisible by at most two distinct primes then

$$G/Sol(G) \cong A_5$$
 or $SL_2(\mathbb{F}_8)$.

► (-, -, 2025) If all vanishing elements of **prime-power order** have conjugacy-class size divisible by at most two distinct primes, then

 $G/Sol(G) \cong A_5 \times \cdots \times A_5$ or $SL_2(\mathbb{F}_8) \times \cdots \times SL_2(\mathbb{F}_8)$.

Example: Let $G = A_5 \times S_3$. It has vanishing elements of order 6. And their conjugacy class size is divisible by three distinct primes. But for vanishing elements of **prime-power order**,

• G be a non-solvable group

• Sol(G) = largest solvable normal subgroup of G(solvable radical)

▶ (S. Robati, 2020) If **all** vanishing elements of G have conjugacy-class size divisible by at most two distinct primes then

$$G/Sol(G) \cong A_5$$
 or $SL_2(\mathbb{F}_8)$.

► (- , - , 2025) If all vanishing elements of **prime-power order** have conjugacy-class size divisible by at most two distinct primes, then

 $G/Sol(G) \cong A_5 \times \cdots \times A_5$ or $SL_2(\mathbb{F}_8) \times \cdots \times SL_2(\mathbb{F}_8)$.

Example: Let $G = A_5 \times S_3$. It has vanishing elements of order 6. And their conjugacy class size is divisible by **three** distinct primes. But for vanishing elements of **prime-power order**, their size of conjugacy class has at most two distinct prime divisors.

Sonakshee Arora (IIT Jammu)

Representation theory

Example: $A_5 \times S_3$

Example

$class \to$	1a	2a	3a	3b	6a	3c	2b	2c	6b	5a	10a	15a	5b	10b	15b
$Size \rightarrow$	1	3	2	20	60	40	15	45	30	12	36	24	12	36	24
χ1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ2	1	-1	1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ3	2	1	-1	-1	0	1	0	-1	0	1	0	-1	0	1	0
χ_4	3	-3	3	3	-1	-1	1	1	-1	-1	A	A	*A	*A	A
χ_5	-3	3	-3	-3	1	1	-1	-1	1	1	-A	-A	-*A	-*A	-A
χ_6	3	3	3	3	-1	-1	-1	-1	-1	-1	A	A	*A	*A	A
χ7	3	3	3	3	-1	-1	-1	-1	-1	-1	*A	*A	A	A	*A
χ_8	4	4	4	4	1	1	1	1	1	1	-1	-1	-1	-1	-1
χ_9	4	4	4	4	1	1	1	1	1	1	-1	-1	-1	-1	-1
χ_{10}	5	5	5	5	-1	-1	-1	-1	-1	-1	1	1	1	1	1
χ_{11}	5	5	5	5	-1	-1	-1	-1	-1	-1	1	1	1	1	1
χ_{12}	6	-3	-3	0	0	-2	0	0	В	0	-A	*В	0	0	-*A
X13	6	-3	-3	0	0	-2	0	0	1	*В	0	-*A	В	0	-A
χ_{14}	8	-4	-2	0	-1	0	0	0	-2	0	0	1	-2	1	0
χ_{15}	10	-5	-2	0	-1	2	0	0	-1	0	0	0	0	0	0

$$A = \frac{1 - \sqrt{5}}{2}$$
, $*A = \frac{1 + \sqrt{5}}{2}$, $B = 2A$, $*B = 2^*A$

↓ ↓ ⊕ ▶ ↓ ≣ ▶ ↓ ≣ ▶
 June 25, 2025

Ξ.

References

- [1] S. Arora, R. Kitture, *Vanishing elements of prime power order*, arXiv, 2025.
- [2] Neda Ahanjideh, *On finite groups with exactly one vanishing conjugacy class size*, Proc. Royal Society of Edinburgh, 344–368, 2023.
- [3] J. Brough, Q. Kong *On Vanishing criteria that control finite group structure II*, Bull. Australian Math. Society, 207-215, 2016.
- [4] S. Dolfi, E. Pacifici, L. Sanus, *Groups whose vanishing class sizes are not divisible by a given prime*, Archiv der Mathematik, 311-317, 2010.

[5] S. Robati, *Non-solvable groups each of whose vanishing class sizes has at most two prime divisors*, Comm. Algebra, 1280-1285, 2020.

(日)

3

Thank you

Grazie!

|--|

Representation theory

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □