# Set-theoretic solutions of the Yang–Baxter equation associated with g-digroups

Andrea Albano Università del Salento - Lecce

Advances in Group Theory and Applications 2025 23-28 June 2025 Università degli Studi di Napoli "Federico II" - Naples





This talk is based on some results obtained in:

A. Albano, P. Stefanelli, *Generalized digroups, di-skew braces and solutions of the set-theoretic Yang-Baxter equation*, arXiv:2505.15387.

We will

- review basic facts on self-distributivity in the YBE;
- determine how generalized digroups yield solutions;
- compare the latter with skew brace solutions.

A.A. is supported by a scholarship financed by the MD 118/2023, based on the NRRP - funded by the European Union - NextGenerationEU - Mission 4.

A.A. is a member of GNSAGA - INdAM and of the non-profit association AGTA.

### The set-theoretic Yang-Baxter equation

V. G. Drinfel'd, *On some unsolved problems in quantum group theory*, in Quantum groups, (Springer) Lecture Notes in Math. 1510 (1990), 1-8.

If D is a set, a map  $r: D \times D \to D \times D$  is called a *set-theoretic solution* to the *YBE* if it satisfies the *braid relation*:

 $(r \times \mathrm{id}_D)(\mathrm{id}_D \times r)(r \times \mathrm{id}_D) = (\mathrm{id}_D \times r)(r \times \mathrm{id}_D)(\mathrm{id}_D \times r)$ 

### The set-theoretic Yang-Baxter equation

V. G. Drinfel'd, *On some unsolved problems in quantum group theory*, in Quantum groups, (Springer) Lecture Notes in Math. 1510 (1990), 1-8.

If D is a set, a map  $r: D \times D \to D \times D$  is called a *set-theoretic solution* to the *YBE* if it satisfies the *braid relation*:

 $(r \times \mathrm{id}_D)(\mathrm{id}_D \times r)(r \times \mathrm{id}_D) = (\mathrm{id}_D \times r)(r \times \mathrm{id}_D)(\mathrm{id}_D \times r)$ 

If we project r onto its components and write

 $r(a,b) = (\lambda_a(b), \rho_b(a)),$ 

where  $\lambda_a, \rho_b : D \to D$  are maps, for all  $a, b \in D$ , then r is named:

- *left non-degenerate* if  $\lambda_a$  is bijective, for all  $a \in D$ ;
- right non-degenerate if  $\rho_b$  is bijective, for all  $b \in D$ ;
- non-degenerate if it is both left and right non-degenerate.

Let (D, r) and (X, s) be solutions. Then, they are called

• *D*-isomorphic if there exists a bijection  $F : D \times D \rightarrow X \times X$  such that

$$Fr = sF$$

• equivalent if there exists a bijection  $f: D \rightarrow X$  such that

$$(f \times f)r = s(f \times f).$$

A *shelf*  $(D, \triangleright)$  is a set D equipped with a binary operation  $\triangleright$  such that:

 $\forall x, y, z \in D \quad x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z).$ 

A shelf  $(X, \triangleright)$  is called a

- ▶ rack, if the map  $L_x : X \ni y \mapsto x \triangleright y \in X$  is bijective, for all  $x \in D$ ;
- quandle, if  $(X, \triangleright)$  is a rack such that  $x \triangleright x = x$ , for all  $x \in D$ .

D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982), 37-65.

S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.) 119 (1982), 78-88. A *twist* of a shelf  $(D, \triangleright)$  is a map  $\lambda : D \to \mathsf{Aut}(D, \triangleright)$  such that

$$\forall x, y \in D \quad \lambda_x \lambda_y = \lambda_{\lambda_x(y)} \lambda_{\lambda_{\lambda_x(y)}^{-1}(\lambda_x(y) \triangleright x)}$$

Theorem [Doikou, Rybołowicz, Stefanelli (2024)]

If  $(D, \triangleright)$  is a shelf and  $\lambda : D \to \mathsf{Sym}(D)$  a map, then

$$r_{\lambda}: D \times D \to D \times D, r(x, y) = (\lambda_{x}(y), \lambda_{\lambda_{x}(y)}^{-1}(\lambda_{x}(y) \triangleright x)),$$

is a left non-degenerate solution if and only  $\lambda$  is a twist of  $(D, \triangleright)$ . Moreover, all *left non-degenerate solutions* can be constructed in this way. **Conjugation quandle:** let G be a group and set

$$\forall x, y \in G \quad x \triangleright y := x^{-1}yx$$

Then,  $(G, \triangleright)$  is a quandle which will be denoted as Conj(G).

**Conjugation rack:** let D be a generalized digroup and set

$$\forall x, y \in D \quad x \triangleright y := x^{-1} \vdash y \dashv x$$

Then,  $(D, \triangleright)$  is a rack which will be denoted as  $Conj(D, \vdash, \dashv)$ .

## Disemigroups

- J.-L. Loday, *Dialgebras*, in Dialgebras and related operads, Lecture Notes in Math. 1763 (2001), 7-66.

A disemigroup  $(D, \vdash, \dashv)$  is the datum of two binary associative operations  $\vdash, \dashv$  on a set D satisfying the following properties, for all  $x, y, z \in D$ :

 $\begin{aligned} x \vdash (y \dashv z) &= (x \vdash y) \dashv z , \quad \text{(inner associativity)} \\ x \dashv (y \vdash z) &= x \dashv (y \dashv z) , \quad \text{(right bar-side irrelevance)} \\ (x \vdash y) \vdash z &= (x \dashv y) \vdash z , \quad \text{(left bar-side irrelevance)} \end{aligned}$ 

A *bar-unit* is an element  $e \in D$  with the following property

$$\forall x \in D \quad e \vdash x = x = x \dashv e$$

The set of all bar-units is called the *halo* of D and denoted as  $E(D, \vdash, \dashv)$ .

## Generalized digroups

- M. K. Kinyon, Leibniz algebras, Lie racks, and digroups, J. Lie Theory 17 (2007), 99-114.
- O. P. Salazar-Díaz, R. E. Velásquez Ossa, L. A. Wills Toro, *Generalized digroups*, Comm. Algebra 44 (2016), 2760-2785.

A generalized digroup (g-digroup) is a disemigroup  $(D, \vdash, \dashv)$  such that

- i) there exists a bar-unit, i.e.  $E(D, \vdash, \dashv) \neq \emptyset$ ;
- ii) for all e ∈ E(D, ⊢, ⊣) and x ∈ D there exists a unique pair of elements x<sup>l<sub>e</sub></sup>, x<sup>J<sub>e</sub></sup> ∈ D such that

$$x^{I_e} \dashv x = e = x \vdash x^{J_e}$$

### The structure of g-digroups

If  $(D, \cdot)$  is a group then  $(D, \cdot, \cdot)$  trivially is a g-digroup.

Let G be a group endowed with a right action  $\psi : G \to Sym(E)$  on a set E. If on  $D := G \times E$ , for all  $g, h \in G$  and  $e, f \in E$ , we define

 $(g, e) \vdash (h, f) := (gh, f),$  $(g, e) \dashv (h, f) := (gh, \psi_h(e)),$ 

then  $(D, \vdash, \dashv)$  is a g-digroup which we denote by  $G \dashv \vdash_{\psi} E$ . Note that it satisfies  $E(D, \vdash, \dashv) = \{1_G\} \times E$ .

## The structure of g-digroups

If  $(D, \cdot)$  is a group then  $(D, \cdot, \cdot)$  trivially is a g-digroup.

Let G be a group endowed with a right action  $\psi : G \to Sym(E)$  on a set E. If on  $D := G \times E$ , for all  $g, h \in G$  and  $e, f \in E$ , we define

 $(g, e) \vdash (h, f) := (gh, f),$  $(g, e) \dashv (h, f) := (gh, \psi_h(e)),$ 

then  $(D, \vdash, \dashv)$  is a g-digroup which we denote by  $G \dashv \vdash_{\psi} E$ . Note that it satisfies  $E(D, \vdash, \dashv) = \{1_G\} \times E$ .

Theorem [Kinyon (2007) and Salazar-Díaz et al. (2016)] If  $(D, \vdash, \dashv)$  is a g-digroup then there exists a group G and a right action  $\psi: G \to E(D, \vdash, \dashv)$  such that

$$D\cong G\dashv \vdash_{\psi} E(D,\vdash,\dashv).$$

There is a well-defined binary operation  $\triangleright$  on D given by

$$x \triangleright y := x^{-1} \vdash y \dashv x.$$

The pair  $(D, \triangleright)$  is a rack, called the *conjugation rack* of  $(D, \vdash, \dashv)$  and denoted by  $\text{Conj}(D, \vdash, \dashv)$ .

In particular, if  $D = G \twoheadrightarrow_{\psi} E$  then for all  $g, h \in D$  and  $e, f \in E$  we have

$$(g,e) \triangleright (h,f) = \left(g^{-1}hg, \psi_g(f)\right)$$
.

There is a well-defined binary operation  $\triangleright$  on D given by

$$x \triangleright y := x^{-1} \vdash y \dashv x.$$

The pair  $(D, \triangleright)$  is a rack, called the *conjugation rack* of  $(D, \vdash, \dashv)$  and denoted by  $\text{Conj}(D, \vdash, \dashv)$ .

In particular, if  $D = G \twoheadrightarrow_{\psi} E$  then for all  $g, h \in D$  and  $e, f \in E$  we have

$$(g,e) \triangleright (h,f) = \left(g^{-1}hg, \psi_g(f)\right)$$
.

 $(D, \triangleright)$  is a quandle  $\iff \forall x \in D, e \in E(D, \vdash, \dashv) \quad x \triangleright e = e$ 

### **Di-skew braces**



A. Albano, P. Stefanelli, *Generalized digroups, di-skew braces and solutions of the set-theoretic Yang-Baxter equation*, arXiv:2505.15387.

### Definition

A *di-skew brace*  $(D, \vdash, \dashv, \circ)$  is the datum of a g-digroup  $(D, \vdash, \dashv)$  and a *right group*  $(D, \circ)$  such that the following hold, for all  $x, y, z \in D$ 

$$\begin{aligned} x \circ (y \vdash z) &= x \circ y \vdash x^{-1} \vdash x \circ z , \\ x \circ (y \dashv z) &= x \circ y \dashv x^{-1} \dashv x \circ z , \\ (x \vdash y) \circ z &= (x \dashv y) \circ z . \end{aligned}$$

Examples:

- trivial di-skew brace  $\longrightarrow (D, \vdash, \dashv, \vdash);$
- ▶ almost-trivial di-skew brace  $\longrightarrow (D, \vdash, \dashv, \dashv^{op});$
- skew braces  $\longrightarrow (D, +, +, \circ)$ .

### Di-skew braces and solutions

Let  $(D, \vdash, \dashv, \circ)$  be a di-skew brace. For all  $x \in D$ , one can define a digroup automorphism  $\lambda_x \in Aut(D, \vdash, \dashv)$  as follows

 $\lambda_x: D \to D, \ \lambda_x(y) = x^{-1} \vdash x \circ y$ 

The map  $\lambda : (D, \circ) \to \operatorname{Aut}(D, \vdash, \dashv)$  is a digroup homomorphism.

### Di-skew braces and solutions

Let  $(D, \vdash, \dashv, \circ)$  be a di-skew brace. For all  $x \in D$ , one can define a digroup automorphism  $\lambda_x \in Aut(D, \vdash, \dashv)$  as follows

 $\lambda_x: D \to D, \ \lambda_x(y) = x^{-1} \vdash x \circ y$ 

The map  $\lambda : (D, \circ) \rightarrow \operatorname{Aut}(D, \vdash, \dashv)$  is a digroup homomorphism.

#### Theorem

Let  $(D, \vdash, \dashv, \circ)$  be a di-skew brace and consider  $(D, \triangleright) = \text{Conj}(D, \vdash, \dashv)$ . Then, the map  $\lambda : D \to \text{Aut}(D, \triangleright)$  is a twist. In particular, the map  $r : D \times D \to D \times D$  defined by

$$r(x,y) = \left(\lambda_{\times}(y), (\lambda_{\times}(y))^{-} \circ (x \dashv \lambda_{\times}(y))\right)$$

is a bijective non-degenerate solution.

Let  $(D, \vdash, \dashv, \circ)$  be a di-skew brace and let r be its associated solution.

### Proposition

In the above notation, if we let  $(D, \vdash, \dashv) \cong G \dashv_{\psi} E$  then

 $o(r) = 2 \cdot \operatorname{lcm}\left(\exp\left(G/Z(G)\right), N_{\psi}\right),$ 

where  $N_{\psi} = \inf \left\{ n \in \mathbb{N} \mid \forall x, y \in G \quad (\psi_x \psi_y)^n \psi_x^{-n} = \mathrm{id}_E \right\}$ 

This extends Theorem 4.13 in [Smoktunowicz, Vendramin (2018)].

### An example

Let  $E = \{1, 2, 3\}$  and consider  $G = \langle (12) \rangle$  together with its natural action  $\psi : G \rightarrow \text{Sym}(E)$ . Then, any di-skew brace  $(D, \vdash, \dashv, \circ)$  with  $(D, \vdash, \dashv) \cong G \dashv_{\psi} E$  determines a solution  $r_D$  having

$$o(r_D) = 4$$

### An example

Let  $E = \{1, 2, 3\}$  and consider  $G = \langle (12) \rangle$  together with its natural action  $\psi : G \to \text{Sym}(E)$ . Then, any di-skew brace  $(D, \vdash, \dashv, \circ)$  with  $(D, \vdash, \dashv) \cong G \dashv_{\psi} E$  determines a solution  $r_D$  having

$$o(r_D)=4.$$

All skew braces  $(B, +, \circ)$  on a set of |D| = 6 elements satisfy

 $o(r_B) \in \{2, 12\}$ 

depending on whether  $(B, +) \cong C_6$  or  $(B, +) \cong Sym_3$ , respectively.

The solutions  $r_D$  cannot be D-isomorphic to a skew brace solution.

Thank you for your attention! Grazie per l'attenzione!

### References

- A. Albano, P. Stefanelli, Generalized digroups, di-skew braces and solutions of the set-theoretic Yang-Baxter equation, arXiv:2505.15387.
- A. Doikou, B. Rybołowicz and P. Stefanelli, Quandles as pre-Lie skew braces, set-theoretic Hopf algebras & universal *R*-matrices, *J. Phys. A: Math. Theor.* **57** (2024) 405203.

V. G. Drinfel'd, *On some unsolved problems in quantum group theory*, in Quantum groups, (Springer) Lecture Notes in Math. 1510 (1990), 1-8.

- D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982), 37-65.
- M. K. Kinyon, *Leibniz algebras, Lie racks, and digroups*, J. Lie Theory 17 (2007), 99-114.
  - V. Lebed, Applications of self-distributivity to Yang-Baxter operators and their cohomology, J. Knot Theory Ramifications 27 (2018), pp. 20.
    - J.-L. Loday, *Dialgebras*, in Dialgebras and related operads, Lecture Notes in Math. 1763 (2001), 7-66.

- S. V. Matveev, *Distributive groupoids in knot theory*, Mat. Sb. (N.S.) 119 (1982), 78-88.
- G. G. Restrepo-Sánchez, J. G. Rodríguez-Nieto, O. P. Salazar-Díaz, R. Velásquez, A correspondence between racks and g-digroups, Ricerche Mat (2024)
  - O. P. Salazar-Díaz, R. E. Velásquez Ossa, L. A. Wills Toro, *Generalized digroups*, Comm. Algebra 44 (2016), 2760-2785.
    - A. Smoktunowicz, L. Vendramin, *On skew braces (with an appendix by N. Byott and L. Vendramin)*, J. Comb. Algebra 2 (2018), 47-86.