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Associative algebras on affine spaces or affgebras

» An associative algebra is a vector space A with an
associative bi-linear multiplicationm : A x A — A.

» The bi-linearity of m implies that multiplication distributes
over the addition according to the ring distributive law.

» What an affine space with an associative bi-affine
multiplicationm : A x A — Ais?
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Affine spaces (classically)

» In an affine space A over a vector space V':

_>
(a) any a,b € A differ by a unique vector ab;

(b) any point can be shifted by a vector to a (unique)
point, in particular, for all a,b,c € A,

H
a+ be € A;

(c) one can shift any pair of points by a rescaled
difference between them, i.e., for all a,b € A and
A el,

N
a+ Mab € A.

» Observation: we can get rid of V' altogether (but then
recover it up to isomorphism!).



Heaps [Prafer '24, Baer '29]

Definition
A heap is a nonempty set A together with a ternary operation
[—,— —]:AXxAx A— A,
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Heaps [Prafer '24, Baer '29]

Definition
A heap is a nonempty set A together with a ternary operation

[—,— -] AXAXxA— A,
suchthatforalla; € A,i=1,...,5,
(a) Ha17 az, a3] , A4, (15] = [a17a27 [a37 a4, CL5H )

(b) [a17 az, az] =al = [CLQ, az, al] .
A heap (A,[—,—, —]) is abelian if [a, b, ¢] = [c, b, a].

Homomorphism of heaps: a function f : A — B such that

f [ah az, a3] - [f(a1)7 f(a2)7 f(a?:)] :
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Heaps are in ‘1-1’ correspondence with groups

> If (A,+) is a (-n abelian) group, then A is a (-n abelian)
heap #(A) with operation

[a,b,c]y =a—Db+ec.

> Let (A,[—,—,—]) be a (-n abelian) heap. For all e € A,
a+eb:=a,eb],

makes A into a (-n abelian) group G(A, e) (with identity e
and the inverse mapping a — [e, a, €]).

> G(A,e) = G(A, f).

> H oG =id,i.e., irrespective of e:

[a,b,c]+, = [a,b,c]
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Affine spaces (cd) [BBRS]

An affine space A is a heap with an F-action (heap of
F-modules) (A, a,b) — A, b, such that

> — 1, — is a bi-heap map,
» — >, bis associative,
> A>y b= [Apcb, Abca,al,
> O>,b=a, 1>,b=0.
Explicitly:
_>
» [a,b,c]=a+ bc;

N
> Apgb:=a+ Aab.

Where is the vector space? Fix an o € A, then the abelian
group G(A, o) with scalar multiplication:

aa=ab,a

_)
is a vector space. A vector from ato b: ab = [0, a, b).



Affine transformation

A morphism of affine spaces (4, V') to (B, W) is a function
f+ A — Bwhich induces a linear transformation f : V. — W

such that
_

F(ab) = fla)f).

This is equivalent to say that f is @ morphism of heaps such
that

fABa b) = Aby(a) f(D)



Trusses [TB '19]

Let A be an affine space with an associative bi-affine
multiplication

m:AxA— A, (a,b) — ab.

What kind of distributivity we get?
(i) m is a heap morphism on the left argument:

[a,b, c]d = [ad, bd, cd],
(i) m is a heap morphism on the right argument:
alb, ¢, d] = [ab, ac, ad).

An abelian heap A with an associative multiplication satisfying
(i)-(ii) is called a truss.



Comments on trusses

» Inaring, a0 = 0a = 0, by the distributive laws.

» The truss distributive laws on an abelian group heap read:
(a—b+c)d =ad—bd+ cd, a(b—c+d) =ab—ac+ ad.

This does not imply that a0 = 0a = 0.
» An abelian group is a truss with any of these products:

ab=a+b, ab=a, ab=b>b, ab= const.

» Odd integers and odd fractions are trusses with the usual
multiplication.
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Two types of distributive laws

Ring-type: (R,+,):
a(b+c) = ab+ ac, (b+c)a=ba+ca (R).

Consequence: a0 = 0a = 0, hence no 0~ 1.
Brace-type: (R,+,"):

a(b+c) = ab—a+ac, (b+c)a = ba—a+ca (B).

Consequence: 0 = 1, hence all elements can be
invertible.
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Betwixt and between

» Let (A,[—,—,—], ) be atruss such that (A, -) is a monoid
with identity 1. Then (A, +1, -) satisfies the brace-type
distributive law.

» Let (A,[—,—,—], ) be atruss. Assume that 0 € A is such

that
a-0=0=0-a, foralla € A.

Then (A, +o, ) is aring.
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Everybody knows what a truss is.

Trusses can be understood as:

» Algebras on affine Z-spaces (compare: rings are algebras
over Z).

» Slices of rings over Z. If f : R — Z is a surjective
(non-unital) ring homomorphism, then f~1(1) C Ris a
truss [RR Andruszkiewicz, TB, B Rybotowicz ’22].
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All trusses arise from extensions by integers

Theorem (RRA, TB & BR)
LetT beatrussando c T.

(1) T is a ring (denoted by R(T;0)):

a+b=[a,0,b], aeb=[ab,ao,0% 0b,0] = ab—ao—ob+0>.

(2) S(T;0) = R(T;0) ®Zis aring with:

(a,k)(b,1) = (ab+ (1 —1)ao+ (k—1)ob+ (k—1)(I—1)0?, ki)

(3) R(T;0) =T x {0} is and ideal in S(T; o).
(4) T={(a,1)| a €T},  ar—(a,l).
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Truss structures on (Z, [— — —]4):
Theorem
(1) Non-commutative truss structures, ,

m-n=m OFf m-n=mn, Ym,n € Z.

(2) Commutative truss structures are in 1-1 correspondence
with elements of

To(Z) = {e € My(Z) | e* = e, Tre = 1}.

(3) Isomorphism classes of truss structures in (2) are in 1-1
correspondence with orbits of the action of

Dm_{(}{ f1> !keZ}.
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Trusses and generalised distributivity
Let (A, +) be a group and (A4, -) be a semigroup. TFAE:
» There exists 0 : A — A, such that

a-(b+c)=(a-b)—o(a)+ (a-c).

» There exists A : A x A — A, such that,

a-(b+c)=(a-b)+ Aa,c).

» There exists 1 : A x A — A, such that

a-(b+c)=pla,b)+ (a-c).

> There exist s, 4 : A x A — A, such that

a-(b+c)=k(a,b)+ i(a,c).

» a-[bc,dly =]a-b,a-c, a-di.
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Trusses and ellitpic curves

Figure: Construction of the heap H(£) on a curve £

Theorem
Let & be a nonsingular complex elliptic curve.

» Endomorphisms of & are endomorphisms of H(E).
» Endomorphisms of € form a truss T'(€) with product o and

[f,9,0)(A) = [f(A),9(A),h(A)], ~ forall A€,



Summary

> Affine spaces are equipped with a natural ternary
operation that makes them into abelian heaps.

» An affine space with a bi-affine multiplication becomes a
truss (multiplication distributes over the ternary operation).

» Every ring is a truss, every brace is a truss; trusses are a
bridge between rings and braces.

» All trusses can be embedded universally in rings (albeit as
trusses NOT as rings).

> All trusses arise as (nonunital) extensions of Z by ideals.
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