Near braces, *p*-deformed braided groups & quasi-bialgebras

Anastasia Doikou

Heriot-Watt University

Lecce, June 2023

A.D., J. Phys. A54 (2021) 415201
 A.D., A. Ghionis & B. Vlaar, Lett. Math. Phys. (2022)
 A.D. & B. Rybolowicz, arXiv:2204.11580 (2022)
 A.D. & B. Rybolowicz, arXiv:2204.11580 (2023)

- YBE introduced: Yang, study of N particle in δ potential & <u>Baxter</u>, study of XYZ model.
- YBE and the *R*-matrix are the quantum analogues of the classical YBE and the classical r-matrix (Sklyanin bracket) [*Semenof-Tjian-Shanski Sklyanin*], classical intergrable systems.
- Fundamental equ. in QISM formulation [Faddeev, Tahktajan, Kulish, Sklyanin, Reshetikhin....] & quantum algebras (deformed Lie algebras) [Drinfeld, Jimbo].
- Solving YBE: e.g. using braids and Hecke algebras *Baxterization* [*Jimbo*], or using linear intertwining relations (quantum group symmetry) [*Kulish*].

- [Drinfeld] introduced the "Set-theoretic YBE".
- [*Hietarinta*] first classification of set-theoretic solutions of YBE. [*Etingof, Shedler & Soloviev*] set theoretical solutions & quantum groups for param. free *R*-matrices.
- Connections to: geometric crystals [Berenstein & Kazhdan, Etingof] and cellular automatons [Hatayama, Kuniba & Takagi].
- Classical discrete integrable systems (YB maps), quad-graph, discrete maps: [Veselov, Bobenko, Suris, Papageorgiou, Tongas,...]
- Set theoretical involutive solutions of YBE from braces: [Rump, Guarnieri, Vendramin, Gateva-Ivanova, Cedó, Jespers, Okniński, Smoktunowicz,...]

- We recall basic definitions and results about braces and set-theoretic solutions of the Yang-Baxter equation. We introduce slightly generalized algebraic structures called *near-braces* associated to solutions of the YBE. Starting from set theoretic solutions with extra fixed parameters, we reconstruct the near brace (*AD*, *Rybolowicz*) and vise versa. The notion of the p-deformed braided groups is also introduced leading to generalized solutions of the YBE.
- We recall the definitions of the quasi bi-algebra and we then move on to study the quantum algebra associated to set-theoretic solutions of the YBE (*Etingof, Shedler, Soloviev*). The quantum algebra is a quasi bialgebra & the set-theoretic solutions are obtained via an admissible Drinfeld twist from a derived solution (*AD, Ghionis, Vlaar; AD, Rybolowicz; AD*).

Set-theoretic solutions of thel YBE

• Let a set
$$X = \{x_1, \ldots, x_N\}$$
 and $\check{r} : X \times X \to X \times X$. Denote

$$\check{r}(x,y) = (\sigma_x(y),\tau_y(x))$$

- **(** (X, \check{r}) non-degenerate: σ_x and τ_y are bijective functions
- **2** (X, \check{r}) involutive: $\check{r}(\sigma_x(y), \tau_y(x)) = (x, y), (\check{r}\check{r}(x, y) = (x, y))$
- Suppose (X, ř) is an involutive, non-degenerate set-theoretic solution of the Braid equation:

Braid equation

 $(\check{r} \times Id_X)(Id_X \times \check{r})(\check{r} \times Id_X) = (Id_X \times \check{r})(\check{r} \times Id_X)(Id_X \times \check{r}).$

Definition (Rump; Guarnieri & Vendramin)

A *left skew brace* is a set *B* together with two group operations $+, \circ : B \times B \rightarrow B$, the first is called addition and the second is called multiplication, such that $\forall a, b, c \in B$,

$$a \circ (b+c) = a \circ b - a + a \circ c.$$

If + is an abelian group operation *B* is called a *left brace*. Moreover, if *B* is a left skew brace and $\forall a, b, c \in B$ $(b + c) \circ a = b \circ a - a + c \circ a$, then *B* is called a *skew brace*. Analogously if + is abelian and *B* is a skew brace, then *B* is called a *brace*.

• The additive identity of a left skew brace *B* will be denoted by 0 and the multiplicative identity by 1. In every left skew brace 0 = 1.

Theorem (Rump)

Let $(B, +, \circ)$ be a brace and for $x, y \in B$ define $\check{r}(x, y) = (\sigma_x(y), \tau_y(x))$, the YB map of $(B, +, \circ)$:

$$\sigma_x(y) = x \circ y - x, \quad \tau_y(x) = (\sigma_x(y))^{-1} \circ x - (\sigma_x(y))^{-1}.$$

Then (B, r) is a non-degenerate, involutive solution of the set-theoretic YBE. Conversely, for every non-degenerate, involutive solution of the set-theoretic YBE (X, \check{r}) there is a brace $(B, +, \circ)$: $X \subseteq B$ and \check{r} is the restriction of the YB map of $(B, +, \circ)$ to $X \times X$.

- See also [Cedo, Jespers, Okninski].
- Guarnieri & Vendramin generalized Rump's results for non-involutive, non-degenerate, set-theoretic solutions using skew braces.

Extended non-involutive solutions from (skew) braces

• A generalized version of the set-theoretic solution via some kind of "z-deformation". Let $z \in X$ be fixed, then we denote

$$\check{r}_z(x,y) = (\sigma_x^z(y), \tau_y^z(x)).$$

 \check{r} is non-degenerate if σ_x^z and τ_y^z are bijective maps.

• By requiring (X, \check{r}_z) to be a solution of the braid equation:

$$(\check{r} \times id)(id \times \check{r})(\check{r} \times id) = (id \times \check{r})(\check{r} \times id)(id \times \check{r}),$$

we obtain the fundamental constraints:

$$\sigma_{\eta}^{z}(\sigma_{x}^{z}(y)) = \sigma_{\sigma_{\eta}^{z}(x)}^{z}(\sigma_{\tau_{x}^{z}(\eta)}^{z}(y)), \tag{1}$$

$$\tau_y^z(\tau_x^z(\eta)) = \tau_{\tau_y^z(x)}^z(\tau_{\sigma_x^z(y)}^z(\eta)),\tag{2}$$

$$\tau^{z}_{\sigma^{z}_{\tau^{z}_{x}(\eta)}(y)}(\sigma^{z}_{\eta}(x)) = \sigma^{z}_{\tau^{z}_{\sigma^{z}_{x}(y)}(\eta)}(\tau^{z}_{y}(x)).$$
(3)

Theorem

Let B be a left skew brace and $z \in B$ such that $\forall a, b, c \in B$, $(a - b + c) \circ z = a \circ z - b \circ z + c \circ z$. Then we can define a map $\check{r}_z : B \times B \to B \times B$ given by

$$\check{r}_z(a,b) = (\sigma^z_a(b), \tau^z_b(a)) := (a \circ b - a \circ z + z, \ (a \circ b - a \circ z + z)^{-1} \circ a \circ b),$$

where $(a \circ b - a \circ z + z)^{-1}$ is the inverse in the group (B, \circ) . The pair (B, \check{r}) is a solution of the braid equation.

Proof. IShow that the maps σ^z , τ^z satisfy the constraints (1)-(3) [AD & Rybolowicz].

Remark. We note that σ^z_x, τ^z_y as defined in the Theorem are bijections and thus ř is non-degenerate.

Q Remark. For z = 1, Guarnieri-Vedramin skew braces are recovered; if in addition (B, +) is an abelian group Rump's braces are recovered and ř_{z=1} becomes involutive(σ^z_{σ^x_λ(y)}(τ^y_y(x)) = x and τ^z_{τ^z_y(x)}(σ^z_x(y)) = y). For z ≠ 1 the solutions are not involutive in general, even in the case of braces. **σ_x is a group action but τ_y is not!!

4 B 6 4 B 6

The inverse *ř* matrix

• The explicit expressions of the inverse \check{r}_z -matrices & the bijective maps:

Proposition

Let
$$\check{r}_z$$
, $\check{r}_z^* : X \times X$ be solutions of the braid equations, such that
 $\check{r}^* : (x, y) \mapsto (\hat{\sigma}_x^z(y), \hat{\tau}_y^z(x)), \check{r} : (x, y) \mapsto (\sigma_x^z(y), \tau_y^z(x)).$
1 $\check{r}^* = \check{r}^{-1}$ if and only if
 $\hat{\sigma}_{\sigma_x^z(y)}^z(\tau_y^z(x)) = x, \ \hat{\tau}_{\tau_y^z(x)}^z(\sigma_x^z(y)) = y, \ \sigma_{\sigma_x^z(y)}^z(\hat{\tau}_y^z(x)) = x, \ \tau_{\tilde{\tau}_y^z(x)}^z(\hat{\sigma}_x^z(y)) = y.$
2 If $\sigma_x^z(y) = x \circ y - x \circ z + z, \ \tau_y^z(x) = \sigma_x^z(y)^{-1} \circ x \circ y$, then
 $\hat{\sigma}_x^z(y) = -x \circ z^{-1} + x \circ y \circ z^{-1}, \ \hat{\tau}_x^z(y) = \hat{\sigma}_x^z(y)^{-1} \circ x \circ y.$

Examples

Example (1)

Let us consider a set $\operatorname{Odd} := \left\{ \frac{2n+1}{2k+1} \mid n, k \in \mathbb{Z} \right\}$ together with two binary operations $(a, b) \stackrel{+_1}{\longmapsto} a - 1 + b$ and $(a, b) \stackrel{-}{\longmapsto} a \cdot b$, where $+, \cdot$ are addition and multiplication of rational numbers, respectively. The triple $(\operatorname{Odd}, +_1, \circ)$ is a brace. The solution \check{r}_z is involutive if and only if $a \cdot b - a \cdot z + z = a \cdot b - a + 1$ if and only if $(z - 1) \cdot (1 - a) = 0, \forall a, b \in B$. Therefore, $\forall z \neq 1, \check{r}_z$ is non-involutive. Moreover, $\check{r}_z = \check{r}_w$ if and only if $-a \cdot z + z = -a \cdot w + w$, that is if z = w.

Example (2)

Let us consider a ring $\mathbb{Z}/8\mathbb{Z}$. A triple

$$\left(\mathrm{OM} := \left\{ \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix} \mid \mathsf{a}, \mathsf{d} \in \{1, 3, 5, 7\}, \ \mathsf{b}, \mathsf{c} \in \{0, 2, 4, 6\} \right\}, +_{\mathbb{I}}, \circ \right)$$

is a brace, where $(A, B) \stackrel{+}{\vdash} A - \mathbb{I} + B$, $(A, B) \stackrel{\circ}{\mapsto} A \cdot B$, and $+, \cdot$ are addition and multiplication of two by two matrices over $\mathbb{Z}/8\mathbb{Z}$, respectively. Moreover one can easily check that two solutions \check{r}_A and \check{r}_B are equal if and only if $(D - \mathbb{I}) \cdot (B - A) = 0$ (mod 8) $\forall D \in OM$.

The examples above are inspired by works on trusses, paragons...: [Brzezinski], [Brzezinski & Rybolowicz]. Let X be a set with a group operation

 X × X → X, with a neutral element 1 ∈ X and an inverse x⁻¹ ∈ X, ∀x ∈ X. Let σ_x^z : X → X, be a family of bijective functions: y ↦ σ_x^z(y), where z ∈ X is some fixed parameter. We define another binary operation + : X × X → X, such that

$$y + x := x \circ \sigma_{x^{-1}}^{z} (y \circ z) \circ z^{-1}$$

For convenience we will omit henceforth the fixed $z \in X$ in $\sigma_x^z(y)$. We assume that + is associative.

- Focus on non-degenerate, invertible solutions ř and σ_x and τ_y are bijections: σ_x⁻¹(σ_x(y)) = σ_x(σ_x⁻¹(y)) = y, τ_y⁻¹(τ_y(x)) = τ_y(τ_y⁻¹(x)) = x
 Let ř⁻¹(x, y) = (ô_x(y), î_y(x)) exist with ô_x, î_y being also bijections: σ_{ô_x(y)}(î_y(x)) = x = ô_{σ_x(y)}(τ_y(x)), τ_{î_y(x)}(ô_x(y)) = y = î_{τ_y(x)}(σ_x(y)). ô_{σ_x(y)}(x) = τ_y(x), î_{τ_y(x)}(y) = σ_x(y).
- Assume that $\hat{\sigma}$ has the general form

$$\hat{\sigma}_x(y) := x \circ (x^{-1} \circ z_2 + y \circ z_1) \circ \xi,$$

the parameters $z_{1,2}$, ξ to be identified.

• Useful Lemmas:

Lemma 1

For all $x \in X$, the operations +x, $x+: X \to X$ are bijections.

• We now introduce the notion of a neutral elements in (X, +)

Lemma 2

Let (X, +) be a semigroup, then $\forall x \in X$, $\exists 0_x \in X$, such that $0_x + x = x$. Moreover, $\forall x, y \in X, 0_x = 0_y = 0$, i.e. 0 is the unique left neutral element. The left neutral element 0 is also right neutral element.

Lemma 3

Let 0 be the neutral element in (X, +), then $\forall x \in X, \exists -x \in X$, such that -x + x = 0 (left inverse). Moreover, $-x \in X$ is a right inverse, i.e. x + (-x) = 0 $\forall x \in X$. That is (X, +, 0) is a group.

Theorem

Let (X, \circ) be a group and $\check{r} : X \times X \to X \times X$ be such that $\check{r}(x, y) = (\sigma_x(y), \tau_x(y))$ is a non-degenerate solution of the set-theoretic braid equation. Moreover, we assume that:

- If the pair (X, +) (+ as defined) is a group.
- **④** For h ∈ {z, ξ} ∈ X appearing in $\sigma_x(y)$ and $\hat{\sigma}_x(y)$ there exist $\hat{\phi} : X \to X$ such that for all a, b ∈ X (a + b) \circ h = a \circ h + $\hat{\phi}(h)$ + b \circ h.
- **2** The neutral element 0 of (X, +) has a left and right distributivity.

Then for all $a, b, c \in X$ the following statements hold:

1
$$\phi(a)=-a\circ 0$$
 and $\widehat{\phi}(h)=-0\circ h$,

- **3** $a a \circ 0 = 1$ and (i) $0 \circ 0 = -1$ (ii) $1 + 1 = 0^{-1}$.
- If $z_2 \circ \xi = 0^{-1}$, $0 \circ \xi = z_1 \circ \xi = z^{-1} \circ 0^{-1}$, then (i) $\hat{\sigma}_a(b) \circ \hat{\tau}_b(a) = a \circ b = \sigma_a^z(b) \circ \tau_b^z(a)$ (ii) $-a \circ 0 + a = 1$.

• **Remark.** Due to $a - a \circ 0 = -a \circ 0 + a = 1$, $\forall a \in B$, we deduce that a + 1 = 1 + a, $\forall a \in B$.

Definition

A *near brace* is a set *B* together with two group operations $+, \circ : B \times B \rightarrow B$, the first is called addition and the second is called multiplication, such that $\forall a, b, c \in B$,

$$a \circ (b+c) = a \circ b - a \circ 0 + a \circ c$$

and $a - a \circ 0 = -a \circ 0 + a = 1$. We denote by 0 the neutral element of the (B, +) group and by 1 the neutral element of the (B, \circ) group. We say that a near brace B is an abelian near brace if + is abelian.

• In the special case where 0 = 1, we recover a skew brace.

Example

Let (B, \circ) be a group with neutral element 1 and define $a + b := a \circ \kappa^{-1} \circ b$, where $1 \neq \kappa \in B$ is an element of the center of (B, \circ) . Then $(B, \circ, +)$ is a near brace with neutral element $0 = \kappa$, and we call it the trivial near brace. Thanks to Paola!

Proposition

Let $(B, \circ, +)$ be a near brace and let us denote $\sigma_a^p(b) := a \circ b \circ z_1 - a \circ \xi + z_2$ and $\tau_b^p(a) := \sigma_a^p(b)^{-1} \circ a \circ b$, where $a, b \in B$, and $h \in \{\xi, z_i\} \in B$, $i \in \{1, 2\}$ are fixed parameters, such that $\exists c_{1,2} \in B, \forall a, b, c \in B, (a - b + c) \circ h = a \circ h - b \circ h + c \circ h$, $a \circ z_2 \circ z_1 - a \circ \xi = c_1$ and $-a \circ \xi + a \circ z_1 \circ z_2 = c_2$. Then $\forall a, b, c \in B$ the following properties hold:

Example

A simple example of the above generic maps is the case where $z_1 \circ z_2 = \xi \circ 0 = z_2 \circ z_1$, then $c_1 = c_2 = 1$.

Having showed the fundamental properties we prove the following theorem.

Theorem

Let $(B, \circ, +)$ be a near brace and $z \in B$ such that $\exists c_{1,2}, \forall a, b, c \in B$, $(a - b + c) \circ z_i = a \circ z_i - b \circ z_i + c \circ z_i, i \in \{1, 2\}, a \circ z_2 \circ z_1 - a \circ \xi = c_1$. We define a map $\check{r} : B \times B \to B \times B$ given by

$$\check{r}(a,b) = (\sigma^p_a(b), \tau^p_b(a)),$$

where $\sigma_a^p(b) = a \circ b \circ z_1 - a \circ \xi + z_2$, $\tau_b^p(a) = \sigma_a^p(b)^{-1} \circ a \circ b$. The pair (B, \check{r}) is a solution of the braid equation.

The inverse: $\check{r}^*: (x, y) \mapsto (\hat{\sigma}_x^{\rho}(y), \hat{\tau}_y^{\rho}(x)), \ \hat{\sigma}_x^{\rho}(y) = \hat{z}_2 - x \circ \hat{\xi} + x \circ y \circ \hat{z}_1,$ $\hat{\tau}_x^{\rho}(y) = \hat{\sigma}_x^{\rho}(y)^{-1} \circ x \circ y,$ where $\hat{\xi} = \xi^{-1}, \ \hat{z}_{1,2} = z_{1,2} \circ \xi^{-1}.$

p-deformed braided groups and near braces

Motivated by Lu, Yan, & Zhu:

Definition

Let (G, \circ) be a group, $m(x, y) = x \circ y$ and \check{r} is an invertible map $\check{r} : G \times G \to G \times G$, s uch that $\forall x, y \in G$, $\check{r}(x, y) = (\sigma_x^p(y), \tau_y^p(x))$, where σ_x^p , τ_y^p are bijective maps in G. The map \check{r} is called a *p*-braiding operator (and the group is called *p*-braided) if

\$\$x \circ y = \sigma_{x}^{p}(y) \circ \tau_{y}^{p}(x)\$.
\$\$(id \times m) \texts t_{12} \texts t_{23}(x, y, w) = (f_{x \circ y}^{p}(w), f_{x \circ y}^{p}(w)^{-1} \circ x \circ y \circ w)\$.
\$\$(m \times id) \texts t_{23} \texts t_{12}(x, y, w) = (g_{x}^{p}(y \circ w), g_{x}^{p}(y \circ w)^{-1} \circ x \circ y \circ w)\$.
\$\$for some bijections \$f_{x}^{p}, g_{x}^{p} : G \rightarrow G\$, given \$\forall x \in G\$.

Proposition

Let (G, \circ) be a group, and the invertible map $\check{r}: G \times G \to G \times G, \forall x, y \in G, \check{r}(x, y) = (\sigma_x^p(y), \tau_y^p(x))$, be a *p*-braiding operator for the group *G*. Then \check{r} is a non-degenerate solution of the braid equation.

Lemma

Let B be a near brace, and consider the map $\check{r} : B \times B \to B \times B$, $\check{r}(x,y) = (\sigma_x^p(y), \tau_y^p(x))$ of Proposition 1. Then \check{r} is a p-braiding.

Set-theoretic solutions, matrix notation

- Let X be a set with n elements and ř_z : X × X → X × X be a set-theoretic solution of braid equation. Consider a free vector space V = CX of dimension equal to the cardinality of X. Let B = {e_x}_{x∈X} be the basis of V and B^{*} = {e^{*}_x}_{x∈X} be the dual basis: e^{*}_xe_y = δ_{x,y}.
- Let $f \in V \otimes V$ be $f = \sum_{x,y \in X} f(x,y)e_x \otimes e_y$, then $r_z : V \otimes V \to V \otimes V$, such that $(\check{r}_z f)(x,y) = f(\sigma_x^z(y), \tau_y^z(x)), \forall x, y \in X$:

The set-theoretic solution

$$\check{r} = \sum_{x,y \in X} e_{x,\sigma_x(y)} \otimes e_{y,\tau_y(x)}$$

where $e_{x,y}$ are defined as $e_{x,y} = e_x e_y^*$ and $e_x^* = e^T$ (T denotes transposition). $e_{x,y}$ is an $n \times n$ matrix with one identity entry in x-row and y-column, and zeros elsewhere, i.e ($e_{x,y}$)_{z,w} = $\delta_{x,z}\delta_{y,w}$.

The quantum algebra from skew braces

• FRT (Faddeev, Reshetikhin, Takhtajan) construction. Recall that given a solution of YBE, the quantum A algebra is defined:

Fundamental algebraic relation

$$\check{r}_{12} L_1 L_2 = L_1 L_2 \check{r}_{12}$$

$$\check{r}\in\mathsf{End}(\mathbb{C}^{\mathcal{N}}\otimes\mathbb{C}^{\mathcal{N}}),\ \ L\in\mathsf{End}(\mathbb{C}^{\mathcal{N}})\otimes\mathcal{A}.$$

Recall index notation: ř₁₂ = ř ⊗ 1_A

$$L_1 = \sum_{z,w \in X} e_{z,w} \otimes I \otimes L_{z,w}, \quad L_2 = \sum_{z,w \in X} I \otimes e_{z,w} \otimes L_{z,w}$$

The algebra

From the FRT relation:

$$L_{x,\hat{x}}L_{y,\hat{y}} = L_{\sigma_x(y),\sigma_{\hat{x}}(\hat{y})}L_{\tau_y(x),\tau_{\hat{y}}(\hat{x})}.$$

[Etingof, Shedler & Soloviev]

• The above algebra misleading! Alternative algebra: (quasi)-triangular Hopf algebra? No!...

Another quadratic algebra from skew braces

• Given a solution of YBE, another quadratic algebra Q algebra is defined:

Quadratic algebra

 $r_{12} q_1 q_2 = q_2 q_1$

$$r \in \operatorname{End}(\mathbb{C}^{\mathcal{N}} \otimes \mathbb{C}^{\mathcal{N}}), \ q \in \mathbb{C}^{\mathcal{N}} \otimes \mathcal{Q} \ (r = \mathcal{P}\check{r}).$$

• Recall index notation: $r_{12} = r \otimes 1_A$

$$q_1 = \sum_{z,w \in X} e_x \otimes I \otimes q_x, \quad q_2 = \sum_{x \in X} I \otimes e_x \otimes q_x$$

The algebra

From the quadratic algebra:

$$q_{x}q_{y}=q_{\sigma_{x}(y)}q_{\tau_{y}(x)}.$$

[Etingof, Shedler & Soloviev]

 The elements q_x ∀x ∈ X satisfy the Q algebraic relations and lead to a quasi-bialgebra!

Definition

[*Drineld*]. A quasi-bialgebra $(\mathcal{A}, \Delta, \epsilon, \Phi, c_r, c_l)$ is a unital associative algebra \mathcal{A} over some field k with the following algebra homomorphisms:

- the co-product $\Delta: \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$
- the co-unit $\epsilon : \mathcal{A} \to k$

together with the invertible element $\Phi \in \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}$ (the associator) and the invertible elements $c_l, c_r \in \mathcal{A}$ (unit constraints), such that:

Quasi-triangular quasi-bialgebras

- Recall, let $A = \sum_j a_j \otimes b_j \in \mathcal{A} \otimes \mathcal{A}$, then in the "index" notation we denote: $A_{12} := \sum_j a_j \otimes b_j \otimes 1$, $A_{23} := \sum_j 1 \otimes a_j \otimes b_j$ and $A_{13} := \sum_j a_j \otimes 1 \otimes b_j$.
- Let σ be "flip" map, such that $a \otimes b \mapsto b \otimes a \ \forall a, b \in \mathcal{A}$, then $\Delta^{(op)} := \sigma \circ \Delta$.

Definition

A quasi-bialgebra $(\mathcal{A}, \Delta, \epsilon, \Phi)$ is called quasi-triangular (or braided) if an invertible element $\mathcal{R} \in \mathcal{A} \otimes \mathcal{A}$ (universal *R*-matrix) exists, such that

2 (id
$$\otimes \Delta$$
) $\mathcal{R} = \Phi_{231}^{-1} \mathcal{R}_{13} \Phi_{213} \mathcal{R}_{12} \Phi_{123}^{-1}$

$$\textbf{3} \ \ (\Delta \otimes \mathsf{id})\mathcal{R} = \Phi_{312}\mathcal{R}_{13}\Phi_{132}^{-1}\mathcal{R}_{23}\Phi_{123}.$$

• We deduce: $(\epsilon \otimes id)\mathcal{R} = c_r^{-1}c_l$ and $(id \otimes \epsilon)\mathcal{R} = c_l^{-1}c_r$, and \mathcal{R} satisfies a non-associative version of the Yang-Baxter equation

 $\mathcal{R}_{12} \Phi_{312} \mathcal{R}_{13} \Phi_{132}^{-1} \mathcal{R}_{23} \Phi_{123} = \Phi_{321} \mathcal{R}_{23} \Phi_{231}^{-1} \mathcal{R}_{13} \Phi_{213} \mathcal{R}_{12}.$

- For $\Phi = 1 \otimes 1 \otimes 1$ ($c_r = c_l = 1$) one recovers the quasi-triangular bialgebra and the YBE!
- The main setup introduced in the following proposition will be central in proving key properties in the context of set-theoretic solutions.

Drinfeld twists

Usually in literature the constraint (ϵ ⊗ id)F = (id ⊗ ϵ)F = 1_A holds! We relax this constraint...Next a generalization of Drinfeld's findings [AD, Ghionis & Vlaar]:

Proposition

Let $(\mathcal{A}, \Delta, \epsilon, \Phi, \mathcal{R})$ be a quasi-triangular quasi-bialgebra and let $\mathcal{F} \in \mathcal{A} \otimes \mathcal{A}$ be an invertible element, such that

$$\begin{split} &\Delta_{\mathcal{F}}(a) = \mathcal{F}\Delta(a)\mathcal{F}^{-1}, \ \, \forall a \in \mathcal{A} \\ &\Phi_{\mathcal{F}}(\mathcal{F} \otimes 1)\big((\Delta \otimes \mathsf{id})\mathcal{F}\big) = (1 \otimes \mathcal{F})\big((\mathsf{id} \otimes \Delta)\mathcal{F}\big)\Phi \\ &\mathcal{R}_{\mathcal{F}} = \mathcal{F}^{(op)}\mathcal{R}\mathcal{F}^{-1}, \end{split}$$

where $\mathcal{F}^{(op)} := \sigma(\mathcal{F})$. Then $(\mathcal{A}, \Delta_{\mathcal{F}}, \epsilon, \Phi_{\mathcal{F}}, \mathcal{R}_{\mathcal{F}})$ is also a quasi-triangular quasi-bialgebra.

Prove the axioms of the quasi-triangular quasi-bialgebrac for the generic scenario: F = ∑_j f_j ⊗ g_j. Let v := ∑_j ε(f_j)g_j, w := ∑_j ε(g_j)f_j:
 (ε ⊗ id)F = v, (id ⊗ ε)F = w.

Lemma (Main Frame)

Let $(\mathcal{A}, \Delta, \epsilon, \Phi, \mathcal{R})$ and $(\mathcal{A}, \Delta_{\mathcal{F}}, \epsilon, \Phi_{\mathcal{F}}, \mathcal{R}_{\mathcal{F}})$ be quasi-triangular quasi-bialgebras and let the conditions of the Proposition hold. We recall also: $\mathcal{F}_{1,23} := (id \otimes \Delta)\mathcal{F}$, $\mathcal{F}_{12,3} := (\Delta \otimes id)\mathcal{F}$, then $\mathcal{F}_{21,3}\mathcal{R}_{12} = \mathcal{R}_{12}\mathcal{F}_{12,3}$, $\mathcal{F}_{1,32}\mathcal{R}_{23} = \mathcal{R}_{23}\mathcal{F}_{1,23}$. According to the Proposition we distinguish two cases:

If the associators satisfy

$$\Phi_{213}\mathcal{R}_{12} = \mathcal{R}_{12}\Phi_{123}, \qquad \Phi_{\mathcal{F}213}\mathcal{R}_{12} = \mathcal{R}_{12}\Phi_{\mathcal{F}123}, \tag{4}$$

and $\Phi_{\mathcal{F}}$ commutes with F_{12} , then the condition (4) can be re-expressed as $\mathcal{F}_{123} := \mathcal{F}_{23}\mathcal{F}_{1,23} = \mathcal{F}_{12}\mathcal{F}^*_{12,3}$, where $\mathcal{F}^*_{12.3} = \Phi_{\mathcal{F}}\mathcal{F}_{12,3}\Phi^{-1}$. We also deduce that $\mathcal{F}^*_{21,3}\mathcal{R}_{12} = \mathcal{R}_{12}\mathcal{F}^*_{12,3}$.

If the associator satisfies

$$\Phi_{132}\mathcal{R}_{23} = \mathcal{R}_{23}\Phi_{123}, \qquad \Phi_{\mathcal{F}_{132}}\mathcal{R}_{23} = \mathcal{R}_{23}\Phi_{\mathcal{F}_{123}}, \tag{5}$$

and $\Phi_{\mathcal{F}}$ commutes with F_{23} , then then condition (4) is re-expressed as $\mathcal{F}_{123} := \mathcal{F}_{23}\mathcal{F}^*_{1,23} = \mathcal{F}_{12}\mathcal{F}_{12,3}$, where $\mathcal{F}^*_{1,23} = \Phi_{\mathcal{F}}^{-1}\mathcal{F}_{1,23}\Phi$. We also deduce that $\mathcal{F}^*_{1,32}\mathcal{R}_{23} = \mathcal{R}_{23}\mathcal{F}^*_{1,23}$.

[AD, Ghionis & Vlaar] & [AD, & Rybolowicz]

▲ 臣 ▶ | ▲ 臣 ▶

Drinfeld Twist

[AD & Smoktunowicz], [AD] . Let $\check{r} = \sum_{x,y \in X} e_{x,\sigma_x(y)} \otimes e_{y,\tau_y(x)}$ be the set-theoretic solution of the braid YBE, \mathcal{P} is the permutation operator and \hat{V}_k , V_k are their respective eigenvectors. Let $F^{-1} = \sum_{k=1}^{n^2} \hat{V}_k \ V_k^T$ be the similarity transformation (twist), such that $\check{r} = F^{-1}\mathcal{P}F$. Then the twist can be explicitly expressed as $F = \sum_{x \in X} e_{x,x} \otimes \mathbb{V}_x$, where we define $\mathbb{V}_x = \sum_{y \in X} e_{\sigma_x(y),y}$.

- The twist is not uniquely defined, for instance an alternative twist is $\hat{F} = \sum_{x,y \in X} e_{\tau_y(x),x} \otimes e_{y,y} = \sum_y \mathbb{W}_y \otimes e_{y,y}.$
- Note: The matrices \mathbb{V}_x and \mathbb{W}_x^T (^T denotes transposition), are *n*-dimensional representations of \mathcal{Q} , i.e. $q_x \mapsto \mathbb{U}_x$, where $\mathbb{U}_x \in \{\mathbb{V}_x, \mathbb{W}_x^T\}$,
- Both twists are still admissible in the case of non-involutive, invertible solutions.

The twisted *r*-matrix

Lemma

Let $\check{r}: V \otimes V \to V \otimes V$ be the set-theoretic solution of the braid equation. Let also $\mathbb{V}_x = \sum_{y \in X} e_{\sigma_x(y),y}$ and $\mathbb{W}_x = \sum_{\eta \in X} e_{\tau_x(\eta),\eta}, \forall x \in X$, with coproducts defined. Then $\Delta_{\mathcal{T}}(\mathbb{Y}_x)\check{r}_{\mathcal{T}} = \check{r}_{\mathcal{T}}\Delta_{\mathcal{T}}(\mathbb{Y}_x)$, where $\mathbb{Y}_x \in \{\mathbb{V}_x, \mathbb{W}_x\}, \mathcal{T} \in \{F, \hat{F}\}$,

$$\Delta_{\mathcal{F}}(\mathbb{V}_{x}) = \mathbb{V}_{x} \otimes \mathbb{V}_{x}, \quad \Delta_{\mathcal{F}}(\mathbb{W}_{y}) = \sum_{\eta, x \in X} e_{\tau_{\sigma_{x}(y)}(\eta), \eta} \otimes e_{\tau_{\sigma_{\tau_{x}}(\eta)}(y)(\sigma_{\eta}(x)), \sigma_{\eta}(x)}$$

$$\Delta_{\hat{F}}(\mathbb{V}_{\eta}) = \sum_{x,y \in X} e_{\sigma_{\tau_{\sigma_{x}}(y)}(\eta)(\tau_{y}(x)), \tau_{y}(x)} \otimes e_{\sigma_{\tau_{x}(\eta)}(y), y} \quad \Delta_{\hat{F}}(\mathbb{W}_{y}) = \mathbb{W}_{y} \otimes \mathbb{W}_{y}$$

and the twisted matrices read as

$$\check{r}_F = \sum_{x,y \in X} e_{x,\sigma_x(y)} \otimes e_{\sigma_x(y),\sigma_{\sigma_x(y)}(\tau_y(x))} \quad \& \quad \check{r}_{\hat{F}} = \sum_{x,y \in X} e_{\tau_y(x),\tau_{\tau_y(x)}(\sigma_x(y))} \otimes e_{y,\tau_y(x)}.$$

[AD & Rybolowicz]

Involutive case: $\check{r}_F = \check{r}_F = \mathcal{P}$. Baxterization $\check{R}(\lambda) = \lambda \check{r} + \mathcal{P}$ and relation with Yangian [*AD*, *Ghionis & Vlaar*] (extended the results of [*Etingof, Shedler & Soloviev*]).

- Focus on $\check{r}_F = \sum_{x,y \in X} e_{x,y} \otimes e_{y,y \triangleright x}$, where $y \triangleright x = \sigma_y(\hat{\sigma}_{y^{-1}}(x))$ and (X, \triangleright) is a rack, i.e. \triangleright is self distributive. (Relations to racks and quandles)
- Quadratic algebra from $r_F(q \otimes 1)(1 \otimes q) = (1 \otimes q)(q \otimes 1)$: $q_X q_y = q_y q_{y \triangleright x}$.

- Study of the quantum group associated to the derived solution....Hopf-algebra?
- Solve eigenvalue problem for non-involutive solutions of the YBE. Challenging problem that will provide valuable info on multiplicities and hence associated symmetries.
- Ultimate goal: Identify spectrum and eigenstates of local Hamiltonians (quantum systems) constructed from set-theoretic solutions. Key point: Use of Drinfeld twists! Use info gained from the study of symmetries: spectrum multiplicities.
- Next challenging problem: universal *R*-matrix!