
Trusses vs Rings

Tomasz Brzeziński
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Associative algebras on affine spaces or affgebras

▶ An associative algebra is a vector space A with an
associative bi-linear multiplication m : A×A → A.

▶ The bi-linearity of m implies that multiplication distributes
over the addition according to the ring distributive law.

▶ What an affine space with an associative bi-affine
multiplication m : A×A → A is?



Affine spaces (classically)

▶ In an affine space A over a vector space V :

(a) any a, b ∈ A differ by a unique vector
−→
ab ;

(b) any point can be shifted by a vector to a (unique)
point, in particular, for all a, b, c ∈ A,

a+
−→
bc ∈ A;

(c) one can shift any pair of points by a rescaled
difference between them, i.e., for all a, b ∈ A and
λ ∈ F,

a+ λ
−→
ab ∈ A.

▶ Observation: we can get rid of V altogether (but then
recover it up to isomorphism!).
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Heaps [Prüfer ’24, Baer ’29]

Definition
A heap is a nonempty set A together with a ternary operation

[−,−,−] : A×A×A → A,

such that for all ai ∈ A, i = 1, . . . , 5,

(a) [[a1, a2, a3] , a4, a5] = [a1, a2, [a3, a4, a5]] ,

(b) [a1, a2, a2] = a1 = [a2, a2, a1] .

A heap (A, [−,−,−]) is abelian if [a, b, c] = [c, b, a].

Homomorphism of heaps: a function f : A → B such that

f [a1, a2, a3] = [f(a1), f(a2), f(a3)] .
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Heaps are in ‘1-1’ correspondence with groups

▶ If (A,+) is a (-n abelian) group, then A is a (-n abelian)
heap H(A) with operation

[a, b, c]+ = a− b+ c.

▶ Let (A, [−,−,−]) be a (-n abelian) heap. For all e ∈ A,

a+e b := [a, e, b],

makes A into a (-n abelian) group G(A, e) (with identity e
and the inverse mapping a 7→ [e, a, e]).

▶ G(A, e) ∼= G(A, f).
▶ H ◦ G = id, i.e., irrespective of e:

[a, b, c]+e = [a, b, c].
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Affine spaces (cd) [BBRS]
An affine space A is a heap with an F-action (heap of
F-modules) (λ, a, b) 7→ λ ▷a b, such that
▶ − ▷a − is a bi-heap map,

▶ − ▷a b is associative,
▶ λ ▷a b = [λ ▷c b, λ ▷c a, a],
▶ 0 ▷a b = a, 1 ▷a b = b.

Explicitly:

▶ [a, b, c] = a+
−→
bc ;

▶ λ ▷a b := a+ λ
−→
ab .

Where is the vector space? Fix an o ∈ A, then the abelian
group G(A, o) with scalar multiplication:

αa = α ▷o a

is a vector space. A vector from a to b:
−→
ab = [o, a, b].
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Affine transformation

A morphism of affine spaces (A, V ) to (B,W ) is a function
f : A → B which induces a linear transformation f̂ : V → W
such that

f̂
(−→
ab

)
=

−−−−−−−→
f(a)f(b) .

This is equivalent to say that f is a morphism of heaps such
that

f(λ ▷a b) = λ ▷f(a) f(b)



Trusses [TB ’19]

Let A be an affine space with an associative bi-affine
multiplication

m : A×A → A, (a, b) 7−→ ab.

What kind of distributivity we get?

(i) m is a heap morphism on the left argument:

[a, b, c]d = [ad, bd, cd],

(ii) m is a heap morphism on the right argument:

a[b, c, d] = [ab, ac, ad].

An abelian heap A with an associative multiplication satisfying
(i)-(ii) is called a truss.



Comments on trusses

▶ In a ring, a0 = 0a = 0, by the distributive laws.

▶ The truss distributive laws on an abelian group heap read:

(a− b+ c)d = ad− bd+ cd, a(b− c+ d) = ab− ac+ ad.

This does not imply that a0 = 0a = 0.

▶ An abelian group is a truss with any of these products:

ab = a+ b, ab = a, ab = b, ab = const.

▶ Odd integers and odd fractions are trusses with the usual
multiplication.



Two types of distributive laws

Ring-type: (R,+, ·):

a(b+ c) = ab+ ac, (b+ c)a = ba+ ca (R).

Consequence: a0 = 0a = 0, hence no 0−1.

Brace-type: (R,+, ·):

a(b+c) = ab−a+ac, (b+c)a = ba−a+ca (B).

Consequence: 0 = 1, hence all elements can be
invertible.
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Betwixt and between

▶ Let (A, [−,−,−], ·) be a truss such that (A, ·) is a monoid
with identity 1. Then (A,+1, ·) satisfies the brace-type
distributive law.

▶ Let (A, [−,−,−], ·) be a truss. Assume that 0 ∈ A is such
that

a · 0 = 0 = 0 · a, for all a ∈ A.

Then (A,+0, ·) is a ring.
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Everybody knows what a truss is.

Trusses can be understood as:

▶ Algebras on affine Z-spaces (compare: rings are algebras
over Z).

▶ Slices of rings over Z. If f : R −→ Z is a surjective
(non-unital) ring homomorphism, then f−1(1) ⊆ R is a
truss [RR Andruszkiewicz, TB, B Rybołowicz ’22].
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All trusses arise from extensions by integers

Theorem (RRA, TB & BR)
Let T be a truss and o ∈ T .

(1) T is a ring (denoted by R(T ; o)):

a+b = [a, o, b], a•b = [ab, ao, o2, ob, o] = ab−ao−ob+o2.

(2) S(T ; o) = R(T ; o)⊕ Z is a ring with:

(a, k)(b, l) = (ab+(l−1)ao+(k−1)ob+(k−1)(l−1)o2, kl)

(3) R(T ; o) ∼= T × {0} is and ideal in S(T ; o).

(4) T ∼= {(a, 1) | a ∈ T}, a 7−→ (a, 1).
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Truss structures on (Z, [−−−]+):
Theorem

(1) Non-commutative truss structures, ,

m · n = m or m · n = n, ∀m,n ∈ Z.

(2) Commutative truss structures are in 1-1 correspondence
with elements of

I2(Z) = {e ∈ M2(Z) | e2 = e, Tr e = 1}.

(3) Isomorphism classes of truss structures in (2) are in 1-1
correspondence with orbits of the action of

D∞ =

{(
1 0
k ±1

)
| k ∈ Z

}
.
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Trusses and generalised distributivity
Let (A,+) be a group and (A, ·) be a semigroup. TFAE:

▶ There exists σ : A → A, such that

a · (b+ c) = (a · b)− σ(a) + (a · c).

▶ There exists λ : A×A → A, such that,

a · (b+ c) = (a · b) + λ(a, c).

▶ There exists µ : A×A → A, such that

a · (b+ c) = µ(a, b) + (a · c).

▶ There exist κ, κ̂ : A×A → A, such that

a · (b+ c) = κ(a, b) + κ̂(a, c).

▶ a · [b, c, d]+ = [a · b, a · c, a · d]+.
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▶ There exists λ : A×A → A, such that,

a · (b+ c) = (a · b) + λ(a, c).

▶ There exists µ : A×A → A, such that

a · (b+ c) = µ(a, b) + (a · c).

▶ There exist κ, κ̂ : A×A → A, such that

a · (b+ c) = κ(a, b) + κ̂(a, c).

▶ a · [b, c, d]+ = [a · b, a · c, a · d]+.
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a · (b+ c) = κ(a, b) + κ̂(a, c).
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Theorem
Let E be a nonsingular complex elliptic curve.
▶ Endomorphisms of E are endomorphisms of H(E).
▶ Endomorphisms of E form a truss T (E) with product ◦ and

[f, g, h](A) = [f(A), g(A), h(A)], for all A ∈ E ,
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[f, g, h](A) = [f(A), g(A), h(A)], for all A ∈ E ,



Summary

▶ Affine spaces are equipped with a natural ternary
operation that makes them into abelian heaps.

▶ An affine space with a bi-affine multiplication becomes a
truss (multiplication distributes over the ternary operation).

▶ Every ring is a truss, every brace is a truss; trusses are a
bridge between rings and braces.

▶ All trusses can be embedded universally in rings (albeit as
trusses NOT as rings).

▶ All trusses arise as (nonunital) extensions of Z by ideals.
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