Trusses vs Rings

Tomasz Brzeziński

Swansea University \& University of Białystok
Lecce, June 2023
AGTA 2023

Associative algebras on affine spaces or affgebras

- An associative algebra is a vector space A with an associative bi-linear multiplication $\mathrm{m}: A \times A \rightarrow A$.
- The bi-linearity of m implies that multiplication distributes over the addition according to the ring distributive law.
- What an affine space with an associative bi-affine multiplication $\mathrm{m}: A \times A \rightarrow A$ is?

Affine spaces (classically)

- In an affine space A over a vector space V :
(a) any $a, b \in A$ differ by a unique vector $\overrightarrow{a b}$;

Affine spaces (classically)

- In an affine space A over a vector space V :
(a) any $a, b \in A$ differ by a unique vector $\overrightarrow{a b}$;
(b) any point can be shifted by a vector to a (unique) point, in particular, for all $a, b, c \in A$,

$$
a+\overrightarrow{b c} \in A
$$

Affine spaces (classically)

- In an affine space A over a vector space V :
(a) any $a, b \in A$ differ by a unique vector $\overrightarrow{a b}$;
(b) any point can be shifted by a vector to a (unique) point, in particular, for all $a, b, c \in A$,

$$
a+\overrightarrow{b c} \in A
$$

(c) one can shift any pair of points by a rescaled difference between them, i.e., for all $a, b \in A$ and $\lambda \in \mathbb{F}$,

$$
a+\lambda \overrightarrow{a b} \in A
$$

Affine spaces (classically)

- In an affine space A over a vector space V :
(a) any $a, b \in A$ differ by a unique vector $\overrightarrow{a b}$;
(b) any point can be shifted by a vector to a (unique) point, in particular, for all $a, b, c \in A$,

$$
a+\overrightarrow{b c} \in A
$$

(c) one can shift any pair of points by a rescaled difference between them, i.e., for all $a, b \in A$ and $\lambda \in \mathbb{F}$,

$$
a+\lambda \overrightarrow{a b} \in A
$$

- Observation: we can get rid of V altogether (but then recover it up to isomorphism!).

Heaps [Prüfer '24, Baer '29]

Definition

A heap is a nonempty set A together with a ternary operation

$$
[-,-,-]: A \times A \times A \rightarrow A,
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,
(a) $\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4}, a_{5}\right]=\left[a_{1}, a_{2},\left[a_{3}, a_{4}, a_{5}\right]\right]$,
(b) $\left[a_{1}, a_{2}, a_{2}\right]=a_{1}=\left[a_{2}, a_{2}, a_{1}\right]$.

Heaps [Prüfer '24, Baer '29]

Definition

A heap is a nonempty set A together with a ternary operation

$$
[-,-,-]: A \times A \times A \rightarrow A,
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,
(a) $\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4}, a_{5}\right]=\left[a_{1}, a_{2},\left[a_{3}, a_{4}, a_{5}\right]\right]$,
(b) $\left[a_{1}, a_{2}, a_{2}\right]=a_{1}=\left[a_{2}, a_{2}, a_{1}\right]$.

A heap $(A,[-,-,-])$ is abelian if $[a, b, c]=[c, b, a]$.

Heaps [Prüfer '24, Baer '29]

Definition

A heap is a nonempty set A together with a ternary operation

$$
[-,-,-]: A \times A \times A \rightarrow A,
$$

such that for all $a_{i} \in A, i=1, \ldots, 5$,
(a) $\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4}, a_{5}\right]=\left[a_{1}, a_{2},\left[a_{3}, a_{4}, a_{5}\right]\right]$,
(b) $\left[a_{1}, a_{2}, a_{2}\right]=a_{1}=\left[a_{2}, a_{2}, a_{1}\right]$.

A heap $(A,[-,-,-])$ is abelian if $[a, b, c]=[c, b, a]$.
Homomorphism of heaps: a function $f: A \rightarrow B$ such that

$$
f\left[a_{1}, a_{2}, a_{3}\right]=\left[f\left(a_{1}\right), f\left(a_{2}\right), f\left(a_{3}\right)\right]
$$

Heaps are in '1-1' correspondence with groups

- If $(A,+)$ is a (-n abelian) group, then A is a (-n abelian) heap $\mathcal{H}(A)$ with operation

$$
[a, b, c]_{+}=a-b+c .
$$

Heaps are in '1-1' correspondence with groups

- If $(A,+)$ is a (-n abelian) group, then A is a (-n abelian) heap $\mathcal{H}(A)$ with operation

$$
[a, b, c]_{+}=a-b+c .
$$

- Let $(A,[-,-,-])$ be a (-n abelian) heap. For all $e \in A$,

$$
a+{ }_{e} b:=[a, e, b],
$$

makes A into a (-n abelian) group $\mathcal{G}(A, e)$ (with identity e and the inverse mapping $a \mapsto[e, a, e])$.

Heaps are in '1-1' correspondence with groups

- If $(A,+)$ is a (-n abelian) group, then A is a (-n abelian) heap $\mathcal{H}(A)$ with operation

$$
[a, b, c]_{+}=a-b+c .
$$

- Let $(A,[-,-,-])$ be a (-n abelian) heap. For all $e \in A$,

$$
a+{ }_{e} b:=[a, e, b],
$$

makes A into a (-n abelian) group $\mathcal{G}(A, e)$ (with identity e and the inverse mapping $a \mapsto[e, a, e])$.

- $\mathcal{G}(A, e) \cong \mathcal{G}(A, f)$.

Heaps are in '1-1' correspondence with groups

- If $(A,+)$ is a (-n abelian) group, then A is a (-n abelian) heap $\mathcal{H}(A)$ with operation

$$
[a, b, c]_{+}=a-b+c .
$$

- Let $(A,[-,-,-])$ be a (-n abelian) heap. For all $e \in A$,

$$
a+{ }_{e} b:=[a, e, b],
$$

makes A into a (-n abelian) group $\mathcal{G}(A, e)$ (with identity e and the inverse mapping $a \mapsto[e, a, e])$.

- $\mathcal{G}(A, e) \cong \mathcal{G}(A, f)$.
- $\mathcal{H} \circ \mathcal{G}=$ id, i.e., irrespective of e :

$$
[a, b, c]_{+e}=[a, b, c] .
$$

Affine spaces (cd) [BBRS]

An affine space A is a heap with an \mathbb{F}-action (heap of \mathbb{F}-modules) $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that
$-\triangleright_{a}$ - is a bi-heap map,

Affine spaces (cd) [BBRS]

An affine space A is a heap with an \mathbb{F}-action (heap of \mathbb{F}-modules) $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that
$--\triangleright_{a}$ - is a bi-heap map,
$-\triangleright_{a} b$ is associative,

Affine spaces (cd) [BBRS]

An affine space A is a heap with an \mathbb{F}-action (heap of \mathbb{F}-modules) $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,
- $-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left[\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right]$,

Affine spaces (cd) [BBRS]

An affine space A is a heap with an \mathbb{F}-action (heap of \mathbb{F}-modules) $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that

- $-\triangleright_{a}$ - is a bi-heap map,
- $-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left[\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right]$,
- $0 \triangleright_{a} b=a, 1 \triangleright_{a} b=b$.

Affine spaces (cd) [BBRS]

An affine space A is a heap with an \mathbb{F}-action (heap of \mathbb{F}-modules) $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that
$--\triangleright_{a}$ - is a bi-heap map,

- $-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left[\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right]$,
- $0 \triangleright_{a} b=a, 1 \triangleright_{a} b=b$.

Explicitly:

- $[a, b, c]=a+\overrightarrow{b c}$;
- $\lambda \triangleright_{a} b:=a+\lambda \overrightarrow{a b}$.

Affine spaces (cd) [BBRS]

An affine space A is a heap with an \mathbb{F}-action (heap of \mathbb{F}-modules) $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that
$--\triangleright_{a}$ - is a bi-heap map,

- $-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left[\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right]$,
- $0 \triangleright_{a} b=a, 1 \triangleright_{a} b=b$.

Explicitly:

- $[a, b, c]=a+\overrightarrow{b c}$;
- $\lambda \triangleright_{a} b:=a+\lambda \overrightarrow{a b}$.

Where is the vector space?

Affine spaces (cd) [BBRS]

An affine space A is a heap with an \mathbb{F}-action (heap of \mathbb{F}-modules) $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that
$--\triangleright_{a}$ - is a bi-heap map,

- $-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left[\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right]$,
- $0 \triangleright_{a} b=a, 1 \triangleright_{a} b=b$.

Explicitly:

- $[a, b, c]=a+\overrightarrow{b c}$;
- $\lambda \triangleright_{a} b:=a+\lambda \overrightarrow{a b}$.

Where is the vector space? Fix an $o \in A$, then the abelian group $\mathcal{G}(A, o)$ with scalar multiplication:

$$
\alpha a=\alpha \triangleright_{o} a
$$

is a vector space.

Affine spaces (cd) [BBRS]

An affine space A is a heap with an \mathbb{F}-action (heap of \mathbb{F}-modules) $(\lambda, a, b) \mapsto \lambda \triangleright_{a} b$, such that
$--\triangleright_{a}$ - is a bi-heap map,

- $-\triangleright_{a} b$ is associative,
- $\lambda \triangleright_{a} b=\left[\lambda \triangleright_{c} b, \lambda \triangleright_{c} a, a\right]$,
- $0 \triangleright_{a} b=a, 1 \triangleright_{a} b=b$.

Explicitly:

- $[a, b, c]=a+\overrightarrow{b c}$;
- $\lambda \triangleright_{a} b:=a+\lambda \overrightarrow{a b}$.

Where is the vector space? Fix an $o \in A$, then the abelian group $\mathcal{G}(A, o)$ with scalar multiplication:

$$
\alpha a=\alpha \triangleright_{o} a
$$

is a vector space. A vector from a to $b: \overrightarrow{a b}=[o, a, b]$.

Affine transformation

A morphism of affine spaces (A, V) to (B, W) is a function $f: A \rightarrow B$ which induces a linear transformation $\hat{f}: V \rightarrow W$ such that

$$
\hat{f}(\overrightarrow{a b})=\overrightarrow{f(a) f(b)}
$$

This is equivalent to say that f is a morphism of heaps such that

$$
f\left(\lambda \triangleright_{a} b\right)=\lambda \triangleright_{f(a)} f(b)
$$

Trusses [TB '19]

Let A be an affine space with an associative bi-affine multiplication

$$
\mathrm{m}: A \times A \rightarrow A, \quad(a, b) \longmapsto a b .
$$

What kind of distributivity we get?
(i) m is a heap morphism on the left argument:

$$
[a, b, c] d=[a d, b d, c d],
$$

(ii) m is a heap morphism on the right argument:

$$
a[b, c, d]=[a b, a c, a d] .
$$

An abelian heap A with an associative multiplication satisfying (i)-(ii) is called a truss.

Comments on trusses

- In a ring, $a 0=0 a=0$, by the distributive laws.
- The truss distributive laws on an abelian group heap read:

$$
(a-b+c) d=a d-b d+c d, \quad a(b-c+d)=a b-a c+a d
$$

This does not imply that $a 0=0 a=0$.

- An abelian group is a truss with any of these products:

$$
a b=a+b, \quad a b=a, \quad a b=b, \quad a b=\text { const. }
$$

- Odd integers and odd fractions are trusses with the usual multiplication.

Two types of distributive laws

Ring-type: $(R,+, \cdot)$:

$$
a(b+c)=a b+a c, \quad(b+c) a=b a+c a \quad(R)
$$

Consequence: $a 0=0 a=0$, hence no 0^{-1}.

Two types of distributive laws

Ring-type: $(R,+, \cdot)$:

$$
a(b+c)=a b+a c, \quad(b+c) a=b a+c a \quad(R)
$$

Consequence: $a 0=0 a=0$, hence no 0^{-1}.
Brace-type: $(R,+, \cdot)$:

$$
a(b+c)=a b-a+a c, \quad(b+c) a=b a-a+c a(B) .
$$

Consequence: $0=1$, hence all elements can be invertible.

Betwixt and between

- Let $(A,[-,-,-], \cdot)$ be a truss such that (A, \cdot) is a monoid with identity 1 . Then $\left(A,+{ }_{1}, \cdot\right)$ satisfies the brace-type distributive law.

Betwixt and between

- Let $(A,[-,-,-], \cdot)$ be a truss such that (A, \cdot) is a monoid with identity 1 . Then $\left(A,+{ }_{1}, \cdot\right)$ satisfies the brace-type distributive law.
- Let $(A,[-,-,-], \cdot)$ be a truss. Assume that $0 \in A$ is such that

$$
a \cdot 0=0=0 \cdot a, \quad \text { for all } a \in A .
$$

Then $\left(A,+{ }_{0}, \cdot\right)$ is a ring.

Everybody knows what a truss is.

Trusses can be understood as:

Everybody knows what a truss is.

Trusses can be understood as:

- Algebras on affine \mathbb{Z}-spaces (compare: rings are algebras over \mathbb{Z}).

Everybody knows what a truss is.

Trusses can be understood as:

- Algebras on affine \mathbb{Z}-spaces (compare: rings are algebras over \mathbb{Z}).
- Slices of rings over \mathbb{Z}.

Everybody knows what a truss is.

Trusses can be understood as:

- Algebras on affine \mathbb{Z}-spaces (compare: rings are algebras over \mathbb{Z}).
- Slices of rings over \mathbb{Z}. If $f: R \longrightarrow \mathbb{Z}$ is a surjective (non-unital) ring homomorphism, then $f^{-1}(1) \subseteq R$ is a truss [RR Andruszkiewicz, TB, B Rybołowicz '22].

All trusses arise from extensions by integers

Theorem (RRA, TB \& BR)
Let T be a truss and $o \in T$.

All trusses arise from extensions by integers

Theorem (RRA, TB \& BR)
Let T be a truss and $o \in T$.
(1) T is a ring (denoted by $R(T ; o)$):

$$
a+b=[a, o, b], \quad a \bullet b=\left[a b, a o, o^{2}, o b, o\right]=a b-a o-o b+o^{2}
$$

All trusses arise from extensions by integers

Theorem (RRA, TB \& BR)
Let T be a truss and $o \in T$.
(1) T is a ring (denoted by $R(T ; o)$):

$$
a+b=[a, o, b], \quad a \bullet b=\left[a b, a o, o^{2}, o b, o\right]=a b-a o-o b+o^{2}
$$

(2) $S(T ; o)=R(T ; o) \oplus \mathbb{Z}$ is a ring with:

$$
(a, k)(b, l)=\left(a b+(l-1) a o+(k-1) o b+(k-1)(l-1) o^{2}, k l\right)
$$

All trusses arise from extensions by integers

Theorem (RRA, TB \& BR)
Let T be a truss and $o \in T$.
(1) T is a ring (denoted by $R(T ; o)$):

$$
a+b=[a, o, b], \quad a \bullet b=\left[a b, a o, o^{2}, o b, o\right]=a b-a o-o b+o^{2}
$$

(2) $S(T ; o)=R(T ; o) \oplus \mathbb{Z}$ is a ring with:

$$
(a, k)(b, l)=\left(a b+(l-1) a o+(k-1) o b+(k-1)(l-1) o^{2}, k l\right)
$$

(3) $R(T ; o) \cong T \times\{0\}$ is and ideal in $S(T ; o)$.

All trusses arise from extensions by integers

Theorem (RRA, TB \& BR)
Let T be a truss and $o \in T$.
(1) T is a ring (denoted by $R(T ; o)$):

$$
a+b=[a, o, b], \quad a \bullet b=\left[a b, a o, o^{2}, o b, o\right]=a b-a o-o b+o^{2}
$$

(2) $S(T ; o)=R(T ; o) \oplus \mathbb{Z}$ is a ring with:

$$
(a, k)(b, l)=\left(a b+(l-1) a o+(k-1) o b+(k-1)(l-1) o^{2}, k l\right)
$$

(3) $R(T ; o) \cong T \times\{0\}$ is and ideal in $S(T ; o)$.
(4) $T \cong\{(a, 1) \mid a \in T\}, \quad a \longmapsto(a, 1)$.

Truss structures on $\left(\mathbb{Z},[---]_{+}\right)$:

Theorem
(1) Non-commutative truss structures, ,

$$
m \cdot n=m \quad \text { or } \quad m \cdot n=n, \quad \forall m, n \in \mathbb{Z}
$$

Truss structures on $\left(\mathbb{Z},[---]_{+}\right)$:

Theorem
(1) Non-commutative truss structures, ,

$$
m \cdot n=m \quad \text { or } \quad m \cdot n=n, \quad \forall m, n \in \mathbb{Z} .
$$

(2) Commutative truss structures are in 1-1 correspondence with elements of

$$
\mathcal{I}_{2}(\mathbb{Z})=\left\{e \in M_{2}(\mathbb{Z}) \mid e^{2}=e, \operatorname{Tr} e=1\right\} .
$$

Truss structures on $\left(\mathbb{Z},[---]_{+}\right)$:

Theorem

(1) Non-commutative truss structures, ,

$$
m \cdot n=m \quad \text { or } \quad m \cdot n=n, \quad \forall m, n \in \mathbb{Z}
$$

(2) Commutative truss structures are in 1-1 correspondence with elements of

$$
\mathcal{I}_{2}(\mathbb{Z})=\left\{e \in M_{2}(\mathbb{Z}) \mid e^{2}=e, \operatorname{Tr} e=1\right\} .
$$

(3) Isomorphism classes of truss structures in (2) are in 1-1 correspondence with orbits of the action of

$$
D_{\infty}=\left\{\left.\left(\begin{array}{cc}
1 & 0 \\
k & \pm 1
\end{array}\right) \right\rvert\, k \in \mathbb{Z}\right\} .
$$

Trusses and generalised distributivity
Let $(A,+)$ be a group and (A, \cdot) be a semigroup. TFAE:

Trusses and generalised distributivity

Let $(A,+)$ be a group and (A, \cdot) be a semigroup. TFAE:

- There exists $\sigma: A \rightarrow A$, such that

$$
a \cdot(b+c)=(a \cdot b)-\sigma(a)+(a \cdot c) .
$$

Trusses and generalised distributivity

Let $(A,+)$ be a group and (A, \cdot) be a semigroup. TFAE:

- There exists $\sigma: A \rightarrow A$, such that

$$
a \cdot(b+c)=(a \cdot b)-\sigma(a)+(a \cdot c) .
$$

- There exists $\lambda: A \times A \rightarrow A$, such that,

$$
a \cdot(b+c)=(a \cdot b)+\lambda(a, c) .
$$

Trusses and generalised distributivity

Let $(A,+)$ be a group and (A, \cdot) be a semigroup. TFAE:

- There exists $\sigma: A \rightarrow A$, such that

$$
a \cdot(b+c)=(a \cdot b)-\sigma(a)+(a \cdot c)
$$

- There exists $\lambda: A \times A \rightarrow A$, such that,

$$
a \cdot(b+c)=(a \cdot b)+\lambda(a, c)
$$

- There exists $\mu: A \times A \rightarrow A$, such that

$$
a \cdot(b+c)=\mu(a, b)+(a \cdot c)
$$

Trusses and generalised distributivity

Let $(A,+)$ be a group and (A, \cdot) be a semigroup. TFAE:

- There exists $\sigma: A \rightarrow A$, such that

$$
a \cdot(b+c)=(a \cdot b)-\sigma(a)+(a \cdot c)
$$

- There exists $\lambda: A \times A \rightarrow A$, such that,

$$
a \cdot(b+c)=(a \cdot b)+\lambda(a, c) .
$$

- There exists $\mu: A \times A \rightarrow A$, such that

$$
a \cdot(b+c)=\mu(a, b)+(a \cdot c)
$$

- There exist $\kappa, \hat{\kappa}: A \times A \rightarrow A$, such that

$$
a \cdot(b+c)=\kappa(a, b)+\hat{\kappa}(a, c)
$$

Trusses and generalised distributivity

Let $(A,+)$ be a group and (A, \cdot) be a semigroup. TFAE:

- There exists $\sigma: A \rightarrow A$, such that

$$
a \cdot(b+c)=(a \cdot b)-\sigma(a)+(a \cdot c) .
$$

- There exists $\lambda: A \times A \rightarrow A$, such that,

$$
a \cdot(b+c)=(a \cdot b)+\lambda(a, c) .
$$

- There exists $\mu: A \times A \rightarrow A$, such that

$$
a \cdot(b+c)=\mu(a, b)+(a \cdot c) .
$$

- There exist $\kappa, \hat{\kappa}: A \times A \rightarrow A$, such that

$$
a \cdot(b+c)=\kappa(a, b)+\hat{\kappa}(a, c) .
$$

- $a \cdot[b, c, d]_{+}=[a \cdot b, a \cdot c, a \cdot d]_{+}$.

Trusses and ellitpic curves

Figure: Construction of the heap $H(\mathcal{E})$ on a curve \mathcal{E}

Trusses and ellitpic curves

Figure: Construction of the heap $H(\mathcal{E})$ on a curve \mathcal{E}
Theorem
Let \mathcal{E} be a nonsingular complex elliptic curve.

- Endomorphisms of \mathcal{E} are endomorphisms of $H(\mathcal{E})$.

Trusses and ellitpic curves

Figure: Construction of the heap $H(\mathcal{E})$ on a curve \mathcal{E}
Theorem
Let \mathcal{E} be a nonsingular complex elliptic curve.

- Endomorphisms of \mathcal{E} are endomorphisms of $H(\mathcal{E})$.
- Endomorphisms of \mathcal{E} form a truss $T(\mathcal{E})$ with product \circ and

$$
[f, g, h](A)=[f(A), g(A), h(A)], \quad \text { for all } A \in \mathcal{E}
$$

Summary

- Affine spaces are equipped with a natural ternary operation that makes them into abelian heaps.
- An affine space with a bi-affine multiplication becomes a truss (multiplication distributes over the ternary operation).
- Every ring is a truss, every brace is a truss; trusses are a bridge between rings and braces.
- All trusses can be embedded universally in rings (albeit as trusses NOT as rings).
- All trusses arise as (nonunital) extensions of \mathbb{Z} by ideals.

References

- TB, Trusses: between braces and rings, Trans. Amer. Math. Sci. 372 (2019), 4149-4176
- TB, Towards semi-trusses, Rev. Roumaine Math. Pures Appl. 63 (2018), 75-89
- TB, Trusses: Paragons, ideals and modules, J. Pure. Appl. Algebra 224 (2020), 106258
- TB \& B Rybołowicz, Modules over trusses vs modules over rings: direct sums and free modules, Algebras Rep. Theory 25(2022), 1-23.
- TB \& B Rybołowicz, On congruence classes and extensions of rings with an application to braces, Com. Contemp. Math. 23 (2020), 2050010.
- TB, S Mereta \& B Rybołowicz, From pre-trusses to skew braces, Publ. Mat. 66 (2022), 683-714.
- S Breaz \& TB, The Baer-Kaplansky theorem for all abelian groups and modules, Bull. Math. Sci. 12 (2022), 2150005
- TB, P Saracco \& B Rybołowicz, On functors between categories of modules over trusses, J. Pure Appl. Algebra 226 (2022), 107091
- R Andruszkiewicz, TB \& B Rybołowicz, Ideal ring extensions and trusses, J. Algebra 600 (2022), 237-278
- S Breaz, TB, P Saracco \& B Rybołowicz, Heaps of modules and affine spaces, preprint (2022)
- TB, On the algebra of elliptic curves, Proc. Edin. Math. Soc. in press

