Near braces, p-deformed braided groups \& quasi-bialgebras

Anastasia Doikou

Heriot-Watt University

Lecce, June 2023

- A.D., J. Phys. A54 (2021) 415201
A.D., A. Ghionis \& B. Vlaar, Lett. Math. Phys. (2022)
A.D. \& B. Rybolowicz, arXiv:2204.11580 (2022)
A.D. \& B. Rybolowicz, arXiv:2204.11580 (2023)
- YBE introduced: Yang, study of N particle in δ potential \& Baxter, study of XYZ model.
- YBE and the R-matrix are the quantum analogues of the classical YBE and the classical r-matrix (Sklyanin bracket) [Semenof-Tjian-Shanski Sklyanin], classical intergrable systems.
- Fundamental equ. in QISM formulation [Faddeev, Tahktajan, Kulish, Sklyanin, Reshetikhin....] \& quantum algebras (deformed Lie algebras) [Drinfeld, Jimbo].
- Solving YBE: e.g. using braids and Hecke algebras Baxterization [Jimbo], or using linear intertwining relations (quantum group symmetry) [Kulish].
- [Drinfeld] introduced the "Set-theoretic YBE".
- [Hietarinta] first classification of set-theoretic solutions of YBE. [Etingof, Shedler \& Soloviev] set theoretical solutions \& quantum groups for param. free R-matrices.
- Connections to: geometric crystals [Berenstein \& Kazhdan, Etingof] and cellular automatons [Hatayama, Kuniba \& Takagi].
- Classical discrete integrable systems (YB maps), quad-graph, discrete maps: [Veselov, Bobenko, Suris, Papageorgiou, Tongas,...]
- Set theoretical involutive solutions of YBE from braces:
[Rump, Guarnieri, Vendramin, Gateva-Ivanova, Cedó, Jespers, Okniński, Smoktunowicz,...]
(1) We recall basic definitions and results about braces and set-theoretic solutions of the Yang-Baxter equation. We introduce slightly generalized algebraic structures called near-braces associated to solutions of the YBE. Starting from set theoretic solutions with extra fixed parameters, we reconstruct the near brace ($A D$, Rybolowicz) and vise versa. The notion of the p-deformed braided groups is also introduced leading to generalized solutions of the YBE.
(2) We recall the definitions of the quasi bi-algebra and we then move on to study the quantum algebra associated to set-theoretic solutions of the YBE (Etingof, Shedler, Soloviev). The quantum algebra is a quasi bialgebra \& the set-theoretic solutions are obtained via an admissible Drinfeld twist from a derived solution (AD, Ghionis, Vlaar; AD, Rybolowicz; AD).

Set-theoretic solutions of thel YBE

- Let a set $X=\left\{x_{1}, \ldots, x_{\mathcal{N}}\right\}$ and $\check{r}: X \times X \rightarrow X \times X$. Denote

$$
\check{r}(x, y)=\left(\sigma_{x}(y), \tau_{y}(x)\right)
$$

(1) (X, \check{r}) non-degenerate: σ_{x} and τ_{y} are bijective functions
(2) (X, \check{r}) involutive: $\check{r}\left(\sigma_{x}(y), \tau_{y}(x)\right)=(x, y),(\breve{r} \check{r}(x, y)=(x, y))$

- Suppose (X, \check{r}) is an involutive, non-degenerate set-theoretic solution of the Braid equation:

Braid equation

$$
\left(\check{r} \times I d_{X}\right)\left(I d_{X} \times \check{r}\right)\left(\check{r} \times I d_{X}\right)=\left(I d_{X} \times \breve{r}\right)\left(\check{r} \times I d_{X}\right)\left(I d_{X} \times \check{r}\right) .
$$

YBE solutions from braces

Definition (Rump; Guarnieri \& Vendramin)

A left skew brace is a set B together with two group operations $+, 0: B \times B \rightarrow B$, the first is called addition and the second is called multiplication, such that $\forall a, b, c \in B$,

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

If + is an abelian group operation B is called a left brace. Moreover, if B is a left skew brace and $\forall a, b, c \in B(b+c) \circ a=b \circ a-a+c \circ a$, then B is called a skew brace. Analogously if + is abelian and B is a skew brace, then B is called a brace.

- The additive identity of a left skew brace B will be denoted by 0 and the multiplicative identity by 1 . In every left skew brace $0=1$.

Theorem (Rump)

Let $(B,+, o)$ be a brace and for $x, y \in B$ define $\check{r}(x, y)=\left(\sigma_{x}(y), \tau_{y}(x)\right)$, the $Y B$ map of $(B,+, \circ)$:

$$
\sigma_{x}(y)=x \circ y-x, \quad \tau_{y}(x)=\left(\sigma_{x}(y)\right)^{-1} \circ x-\left(\sigma_{x}(y)\right)^{-1}
$$

Then (B, r) is a non-degenerate, involutive solution of the set-theoretic YBE.
Conversely, for every non-degenerate, involutive solution of the set-theoretic YBE (X, \check{r}) there is a brace $(B,+, \circ): X \subseteq B$ and \check{r} is the restriction of the $Y B$ map of $(B,+, \circ)$ to $X \times X$.

- See also [Cedo, Jespers, Okninski].
- Guarnieri \& Vendramin generalized Rump's results for non-involutive, non-degenerate, set-theoretic solutions using skew braces.

Extended non-involutive solutions from (skew) braces

- A generalized version of the set-theoretic solution via some kind of " z-deformation". Let $z \in X$ be fixed, then we denote

$$
\check{r}_{z}(x, y)=\left(\sigma_{x}^{z}(y), \tau_{y}^{z}(x)\right)
$$

\check{r} is non-degenerate if σ_{x}^{z} and τ_{y}^{z} are bijective maps.

- By requiring $\left(X, \check{r}_{z}\right)$ to be a solution of the braid equation:

$$
(\check{r} \times \mathrm{id})(\mathrm{id} \times \check{r})(\check{r} \times \mathrm{id})=(\mathrm{id} \times \check{r})(\check{r} \times \mathrm{id})(\mathrm{id} \times \check{r})
$$

we obtain the fundamental constraints:

$$
\begin{align*}
& \sigma_{\eta}^{z}\left(\sigma_{x}^{z}(y)\right)=\sigma_{\sigma_{\eta}^{z}(x)}^{z}\left(\sigma_{\tau_{x}^{z}(\eta)}^{z}(y)\right) \tag{1}\\
& \tau_{y}^{z}\left(\tau_{x}^{z}(\eta)\right)=\tau_{\tau_{y}^{z}(x)}^{z}\left(\tau_{\sigma_{x}^{z}(y)}^{z}(\eta)\right) \tag{2}\\
& \tau_{\sigma_{\tau_{x}^{z}(\eta)}^{z}(y)}^{z}\left(\sigma_{\eta}^{z}(x)\right)=\sigma_{\tau_{\sigma_{x}^{z}(y)}^{z}(\eta)}\left(\tau_{y}^{z}(x)\right) \tag{3}
\end{align*}
$$

Extended non-involutive solutions from (skew) braces

Theorem

Let B be a left skew brace and $z \in B$ such that $\forall a, b, c \in B$, $(a-b+c) \circ z=a \circ z-b \circ z+c \circ z$. Then we can define a map $\check{r}_{z}: B \times B \rightarrow B \times B$ given by

$$
\check{r}_{z}(a, b)=\left(\sigma_{a}^{z}(b), \tau_{b}^{z}(a)\right):=\left(a \circ b-a \circ z+z,(a \circ b-a \circ z+z)^{-1} \circ a \circ b\right),
$$

where $(a \circ b-a \circ z+z)^{-1}$ is the inverse in the group (B, \circ). The pair (B, \check{r}) is a solution of the braid equation.

Proof. IShow that the maps σ^{z}, τ^{z} satisfy the constraints (1)-(3) [AD \& Rybolowicz].
(1) Remark. We note that $\sigma_{x}^{z}, \tau_{y}^{z}$ as defined in the Theorem are bijections and thus \check{r} is non-degenerate.
(2) Remark. For $z=1$, Guarnieri-Vedramin skew braces are recovered; if in addition $(B,+)$ is an abelian group Rump's braces are recovered and $\check{r}_{z=1}$ becomes involutive $\left(\sigma_{\sigma_{x}^{z}(y)}^{z}\left(\tau_{y}^{z}(x)\right)=x\right.$ and $\left.\tau_{\tau_{y}^{z}(x)}^{z}\left(\sigma_{x}^{z}(y)\right)=y\right)$. For $z \neq 1$ the solutions are not involutive in general, even in the case of braces. ${ }^{* *} \sigma_{x}$ is a group action but τ_{y} is not!!

- The explicit expressions of the inverse \check{r}_{z}-matrices \& the bijective maps:

Proposition

Let $\breve{r}_{z}, \breve{r}_{2}^{*}: X \times X$ be solutions of the braid equations, such that $\check{r}^{*}:(x, y) \mapsto\left(\hat{\sigma}_{x}^{z}(y), \hat{\tau}_{y}^{z}(x)\right), \check{r}:(x, y) \mapsto\left(\sigma_{x}^{z}(y), \tau_{y}^{z}(x)\right)$.
(1) $\check{r}^{*}=\check{r}^{-1}$ if and only if

$$
\hat{\sigma}_{\sigma_{x}^{z}(y)}^{z}\left(\tau_{y}^{z}(x)\right)=x, \hat{\tau}_{\tau_{y}^{z}(x)}^{z}\left(\sigma_{x}^{z}(y)\right)=y, \sigma_{\hat{\sigma}_{x}^{z}(y)}^{z}\left(\hat{\tau}_{y}^{z}(x)\right)=x, \tau_{\tau_{y}^{z}(x)}^{z}\left(\hat{\sigma}_{x}^{z}(y)\right)=y .
$$

(2) If $\sigma_{x}^{z}(y)=x \circ y-x \circ z+z, \tau_{y}^{z}(x)=\sigma_{x}^{z}(y)^{-1} \circ x \circ y$, then $\hat{\sigma}_{x}^{z}(y)=-x \circ z^{-1}+x \circ y \circ z^{-1}, \quad \hat{\tau}_{x}^{z}(y)=\hat{\sigma}_{x}^{z}(y)^{-1} \circ x \circ y$.

Examples

Example (1)

Let us consider a set Odd $:=\left\{\left.\frac{2 n+1}{2 k+1} \right\rvert\, n, k \in \mathbb{Z}\right\}$ together with two binary operations $(a, b) \stackrel{+1}{\longmapsto} a-1+b$ and $(a, b) \stackrel{\circ}{\longmapsto} a \cdot b$, where,$+ \cdot$ are addition and multiplication of rational numbers, respectively. The triple ($\operatorname{Odd},{ }_{1}, \circ$) is a brace. The solution \breve{r}_{z} is involutive if and only if $a \cdot b-a \cdot z+z=a \cdot b-a+1$ if and only if
$(z-1) \cdot(1-a)=0, \forall a, b \in B$. Therefore, $\forall z \neq 1, \check{r}_{z}$ is non-involutive. Moreover, $\check{r}_{z}=\breve{r}_{w}$ if and only if $-a \cdot z+z=-a \cdot w+w$, that is if $z=w$.

Example (2)

Let us consider a ring $\mathbb{Z} / 8 \mathbb{Z}$. A triple

$$
\left(\mathrm{OM}:=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, d \in\{1,3,5,7\}, b, c \in\{0,2,4,6\}\right\},+_{\mathbb{I}}, \circ\right)
$$

is a brace, where $(A, B) \stackrel{{ }_{\mathbb{I}}}{\longmapsto} A-\mathbb{I}+B,(A, B) \stackrel{\circ}{\longmapsto} A \cdot B$, and,$+ \cdot$ are addition and multiplication of two by two matrices over $\mathbb{Z} / 8 \mathbb{Z}$, respectively. Moreover one can easily check that two solutions \check{r}_{A} and \check{r}_{B} are equal if and only if $(D-\mathbb{I}) \cdot(B-A)=0$ $(\bmod 8) \forall D \in \mathrm{OM}$.

The examples above are inspired by works on trusses, paragons...: [Brzezinski], [Brzezinski \& Rybolowicz].

- Let X be a set with a group operation $\circ: X \times X \rightarrow X$, with a neutral element $1 \in X$ and an inverse $x^{-1} \in X, \forall x \in X$. Let $\sigma_{x}^{z}: X \rightarrow X$, be a family of bijective functions: $y \mapsto \sigma_{x}^{z}(y)$, where $z \in X$ is some fixed parameter. We define another binary operation $+: X \times X \rightarrow X$, such that

$$
y+x:=x \circ \sigma_{x-1}^{z}(y \circ z) \circ z^{-1}
$$

For convenience we will omit henceforth the fixed $z \in X$ in $\sigma_{x}^{z}(y)$. We assume that + is associative.

- Focus on non-degenerate, invertible solutions \check{r} and σ_{x} and τ_{y} are bijections:

$$
\sigma_{x}^{-1}\left(\sigma_{x}(y)\right)=\sigma_{x}\left(\sigma_{x}^{-1}(y)\right)=y, \quad \tau_{y}^{-1}\left(\tau_{y}(x)\right)=\tau_{y}\left(\tau_{y}^{-1}(x)\right)=x
$$

- Let $\check{r}^{-1}(x, y)=\left(\hat{\sigma}_{x}(y), \hat{\tau}_{y}(x)\right)$ exist with $\hat{\sigma}_{x}, \hat{\tau}_{y}$ being also bijections:

$$
\begin{gathered}
\sigma_{\hat{\sigma}_{x}(y)}\left(\hat{\tau}_{y}(x)\right)=x=\hat{\sigma}_{\sigma_{x}(y)}\left(\tau_{y}(x)\right), \quad \tau_{\hat{\tau}_{y}(x)}\left(\hat{\sigma}_{x}(y)\right)=y=\hat{\tau}_{\tau_{y}(x)}\left(\sigma_{x}(y)\right) \\
\hat{\sigma}_{\sigma_{x}(y)}^{-1}(x)=\tau_{y}(x), \quad \hat{\tau}_{\tau_{y}(x)}^{-1}(y)=\sigma_{x}(y)
\end{gathered}
$$

- Assume that $\hat{\sigma}$ has the general form

$$
\hat{\sigma}_{x}(y):=x \circ\left(x^{-1} \circ z_{2}+y \circ z_{1}\right) \circ \xi,
$$

the parameters $z_{1,2}, \xi$ to be identified.

Near-braces

- Useful Lemmas:

Lemma 1

For all $x \in X$, the operations $+x, x+: X \rightarrow X$ are bijections.

- We now introduce the notion of a neutral elements in $(X,+)$

Lemma 2

Let $(X,+)$ be a semigroup, then $\forall x \in X, \exists 0_{x} \in X$, such that $0_{x}+x=x$. Moreover, $\forall x, y \in X, 0_{x}=0_{y}=0$, i.e. 0 is the unique left neutral element. The left neutral element 0 is also right neutral element.

Lemma 3

Let 0 be the neutral element in $(X,+)$, then $\forall x \in X, \exists-x \in X$, such that $-x+x=0$ (left inverse). Moreover, $-x \in X$ is a right inverse, i.e. $x+(-x)=0$ $\forall x \in X$. That is $(X,+, 0)$ is a group.

Theorem

Let (X, \circ) be a group and $\check{r}: X \times X \rightarrow X \times X$ be such that $\check{r}(x, y)=\left(\sigma_{x}(y), \tau_{x}(y)\right)$ is a non-degenerate solution of the set-theoretic braid equation. Moreover, we assume that:
(A) The pair $(X,+)$ (+ as defined) is a group.
(B) There exists $\phi: X \rightarrow X$ such that for all $a, b, c \in X$
$a \circ(b+c)=a \circ b+\phi(a)+a \circ c$.
(c) For $h \in\{z, \xi\} \in X$ appearing in $\sigma_{x}(y)$ and $\hat{\sigma}_{x}(y)$ there exist $\widehat{\phi}: X \rightarrow X$ such that for all $a, b \in X(a+b) \circ h=a \circ h+\widehat{\phi}(h)+b \circ h$.
(D) The neutral element 0 of $(X,+)$ has a left and right distributivity.

Then for all $a, b, c \in X$ the following statements hold:
(1) $\phi(a)=-a \circ 0$ and $\widehat{\phi}(h)=-0 \circ h$,
(2) $\sigma_{a}(b)=\left(a \circ b \circ z^{-1}-a \circ 0+1\right) \circ z=a \circ b-a \circ 0 \circ z+z$.
(3) $a-a \circ 0=1$ and (i) $0 \circ 0=-1$ (ii) $1+1=0^{-1}$.
(4) If $z_{2} \circ \xi=0^{-1}, 0 \circ \xi=z_{1} \circ \xi=z^{-1} \circ 0^{-1}$, then (i)

$$
\hat{\sigma}_{a}(b) \circ \hat{\tau}_{b}(a)=a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a) \text { (ii) }-a \circ 0+a=1
$$

Near-braces

- Remark. Due to $a-a \circ 0=-a \circ 0+a=1, \forall a \in B$, we deduce that $a+1=1+a, \forall a \in B$.

Definition

A near brace is a set B together with two group operations $+, \circ: B \times B \rightarrow B$, the first is called addition and the second is called multiplication, such that $\forall a, b, c \in B$,

$$
a \circ(b+c)=a \circ b-a \circ 0+a \circ c,
$$

and $a-a \circ 0=-a \circ 0+a=1$. We denote by 0 the neutral element of the $(B,+)$ group and by 1 the neutral element of the (B, \circ) group. We say that a near brace B is an abelian near brace if + is abelian.

- In the special case where $0=1$, we recover a skew brace.

Example

Let (B, \circ) be a group with neutral element 1 and define $a+b:=a \circ \kappa^{-1} \circ b$, where $1 \neq \kappa \in B$ is an element of the center of (B, \circ). Then $(B, \circ,+)$ is a near brace with neutral element $0=\kappa$, and we call it the trivial near brace. Thanks to Paola!

Parametric maps \& solutions of the braid equation

Proposition

Let $(B, \circ,+)$ be a near brace and let us denote $\sigma_{a}^{p}(b):=a \circ b \circ z_{1}-a \circ \xi+z_{2}$ and $\tau_{b}^{p}(a):=\sigma_{a}^{p}(b)^{-1} \circ a \circ b$, where $a, b \in B$, and $h \in\left\{\xi, z_{i}\right\} \in B, i \in\{1,2\}$ are fixed parameters, such that $\exists c_{1,2} \in B, \forall a, b, c \in B,(a-b+c) \circ h=a \circ h-b \circ h+c \circ h$, $a \circ z_{2} \circ z_{1}-a \circ \xi=c_{1}$ and $-a \circ \xi+a \circ z_{1} \circ z_{2}=c_{2}$. Then $\forall a, b, c \in B$ the following properties hold:
(1) $\sigma_{a}^{p}(b) \circ \tau_{b}^{p}(a)=a \circ b$.
(2) $\sigma_{a}^{p}\left(\sigma_{b}^{p}(c)\right)=a \circ b \circ c \circ z_{1} \circ z_{1}-a \circ b \circ \xi \circ z_{1}+c_{1}+z_{2}$.
(3) $\sigma_{a}^{p}(b) \circ \sigma_{\tau_{b}^{p}(a)}^{p}(c)=a \circ b \circ c \circ z_{1}+c_{2}-a \circ \xi \circ z_{2}+z_{2} \circ z_{2}$.

Parametric maps \& solutions of the braid equation

Example

A simple example of the above generic maps is the case where $z_{1} \circ z_{2}=\xi \circ 0=z_{2} \circ z_{1}$, then $c_{1}=c_{2}=1$.

Having showed the fundamental properties we prove the following theorem.

Theorem

Let $(B, o,+)$ be a near brace and $z \in B$ such that $\exists c_{1,2}, \forall a, b, c \in B$, $(a-b+c) \circ z_{i}=a \circ z_{i}-b \circ z_{i}+c \circ z_{i}, i \in\{1,2\}, a \circ z_{2} \circ z_{1}-a \circ \xi=c_{1}$. We define a map ř: $B \times B \rightarrow B \times B$ given by

$$
\check{r}(a, b)=\left(\sigma_{a}^{p}(b), \tau_{b}^{p}(a)\right),
$$

where $\sigma_{a}^{p}(b)=a \circ b \circ z_{1}-a \circ \xi+z_{2}, \tau_{b}^{p}(a)=\sigma_{a}^{p}(b)^{-1} \circ a \circ b$. The pair (B, \check{r}) is a solution of the braid equation.

The inverse: $\check{r}^{*}:(x, y) \mapsto\left(\hat{\sigma}_{x}^{p}(y), \hat{\tau}_{y}^{p}(x)\right), \hat{\sigma}_{x}^{p}(y)=\hat{z}_{2}-x \circ \hat{\xi}+x \circ y \circ \hat{z}_{1}$, $\hat{\tau}_{x}^{p}(y)=\hat{\sigma}_{x}^{p}(y)^{-1} \circ x \circ y$, where $\hat{\xi}=\xi^{-1}, \hat{z}_{1,2}=z_{1,2} \circ \xi^{-1}$.

p-deformed braided groups and near braces

Motivated by Lu, Yan, \& Zhu:

Definition

Let (G, \circ) be a group, $m(x, y)=x \circ y$ and \check{r} is an invertible map $\check{r}: G \times G \rightarrow G \times G$, s uch that $\forall x, y \in G, \check{r}(x, y)=\left(\sigma_{x}^{p}(y), \tau_{y}^{p}(x)\right)$, where $\sigma_{x}^{p}, \tau_{y}^{p}$ are bijective maps in G. The map \check{r} is called a p-braiding operator (and the group is called p-braided) if
(1) $x \circ y=\sigma_{x}^{p}(y) \circ \tau_{y}^{p}(x)$.
(2) (id $\times m$) $\check{r}_{12} \check{r}_{23}(x, y, w)=\left(f_{x \circ y}^{p}(w), f_{x \circ y}^{p}(w)^{-1} \circ x \circ y \circ w\right)$.
(3) $(m \times \mathrm{id}) \check{r}_{23} \check{r}_{12}(x, y, w)=\left(g_{x}^{p}(y \circ w), g_{x}^{p}(y \circ w)^{-1} \circ x \circ y \circ w\right)$. for some bijections $f_{x}^{p}, g_{x}^{p}: G \rightarrow G$, given $\forall x \in G$.

Proposition

Let (G, \circ) be a group, and the invertible map $\check{r}: G \times G \rightarrow G \times G, \forall x, y \in G$, $\breve{r}(x, y)=\left(\sigma_{x}^{p}(y), \tau_{y}^{p}(x)\right)$, be a p-braiding operator for the group G. Then \check{r} is a non-degenerate solution of the braid equation.

Lemma

Let B be a near brace, and consider the map $\check{r}: B \times B \rightarrow B \times B$, $\breve{r}(x, y)=\left(\sigma_{x}^{p}(y), \tau_{y}^{p}(x)\right)$ of Proposition 1. Then \check{r} is a p-braiding.

Set-theoretic solutions, matrix notation

- Let X be a set with n elements and $\check{r}_{z}: X \times X \rightarrow X \times X$ be a set-theoretic solution of braid equation. Consider a free vector space $V=\mathbb{C} X$ of dimension equal to the cardinality of X. Let $\mathbb{B}=\left\{e_{x}\right\}_{x \in X}$ be the basis of V and $\mathbb{B}^{*}=\left\{e_{x}^{*}\right\}_{x \in X}$ be the dual basis: $e_{x}^{*} e_{y}=\delta_{x, y}$.
- Let $f \in V \otimes V$ be $f=\sum_{x, y \in X} f(x, y) e_{x} \otimes e_{y}$, then $r_{z}: V \otimes V \rightarrow V \otimes V$, such that $\left(\breve{r}_{z} f\right)(x, y)=f\left(\sigma_{x}^{z}(y), \tau_{y}^{z}(x)\right), \forall x, y \in X$:

The set-theoretic solution

$$
\check{r}=\sum_{x, y \in X} e_{x, \sigma_{x}(y)} \otimes e_{y, \tau_{y}(x)}
$$

where $e_{x, y}$ are defined as $e_{x, y}=e_{x} e_{y}^{*}$ and $e_{x}^{*}=e^{T}$ (${ }^{T}$ denotes transposition). $e_{x, y}$ is an $n \times n$ matrix with one identity entry in x-row and y-column, and zeros elsewhere, i.e $\left(e_{x, y}\right)_{z, w}=\delta_{x, z} \delta_{y, w}$.

The quantum algebra from skew braces

- FRT (Faddeev, Reshetikhin, Takhtajan) construction. Recall that given a solution of YBE, the quantum \mathcal{A} algebra is defined:

Fundamental algebraic relation

$$
\check{r}_{12} L_{1} L_{2}=L_{1} L_{2} \check{r}_{12}
$$

```
r}\in\operatorname{End}(\mp@subsup{\mathbb{C}}{}{\mathcal{N}}\otimes\mp@subsup{\mathbb{C}}{}{\mathcal{N}}),\quadL\in\operatorname{End}(\mp@subsup{\mathbb{C}}{}{\mathcal{N}})\otimes\mathcal{A}
```

- Recall index notation: $\breve{r}_{12}=\check{r} \otimes 1_{\mathcal{A}}$

$$
L_{1}=\sum_{z, w \in X} e_{z, w} \otimes I \otimes L_{z, w}, \quad L_{2}=\sum_{z, w \in X} I \otimes e_{z, w} \otimes L_{z, w}
$$

The algebra

From the FRT relation:

$$
L_{x, \hat{x}} L_{y, \hat{y}}=L_{\sigma_{x}(y), \sigma_{\hat{x}}(\hat{y})} L_{\tau_{y}(x), \tau_{\hat{y}}(\hat{x})} .
$$

[Etingof, Shedler \& Soloviev]

- The above algebra misleading! Alternative algebra: (quasi)-triangular Hopf algebra? No!...

Another quadratic algebra from skew braces

- Given a solution of YBE, another quadratic algebra \mathcal{Q} algebra is defined:

Quadratic algebra

$$
r_{12} q_{1} q_{2}=q_{2} q_{1}
$$

$$
r \in \operatorname{End}\left(\mathbb{C}^{\mathcal{N}} \otimes \mathbb{C}^{\mathcal{N}}\right), \quad q \in \mathbb{C}^{\mathcal{N}} \otimes \mathcal{Q}(r=\mathcal{P} \check{r})
$$

- Recall index notation: $r_{12}=r \otimes 1_{\mathcal{A}}$

$$
q_{1}=\sum_{z, w \in X} e_{x} \otimes I \otimes q_{x}, \quad q_{2}=\sum_{x \in X} I \otimes e_{x} \otimes q_{x}
$$

The algebra

From the quadratic algebra:

$$
q_{x} q_{y}=q_{\sigma_{x}(y)} q_{\tau_{y}(x)}
$$

[Etingof, Shedler \& Soloviev]

- The elements $q_{x} \forall x \in X$ satisfy the \mathcal{Q} algebraic relations and lead to a quasi-bialgebra!

Quasi-bialgebras

Definition

[Drineld]. A quasi-bialgebra $\left(\mathcal{A}, \Delta, \epsilon, \Phi, c_{r}, c_{l}\right)$ is a unital associative algebra \mathcal{A} over some field k with the following algebra homomorphisms:

- the co-product $\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$
- the co-unit $\epsilon: \mathcal{A} \rightarrow k$
together with the invertible element $\Phi \in \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}$ (the associator) and the invertible elements $c_{l}, c_{r} \in \mathcal{A}$ (unit constraints), such that:
(1) $(\mathrm{id} \otimes \Delta) \Delta(a)=\Phi((\Delta \otimes \mathrm{id}) \Delta(a)) \Phi^{-1}, \forall a \in \mathcal{A}$.
(2) $((\mathrm{id} \otimes \mathrm{id} \otimes \Delta) \Phi)((\Delta \otimes \mathrm{id} \otimes \mathrm{id}) \Phi)=(1 \otimes \Phi)((\mathrm{id} \otimes \Delta \otimes \mathrm{id}) \Phi)(\Phi \otimes 1)$.
(3) $(\epsilon \otimes \mathrm{id}) \Delta(a)=c_{l}^{-1} a c_{l}$ and $(\mathrm{id} \otimes \epsilon) \Delta(a)=c_{r}^{-1} a c_{r}, \forall a \in \mathcal{A}$.
(4) (id $\otimes \epsilon \otimes \mathrm{id}) \Phi=c_{r} \otimes c_{l}^{-1}$.

Quasi-triangular quasi-bialgebras

- Recall, let $A=\sum_{j} a_{j} \otimes b_{j} \in \mathcal{A} \otimes \mathcal{A}$, then in the "index" notation we denote: $A_{12}:=\sum_{j} a_{j} \otimes b_{j} \otimes 1, A_{23}:=\sum_{j} 1 \otimes a_{j} \otimes b_{j}$ and $A_{13}:=\sum_{j} a_{j} \otimes 1 \otimes b_{j}$.
- Let σ be "flip" map, such that $a \otimes b \mapsto b \otimes a \forall a, b \in \mathcal{A}$, then $\Delta^{(o p)}:=\sigma \circ \Delta$.

Definition

A quasi-bialgebra $(\mathcal{A}, \Delta, \epsilon, \Phi)$ is called quasi-triangular (or braided) if an invertible element $\mathcal{R} \in \mathcal{A} \otimes \mathcal{A}$ (universal R-matrix) exists, such that
(1) $\Delta^{(o p)}(a) \mathcal{R}=\mathcal{R} \Delta(a), \forall a \in \mathcal{A}$.
(2) (id $\otimes \Delta) \mathcal{R}=\Phi_{231}^{-1} \mathcal{R}_{13} \Phi_{213} \mathcal{R}_{12} \Phi_{123}^{-1}$.
(3) $(\Delta \otimes \mathrm{id}) \mathcal{R}=\Phi_{312} \mathcal{R}_{13} \Phi_{132}^{-1} \mathcal{R}_{23} \Phi_{123}$.

Quasi-bialgebras

- We deduce: $(\epsilon \otimes \mathrm{id}) \mathcal{R}=c_{r}^{-1} c_{l}$ and $(\mathrm{id} \otimes \epsilon) \mathcal{R}=c_{l}^{-1} c_{r}$, and \mathcal{R} satisfies a non-associative version of the Yang-Baxter equation

$$
\mathcal{R}_{12} \Phi_{312} \mathcal{R}_{13} \Phi_{132}^{-1} \mathcal{R}_{23} \Phi_{123}=\Phi_{321} \mathcal{R}_{23} \Phi_{231}^{-1} \mathcal{R}_{13} \Phi_{213} \mathcal{R}_{12}
$$

- For $\Phi=1 \otimes 1 \otimes 1\left(c_{r}=c_{l}=1\right)$ one recovers the quasi-triangular bialgebra and the YBE!
- The main setup introduced in the following proposition will be central in proving key properties in the context of set-theoretic solutions.

Drinfeld twists

- Usually in literature the constraint $(\epsilon \otimes \mathrm{id}) \mathcal{F}=(\mathrm{id} \otimes \epsilon) \mathcal{F}=1_{\mathcal{A}}$ holds! We relax this constraint...Next a generalization of Drinfeld's findings [AD, Ghionis \& Vlaar]:

Proposition

Let $(\mathcal{A}, \Delta, \epsilon, \Phi, \mathcal{R})$ be a quasi-triangular quasi-bialgebra and let $\mathcal{F} \in \mathcal{A} \otimes \mathcal{A}$ be an invertible element, such that

$$
\begin{aligned}
& \Delta_{\mathcal{F}}(a)=\mathcal{F} \Delta(a) \mathcal{F}^{-1}, \quad \forall a \in \mathcal{A} \\
& \Phi_{\mathcal{F}}(\mathcal{F} \otimes 1)((\Delta \otimes \mathrm{id}) \mathcal{F})=(1 \otimes \mathcal{F})((\mathrm{id} \otimes \Delta) \mathcal{F}) \Phi \\
& \mathcal{R}_{\mathcal{F}}=\mathcal{F}^{(o p)} \mathcal{R \mathcal { F }}^{-1},
\end{aligned}
$$

where $\mathcal{F}^{(o p)}:=\sigma(\mathcal{F})$. Then $\left(\mathcal{A}, \Delta_{\mathcal{F}}, \epsilon, \Phi_{\mathcal{F}}, \mathcal{R}_{\mathcal{F}}\right)$ is also a quasi-triangular quasi-bialgebra.

- Prove the axioms of the quasi-triangular quasi-bialgebrac for the generic scenario: $\mathcal{F}=\sum_{j} f_{j} \otimes g_{j}$. Let $v:=\sum_{j} \epsilon\left(f_{j}\right) g_{j}, w:=\sum_{j} \epsilon\left(g_{j}\right) f_{j}$:

$$
(\epsilon \otimes \mathrm{id}) \mathcal{F}=v, \quad(\mathrm{id} \otimes \epsilon) \mathcal{F}=w
$$

Drinfeld twists

Lemma (Main Frame)

Let $(\mathcal{A}, \Delta, \epsilon, \Phi, \mathcal{R})$ and $\left(\mathcal{A}, \Delta_{\mathcal{F}}, \epsilon, \Phi_{\mathcal{F}}, \mathcal{R}_{\mathcal{F}}\right)$ be quasi-triangular quasi-bialgebras and let the conditions of the Proposition hold. We recall also: $\mathcal{F}_{1,23}:=($ id $\otimes \Delta) \mathcal{F}$, $\mathcal{F}_{12,3}:=(\Delta \otimes i d) \mathcal{F}$, then $\mathcal{F}_{21,3} \mathcal{R}_{12}=\mathcal{R}_{12} \mathcal{F}_{12,3}, \mathcal{F}_{1,32} \mathcal{R}_{23}=\mathcal{R}_{23} \mathcal{F}_{1,23}$. According to the Proposition we distinguish two cases:
(1) If the associators satisfy

$$
\begin{equation*}
\Phi_{213} \mathcal{R}_{12}=\mathcal{R}_{12} \Phi_{123}, \quad \Phi_{\mathcal{F} 213} \mathcal{R}_{12}=\mathcal{R}_{12} \Phi_{\mathcal{F} 123} \tag{4}
\end{equation*}
$$

and $\Phi_{\mathcal{F}}$ commutes with F_{12}, then the condition (4) can be re-expressed as $\mathcal{F}_{123}:=\mathcal{F}_{23} \mathcal{F}_{1,23}=\mathcal{F}_{12} \mathcal{F}_{12,3}^{*}$, where $\mathcal{F}_{12.3}^{*}=\Phi_{\mathcal{F}} \mathcal{F}_{12,3} \Phi^{-1}$. We also deduce that $\mathcal{F}_{21,3}^{*} \mathcal{R}_{12}=\mathcal{R}_{12} \mathcal{F}_{12,3}^{*}$.
(2) If the associator satisfies

$$
\begin{equation*}
\Phi_{132} \mathcal{R}_{23}=\mathcal{R}_{23} \Phi_{123}, \quad \Phi_{\mathcal{F} 132} \mathcal{R}_{23}=\mathcal{R}_{23} \Phi_{\mathcal{F} 123} \tag{5}
\end{equation*}
$$

and $\Phi_{\mathcal{F}}$ commutes with F_{23}, then then condition (4) is re-expressed as $\mathcal{F}_{123}:=\mathcal{F}_{23} \mathcal{F}_{1,23}^{*}=\mathcal{F}_{12} \mathcal{F}_{12,3}$, where $\mathcal{F}_{1,23}^{*}=\Phi_{\mathcal{F}}^{-1} \mathcal{F}_{1,23} \Phi$. We also deduce that $\mathcal{F}_{1,32}^{*} \mathcal{R}_{23}=\mathcal{R}_{23} \mathcal{F}_{1,23}^{*}$.
[AD, Ghionis \& Vlaar] \& [AD, \& Rybolowicz]

Twists \& quasi-bialgebras from braces

Drinfeld Twist

[AD \& Smoktunowicz], [AD]. Let $\check{r}=\sum_{x, y \in X} e_{x, \sigma_{x}(y)} \otimes e_{y, \tau_{y}(x)}$ be the set-theoretic solution of the braid YBE, \mathcal{P} is the permutation operator and \hat{V}_{k}, V_{k} are their respective eigenvectors. Let $F^{-1}=\sum_{k=1}^{n^{2}} \hat{V}_{k} V_{k}^{T}$ be the similarity transformation (twist), such that $\check{r}=F^{-1} \mathcal{P} F$. Then the twist can be explicitly expressed as $F=\sum_{x \in X} e_{x, x} \otimes \mathbb{V}_{x}$, where we define $\mathbb{V}_{x}=\sum_{y \in X} e_{\sigma_{x}(y), y}$.

- The twist is not uniquely defined, for instance an alternative twist is $\hat{F}=\sum_{x, y \in X} e_{\tau_{y}(x), x} \otimes e_{y, y}=\sum_{y} \mathbb{W}_{y} \otimes e_{y, y}$.
- Note: The matrices \mathbb{V}_{x} and \mathbb{W}_{x}^{T} (${ }^{T}$ denotes transposition), are n-dimensional representations of \mathcal{Q}, i.e. $q_{x} \mapsto \mathbb{U}_{x}$, where $\mathbb{U}_{x} \in\left\{\mathbb{V}_{x}, \mathbb{W}_{x}^{T}\right\}$,
- Both twists are still admissible in the case of non-involutive, invertible solutions.

The twisted r-matrix

Lemma

Let $\check{r}: V \otimes V \rightarrow V \otimes V$ be the set-theoretic solution of the braid equation. Let also $\mathbb{V}_{x}=\sum_{y \in X} e_{\sigma_{x}(y), y}$ and $\mathbb{W}_{x}=\sum_{\eta \in X} e_{\tau_{x}(\eta), \eta}, \forall x \in X$, with coproducts defined.
Then $\Delta_{\mathcal{T}}\left(\mathbb{Y}_{x}\right) \check{r}_{\mathcal{T}}=\check{r}_{\mathcal{T}} \Delta_{\mathcal{T}}\left(\mathbb{Y}_{x}\right)$, where $\mathbb{Y}_{x} \in\left\{\mathbb{V}_{x}, \mathbb{W}_{x}\right\}, \mathcal{T} \in\{F, \hat{F}\}$,

$$
\begin{aligned}
& \Delta_{F}\left(\mathbb{V}_{x}\right)=\mathbb{V}_{x} \otimes \mathbb{V}_{x}, \quad \Delta_{F}\left(\mathbb{W}_{y}\right)=\sum_{\eta, x \in X} e_{\tau_{\sigma_{x}(y)}(\eta), \eta} \otimes e_{\tau_{\sigma_{\tau_{x}(\eta)}}(y)}\left(\sigma_{\eta}(x)\right), \sigma_{\eta}(x) \\
& \Delta_{\hat{F}}\left(\mathbb{V}_{\eta}\right)=\sum_{x, y \in X} e_{\sigma_{\tau_{\sigma_{x}(y)}(\eta)}\left(\tau_{y}(x)\right), \tau_{y}(x)} \otimes e_{\sigma_{\tau_{x}(\eta)}(y), y} \quad \Delta_{\hat{F}}\left(\mathbb{W}_{y}\right)=\mathbb{W}_{y} \otimes \mathbb{W}_{y}
\end{aligned}
$$

and the twisted matrices read as

$$
\check{r}_{F}=\sum_{x, y \in X} e_{x, \sigma_{x}(y)} \otimes e_{\sigma_{x}(y), \sigma_{\sigma_{x}(y)}\left(\tau_{y}(x)\right)} \quad \& \quad \check{r}_{\hat{F}}=\sum_{x, y \in X} e_{\tau_{y}(x), \tau_{\tau_{y}(x)}\left(\sigma_{x}(y)\right)} \otimes e_{y, \tau_{y}(x)} .
$$

[AD \& Rybolowicz]

Involutive case: $\breve{r}_{F}=\check{r}_{\hat{F}}=\mathcal{P}$. Baxterization $\check{R}(\lambda)=\lambda \check{r}+\mathcal{P}$ and relation with Yangian [AD, Ghionis \& Vlaar] (extended the results of [Etingof, Shedler \& Soloviev]).

Derived solution

- Focus on $\check{r}_{F}=\sum_{x, y \in x} e_{x, y} \otimes e_{y, y \triangleright x}$, where $y \triangleright x=\sigma_{y}\left(\hat{\sigma}_{y-1}(x)\right)$ and (X, \triangleright) is a rack, i.e. \triangleright is self distributive. (Relations to racks and quandles)
- Quadratic algebra from $r_{F}(q \otimes 1)(1 \otimes q)=(1 \otimes q)(q \otimes 1)$: $q_{x} q_{y}=q_{y} q_{y \triangleright x}$.

Comments

- Study of the quantum group associated to the derived solution....Hopf-algebra?
- Solve eigenvalue problem for non-involutive solutions of the YBE. Challenging problem that will provide valuable info on multiplicities and hence associated symmetries.
- Ultimate goal: Identify spectrum and eigenstates of local Hamiltonians (quantum systems) constructed from set-theoretic solutions. Key point: Use of Drinfeld twists! Use info gained from the study of symmetries: spectrum multiplicities.
- Next challenging problem: universal R-matrix!

