On Vanishing Conjugacy Classes in Finite Groups

Roghayeh HAFEZIEH

Gebze Technical University, Gebze, Turkey

Outline

<ロト <回ト < 回ト < 回ト < 回ト -

æ

• Preleminaries

R. HAFEZIEH (GTU)

3

・ロト ・四ト ・ヨト ・ヨト

- Preleminaries
- Groups whose vanishing class sizes are prime powers

∃ >

< 47 ▶

- Preleminaries
- Groups whose vanishing class sizes are prime powers
- Groups whose vanishing class sizes are p-powers

- Preleminaries
- Groups whose vanishing class sizes are prime powers
- Groups whose vanishing class sizes are p-powers

Definition

R. HAFEZIEH (GTU) On Vanishing Conjugacy Classes in Finite Grc

Ξ.

In this talk, all groups are considered to be finite.

æ

Image: A matrix

æ

→ ∃ →

• an element is called a vanishing element of G if it is a zero of an irreducible character of G;

- an element is called a vanishing element of G if it is a zero of an irreducible character of G;
- otherwise, it is called a non-vanishing element.

- an element is called a vanishing element of G if it is a zero of an irreducible character of G;
- otherwise, it is called a non-vanishing element.
- the conjugacy class of an element is termed as a vanishing class if that element is a vanishing element.

- an element is called a vanishing element of G if it is a zero of an irreducible character of G;
- otherwise, it is called a non-vanishing element.
- the conjugacy class of an element is termed as a vanishing class if that element is a vanishing element.

• A prime $p \in \pi(G)$ does not divide any conjugacy class size of G if and only if G has a central Sylow p-subgroup.

R. HAFEZIEH (GTU)

- A prime $p \in \pi(G)$ does not divide any conjugacy class size of G if and only if G has a central Sylow p-subgroup.
- **Dolfi, Pacifici, and Sanus in 2010**, considering the case where no vanishing class of G is divisible by a given prime p, proved that G has a normal p-complement and abelian Sylow p-subgroups.

- A prime $p \in \pi(G)$ does not divide any conjugacy class size of G if and only if G has a central Sylow p-subgroup.
- **Dolfi, Pacifici, and Sanus in 2010**, considering the case where no vanishing class of G is divisible by a given prime p, proved that G has a normal p-complement and abelian Sylow p-subgroups.
- Chillag and Herzog in 1990 proved that if the size of each conjugacy class of G is square-free, then G is supersolvable.

- A prime p ∈ π(G) does not divide any conjugacy class size of G if and only if G has a central Sylow p-subgroup.
- **Dolfi, Pacifici, and Sanus in 2010**, considering the case where no vanishing class of G is divisible by a given prime p, proved that G has a normal p-complement and abelian Sylow p-subgroups.
- Chillag and Herzog in 1990 proved that if the size of each conjugacy class of G is square-free, then G is supersolvable.
- Brough in 2016 proved that a group whose vanishing class sizes are all square-free numbers is supersolvable.

- A prime p ∈ π(G) does not divide any conjugacy class size of G if and only if G has a central Sylow p-subgroup.
- **Dolfi, Pacifici, and Sanus in 2010**, considering the case where no vanishing class of G is divisible by a given prime p, proved that G has a normal p-complement and abelian Sylow p-subgroups.
- Chillag and Herzog in 1990 proved that if the size of each conjugacy class of G is square-free, then G is supersolvable.
- Brough in 2016 proved that a group whose vanishing class sizes are all square-free numbers is supersolvable.
- Chillag and Herzog, in 1990 showed that if the size of each conjugacy class of G is a prime power, then G is either nilpotent or an A-group which is a solvable group whose Sylow subgroups are all abelian.

- A prime p ∈ π(G) does not divide any conjugacy class size of G if and only if G has a central Sylow p-subgroup.
- **Dolfi, Pacifici, and Sanus in 2010**, considering the case where no vanishing class of G is divisible by a given prime p, proved that G has a normal p-complement and abelian Sylow p-subgroups.
- Chillag and Herzog in 1990 proved that if the size of each conjugacy class of G is square-free, then G is supersolvable.
- Brough in 2016 proved that a group whose vanishing class sizes are all square-free numbers is supersolvable.
- Chillag and Herzog, in 1990 showed that if the size of each conjugacy class of G is a prime power, then G is either nilpotent or an A-group which is a solvable group whose Sylow subgroups are all abelian.

Solvability Criterion

R. HAFEZIEH (GTU) On Vanishing Conjugacy Classes in Finite Grc

3

Proposition

Let S be a sporadic simple group or an alternating group Alt(n) for some $n \ge 7$. Then S has an irreducible character θ which extends to Aut(S) and a conjugacy class x^S of size divisible by 2q for some odd prime number q such that $\theta(x) = 0$.

Proposition

Let S be a sporadic simple group or an alternating group Alt(n) for some $n \ge 7$. Then S has an irreducible character θ which extends to Aut(S) and a conjugacy class x^S of size divisible by 2q for some odd prime number q such that $\theta(x) = 0$.

Bianchi-Chillag-Lewis-Pacifici, 2007

Lemma

Let G be a group, and $M = S_1 \times ... \times S_k$ be a minimal normal subgroup of G, where every S_i is isomorphic to a non-abelian simple group S. If $\theta \in Irr(S)$ extends to Aut(S), then $\theta \times ... \times \theta \in Irr(M)$ extends to G.

э

Proposition

Let S be a sporadic simple group or an alternating group Alt(n) for some $n \ge 7$. Then S has an irreducible character θ which extends to Aut(S) and a conjugacy class x^S of size divisible by 2q for some odd prime number q such that $\theta(x) = 0$.

Bianchi-Chillag-Lewis-Pacifici, 2007

Lemma

Let G be a group, and $M = S_1 \times ... \times S_k$ be a minimal normal subgroup of G, where every S_i is isomorphic to a non-abelian simple group S. If $\theta \in Irr(S)$ extends to Aut(S), then $\theta \times ... \times \theta \in Irr(M)$ extends to G.

э

Solvability Criterion

R. HAFEZIEH (GTU) On Vanishing Conjugacy Classes in Finite Grc

→ < ∃ →</p>

• • • • • • • • • • •

3

Theorem

Let G be a finite group. If all vanishing class sizes of G are either odd or powers of 2, then G is solvable.

Theorem

Let G be a finite group. If all vanishing class sizes of G are either odd or powers of 2, then G is solvable.

Groups whose vanishing classes all have size p

3 N 3

Theorem

Let G be a group and p be a prime. The vanishing class sizes of G all have size p if and only if one of the following occurs:

Theorem

Let G be a group and p be a prime. The vanishing class sizes of G all have size p if and only if one of the following occurs:

• G = P × H, where P is a p-group whose conjugacy class sizes are 1 or p, and H is an abelian p[']-group.

Theorem

Let G be a group and p be a prime. The vanishing class sizes of G all have size p if and only if one of the following occurs:

- $G = P \times H$, where P is a p-group whose conjugacy class sizes are 1 or p, and H is an abelian p[']-group.
- $\frac{G}{Z(G)}$ is a Frobenius group whose Frobenius kernel has order p.

Theorem

Let G be a group and p be a prime. The vanishing class sizes of G all have size p if and only if one of the following occurs:

- $G = P \times H$, where P is a p-group whose conjugacy class sizes are 1 or p, and H is an abelian p[']-group.
- $\frac{G}{Z(G)}$ is a Frobenius group whose Frobenius kernel has order p.

Groups with a unique vanishing class size

Bianchi-Camina-Lewis-Pacifici, 2020

Theorem

Let G be a finite supersolvable group, and assume that $Vcs(G) = \{s\}$. If, denoting by π the set of prime divisors of s, we have $\pi = \pi(G/Z(G))$, then, up to an abelian direct factor of π' -order, one of the following occurs:

Groups with a unique vanishing class size

Bianchi-Camina-Lewis-Pacifici, 2020

Theorem

Let G be a finite supersolvable group, and assume that $Vcs(G) = \{s\}$. If, denoting by π the set of prime divisors of s, we have $\pi = \pi(G/Z(G))$, then, up to an abelian direct factor of π' -order, one of the following occurs:

• The integer s is power of a suitable prime p, G is a p-group and $cs(G) = \{1, s\}.$

Bianchi-Camina-Lewis-Pacifici, 2020

Theorem

Let G be a finite supersolvable group, and assume that $Vcs(G) = \{s\}$. If, denoting by π the set of prime divisors of s, we have $\pi = \pi(G/Z(G))$, then, up to an abelian direct factor of π' -order, one of the following occurs:

- The integer s is power of a suitable prime p, G is a p-group and $cs(G) = \{1, s\}.$
- For a suitable prime p we have G = NP, where N is a nontrivial, abelian, normal p- complement of G, and P is a Sylow p-subgroup of G such that |cs(P)| = 2, $Z(P) = C_P(N)$, and P/Z(P) is an elementary abelian p-group. Also, $|N : C_N(x)|$ has the same value for every element $x \in P \setminus Z(P)$, $C_N(P) = N \cap Z(G)$, and N contains no vanishing elements of G.

< □ > < □ > < □ > < □ > < □ > < □ >

Bianchi-Camina-Lewis-Pacifici, 2020

Theorem

Let G be a finite supersolvable group, and assume that $Vcs(G) = \{s\}$. If, denoting by π the set of prime divisors of s, we have $\pi = \pi(G/Z(G))$, then, up to an abelian direct factor of π' -order, one of the following occurs:

- The integer s is power of a suitable prime p, G is a p-group and $cs(G) = \{1, s\}.$
- For a suitable prime p we have G = NP, where N is a nontrivial, abelian, normal p- complement of G, and P is a Sylow p-subgroup of G such that |cs(P)| = 2, $Z(P) = C_P(N)$, and P/Z(P) is an elementary abelian p-group. Also, $|N : C_N(x)|$ has the same value for every element $x \in P \setminus Z(P)$, $C_N(P) = N \cap Z(G)$, and N contains no vanishing elements of G.

< □ > < □ > < □ > < □ > < □ > < □ >

Characterization Theorem

∃ ⊳

Image: A matrix

æ

Theorem

Let G be a finite group. If each vanishing class size of G is a prime power, then one of the following situations occurs:

Theorem

Let G be a finite group. If each vanishing class size of G is a prime power, then one of the following situations occurs:

(1) G/F(G) is a nilpotent group with at most one non-abelian Sylow subgroup and $|\rho(cs(G/F(G)))| \leq 1$.

Theorem

Let G be a finite group. If each vanishing class size of G is a prime power, then one of the following situations occurs:

(1) G/F(G) is a nilpotent group with at most one non-abelian Sylow subgroup and $|\rho(cs(G/F(G)))| \leq 1$.

(2) G/F(G) is an A-group and there exist two distinct primes r and s such that G/F(G) \cong K × H, where K is an abelian {r, s}'-group and H/Z(H) is a Frobenius {r, s}-group. Moreover, $|\rho(cs(G/F(G)))| = dl(G/F(G)) = 2.$

Theorem

Let G be a finite group. If each vanishing class size of G is a prime power, then one of the following situations occurs:

(1) G/F(G) is a nilpotent group with at most one non-abelian Sylow subgroup and $|\rho(cs(G/F(G)))| \leq 1$.

(2) G/F(G) is an A-group and there exist two distinct primes r and s such that G/F(G) \cong K × H, where K is an abelian {r, s}'-group and H/Z(H) is a Frobenius {r, s}-group. Moreover, $|\rho(cs(G/F(G)))| = dl(G/F(G)) = 2.$

Theorem

Let G be a finite group. If the image of each vanishing element of G in G/F(G) has a prime power index, then one of the following situations occurs:

Theorem

Let G be a finite group. If the image of each vanishing element of G in G/F(G) has a prime power index, then one of the following situations occurs:

(1) G/F(G) is a nilpotent group with at most one non-abelian Sylow subgroup and $|\rho(cs(G/F(G)))| \leq 1$.

Theorem

Let G be a finite group. If the image of each vanishing element of G in G/F(G) has a prime power index, then one of the following situations occurs:

- (1) G/F(G) is a nilpotent group with at most one non-abelian Sylow subgroup and $|\rho(cs(G/F(G)))| \leq 1$.
- (2) G/F(G) is an A-group and there exist two distinct primes r and s such that G/F(G) ≅ K × H, where K is an abelian {r, s}'-group and H/Z(H) is a Frobenius {r, s}-group. Moreover, |ρ(cs(G/F(G)))| = dl(G/F(G)) = 2.

Theorem

Let G be a finite group. If the image of each vanishing element of G in G/F(G) has a prime power index, then one of the following situations occurs:

- (1) G/F(G) is a nilpotent group with at most one non-abelian Sylow subgroup and $|\rho(cs(G/F(G)))| \leq 1$.
- (2) G/F(G) is an A-group and there exist two distinct primes r and s such that G/F(G) ≅ K × H, where K is an abelian {r, s}'-group and H/Z(H) is a Frobenius {r, s}-group. Moreover, |ρ(cs(G/F(G)))| = dl(G/F(G)) = 2.

The second case of the main theorem mentioned by Robati-Hafezien in 2022 does not occur

The second case of the main theorem mentioned by Robati-Hafezien in 2022 does not occur

Robati-Hafezieh, 2023:

Corollary

Let G be a finite group whose vanishing class sizes are all prime powers. Then G/F(G) is abelian.

R. HAFEZIEH (GTU) On Vanishing Conjugacy Classes in Finite Grc

The second case of the main theorem mentioned by Robati-Hafezien in 2022 does not occur

Robati-Hafezieh, 2023:

Corollary

Let G be a finite group whose vanishing class sizes are all prime powers. Then G/F(G) is abelian.

R. HAFEZIEH (GTU) On Vanishing Conjugacy Classes in Finite Grc

Isaacs-Navarro-Wolf, 1999

Conjecture

Each non-vanishing element of a finite solvable group G lies in the Fitting subgroup F(G).

12/19

Isaacs-Navarro-Wolf, 1999

Conjecture

Each non-vanishing element of a finite solvable group G lies in the Fitting subgroup F(G).

Robati-Hafezieh, 2022

Corollary

Let G be a finite group whose vanishing conjugacy classes sizes are of prime powers. If x is a non-vanishing element, then $x \in F(G)$.

Isaacs-Navarro-Wolf, 1999

Conjecture

Each non-vanishing element of a finite solvable group G lies in the Fitting subgroup F(G).

Robati-Hafezieh, 2022

Corollary

Let G be a finite group whose vanishing conjugacy classes sizes are of prime powers. If x is a non-vanishing element, then $x \in F(G)$.

Ahanjideh-Robati, 2023

Theorem

For every finite group G with exactly one vanishing class size, $G \setminus F(G) \subseteq Van(G)$.

R. HAFEZIEH (GTU) On Vanishing Conjugacy Classes in Finite Gro

Isaacs-Navarro-Wolf, 1999

Conjecture

Each non-vanishing element of a finite solvable group G lies in the Fitting subgroup F(G).

Robati-Hafezieh, 2022

Corollary

Let G be a finite group whose vanishing conjugacy classes sizes are of prime powers. If x is a non-vanishing element, then $x \in F(G)$.

Ahanjideh-Robati, 2023

Theorem

For every finite group G with exactly one vanishing class size, $G \setminus F(G) \subseteq Van(G)$.

R. HAFEZIEH (GTU) On Vanishing Conjugacy Classes in Finite Gro

▲□▶▲□▶▲□▶▲□▶ ▲□ ◆ ◆ ◆

Theorem

Let G be a finite group, and q a prime number. If the size of every vanishing conjugacy class of G is not divisible by q, then G has a normal q-complement and abelian Sylow q-subgroups.

Theorem

Let G be a finite group, and q a prime number. If the size of every vanishing conjugacy class of G is not divisible by q, then G has a normal q-complement and abelian Sylow q-subgroups.

The above theorem implies that:

Theorem

Let G be a finite group, and q a prime number. If the size of every vanishing conjugacy class of G is not divisible by q, then G has a normal q-complement and abelian Sylow q-subgroups.

The above theorem implies that: If G is a finite group whose vanishing class sizes are all powers of a prime p, then G = PH, where P is the normal Sylow p-subgroup and H is an abelian p'-subgroup of G.

13/19

Theorem

Let G be a finite group, and q a prime number. If the size of every vanishing conjugacy class of G is not divisible by q, then G has a normal q-complement and abelian Sylow q-subgroups.

The above theorem implies that: If G is a finite group whose vanishing class sizes are all powers of a prime p, then G = PH, where P is the normal Sylow p-subgroup and H is an abelian p'-subgroup of G.

13/19

Abelian or non-abelian normal Sylow p-subgroup

∃ >

< 1 k

æ

Lemma

Let G be a finite group whose vanishing class sizes are all powers of a prime p. Let P be the normal Sylow p-subgroup of G. If P is abelian, then G is either abelian or a quasi-Frobenius group.

Lemma

Let G be a finite group whose vanishing class sizes are all powers of a prime p. Let P be the normal Sylow p-subgroup of G. If P is abelian, then G is either abelian or a quasi-Frobenius group.

Lemma

Let G be a finite group whose vanishing class sizes are all powers of a prime p. Let P be the normal Sylow p-subgroup of G. If P is abelian, then G is either abelian or a quasi-Frobenius group.

Lemma

Let G be a finite group whose vanishing class sizes are all powers of a prime p. Let P be the normal Sylow p-subgroup of G. If P is non-abelian, then for each $x \in P$ either $C_G(x) \subseteq F(G)$ or $x \subseteq C_P(H)^g$ for a suitable $g \in P$.

Lemma

Let G be a finite group whose vanishing class sizes are all powers of a prime p. Let P be the normal Sylow p-subgroup of G. If P is abelian, then G is either abelian or a quasi-Frobenius group.

Lemma

Let G be a finite group whose vanishing class sizes are all powers of a prime p. Let P be the normal Sylow p-subgroup of G. If P is non-abelian, then for each $x \in P$ either $C_G(x) \subseteq F(G)$ or $x \subseteq C_P(H)^g$ for a suitable $g \in P$.

R. HAFEZIEH (GTU) On Vanishing Conjugacy Classes in Finite Grc

æ

R. HAFEZIEH (GTU)

Theorem

Let G be a finite group whose vanishing class sizes are p-powers, for a prime p.

Theorem

Let G be a finite group whose vanishing class sizes are p-powers, for a prime p.Then G = PH, where P is a normal subgroup and H is an abelian p'-subgroup of G.

Theorem

Let G be a finite group whose vanishing class sizes are p-powers, for a prime p. Then G = PH, where P is a normal subgroup and H is an abelian p'-subgroup of G. Indeed, if G is non-abelian, then either P is abelian and G is a quasi-Frobenius group, or P is non-abelian and one of the following situation occurs:

Theorem

Let G be a finite group whose vanishing class sizes are p-powers, for a prime p. Then G = PH, where P is a normal subgroup and H is an abelian p'-subgroup of G. Indeed, if G is non-abelian, then either P is abelian and G is a quasi-Frobenius group, or P is non-abelian and one of the following situation occurs:

R. HAFEZIEH (GTU) On Vanishing Conjugacy Classes in Finite Grc

æ

(1) $G = P \times H$.

æ

- (1) $G = P \times H$.
- (2) $G = O^{p}(G) \rtimes C_{P}(H)$, where $O^{p}(G) = G' \rtimes H$, G' = [P, H], and the following properties hold:

- (1) $G = P \times H$.
- (2) $G = O^p(G) \rtimes C_P(H)$, where $O^p(G) = G' \rtimes H$, G' = [P, H], and the following properties hold:

(a)
$$C_H(P) = F(G)_{p'} = Z(G)_{p'};$$

- (b) C_P(H) is abelian;
- (c) $O^{p}(G)$ is a quasi-Frobenius group;
- (d) $P \setminus \bigcup_{g \in P} C_P(H)^g \cap Van(G) = \emptyset$. In particular, all elements of G' are non-vanishing elements of G;
- (e) G/F(G) is cyclic.

- (1) $G = P \times H$.
- (2) $G = O^p(G) \rtimes C_P(H)$, where $O^p(G) = G' \rtimes H$, G' = [P, H], and the following properties hold:

(a)
$$C_H(P) = F(G)_{p'} = Z(G)_{p'};$$

- (b) C_P(H) is abelian;
- (c) $O^{p}(G)$ is a quasi-Frobenius group;
- (d) $P \setminus \bigcup_{g \in P} C_P(H)^g \cap Van(G) = \emptyset$. In particular, all elements of G' are non-vanishing elements of G;
- (e) G/F(G) is cyclic.

R. HAFEZIEH (GTU) On Vanishing Conjugacy Classes in Finite Grc

As a corollary of the main theorem mentioned by **Dolfi, Pacifici, Sanus, in 2010** we have:

Corollary

Given a group G, if a prime p is not a vertex of the prime graph associated to Vcs(G), then G has a normal p-complement and abelian Sylow p-subgroups.

17/19

As a corollary of the main theorem mentioned by **Dolfi, Pacifici, Sanus, in 2010** we have:

Corollary

Given a group G, if a prime p is not a vertex of the prime graph associated to Vcs(G), then G has a normal p-complement and abelian Sylow p-subgroups.

Bianchi, Brough, Camina, and Pacifici, in 2017

Theorem

Given a finite group G with F(G) = 1, the prime graph associated to Vcs(G) is a complete graph with vertex set $\pi(G)$.

As a corollary of the main theorem mentioned by **Dolfi, Pacifici, Sanus, in 2010** we have:

Corollary

Given a group G, if a prime p is not a vertex of the prime graph associated to Vcs(G), then G has a normal p-complement and abelian Sylow p-subgroups.

Bianchi, Brough, Camina, and Pacifici, in 2017

Theorem

Given a finite group G with F(G) = 1, the prime graph associated to Vcs(G) is a complete graph with vertex set $\pi(G)$.

Hence the Theorem mentioned by **Robati-Hafezieh**, **2023** give a classification for those finite groups whose prime graph associated to the set of vanishing class sizes, is a **singleton**.

< 日 > < 同 > < 回 > < 回 > .

17 / 19

As a corollary of the main theorem mentioned by **Dolfi, Pacifici, Sanus, in 2010** we have:

Corollary

Given a group G, if a prime p is not a vertex of the prime graph associated to Vcs(G), then G has a normal p-complement and abelian Sylow p-subgroups.

Bianchi, Brough, Camina, and Pacifici, in 2017

Theorem

Given a finite group G with F(G) = 1, the prime graph associated to Vcs(G) is a complete graph with vertex set $\pi(G)$.

Hence the Theorem mentioned by **Robati-Hafezieh**, **2023** give a classification for those finite groups whose prime graph associated to the set of vanishing class sizes, is a **singleton**.

< 日 > < 同 > < 回 > < 回 > .

17 / 19

bibliography

R. HAFEZIEH (GTU) On Vanishing Conjugacy Classes in Finite Grc

AGTA 2023

<ロト <回ト < 回ト < 回ト < 回ト -

3

- N. Ahanjideh, S. Mahmood Robati, *The Isaacs-Navarro-Wolf conjecture for groups with one vanishing class size, Mediterr. J. Math.*, (2023).
- M. Bianchi, R. D. Camina, M. L. Lewis, and E. Pacifici, *On solvable groups with one vanishing class size*, *Proceedings of the Royal Society of Edinburgh Section A*: Mathematics, (2020), 1-20.
- M. Bianchi, M. L. Lewis, and E. Pacifici, *Groups with vanishing class size* p, *J. Group Theory*, **23**, (2020), 79-83.
- M. Bianchi, D. Chillag, M. Lewis, and E. Pacifici, *Character degree graphs that are complete graphs*, Proc. Amer. Math. Soc. **135**, (2007), 671-676.
- J. Brough, *On vanishing criteria that control finite group structure*, J. Algebra, **458**, (2016), 207-215.

(日) (同) (三) (三)

bibliography

R. HAFEZIEH (GTU) On Vanishing Conjugacy Classes in Finite Grc

<ロト <回ト < 回ト < 回ト < 回ト -

3

- D. Chillag and M. Herzog, On the length of the conjugacy classes of finite groups, J. Algebra, **131(1)**, (1990), 110-125.
- S. Dolfi, E. Pacifici, and L. Sanus, *Groups whose vanishing class sizes* are not divisible by a given prime, Arch. Math. (Basel), **94** (2010) 311–317.
- I. M. Isaacs, G. Navarro, and T. R. Wolf, *Finite group elements where* no irreducible character vanishes, J. Algebra, **222(2)**, (1999), 413-423.
- S. Mahmood Robati and R. Hafezieh, *Groups whose vanishing class sizes are prime powers*, *J. Group Theory*, **25(1)**, (2022), 151-162.
- S. Mahmood Robati and R. Hafezieh, *Groups whose vanishing class sizes are* p*-powers*, *Comm. in Algebra*, to appear.