Studying two-sided skew braces

Senne Trappeniers

June 8, 2023

1

Rings and monoids

Observation

Let *R* be a ring, then (R, \circ) with $r \circ s = r + rs + s$ for all $r, s \in R$ is a monoid with identity **0**.

Rings and monoids

Observation

Let *R* be a ring, then (R, \circ) with $r \circ s = r + rs + s$ for all $r, s \in R$ is a monoid with identity **0**.

• For **R** a nil ring:
$$r \circ \sum_{i=1}^{\infty} (-1)r^i = 0$$

For \mathbb{F}_2 , we find

Jacobson radical rings

Proposition

 (R, \circ) is a group if and only if R coincides with its Jacobson radical.

Definition

A ring that coincides with its Jacobson radical is called a *Jacobson radical ring*

In this case, for all $r, s, t \in R$:

$$r \circ (\mathbf{s} + \mathbf{t}) = r \circ \mathbf{s} - \mathbf{r} + \mathbf{r} \circ \mathbf{t}, \tag{1}$$
$$(\mathbf{r} + \mathbf{s}) \circ \mathbf{t} = \mathbf{r} \circ \mathbf{t} - \mathbf{t} + \mathbf{s} \circ \mathbf{t}. \tag{2}$$

Observation Rump: Jacobson radical rings give set-theoretic solutions of the YBE.

Definition ([Rum07])

A (left) brace is a triple $(A, +, \circ)$ such that

- 1. (A, +) is an abelian group (called the *additive group*),
- 2. (A, \circ) is a group (called the *multiplicative group*),
- 3. $a \circ (b + c) = a \circ b a + a \circ c$ for all $a, b, c \in A$.

 $(A, +, \circ)$ is a *two-sided brace* if also for all $a, b, c \in A$:

$$(a+b)\circ c = a\circ c - c + b\circ c.$$

Observation Rump: Jacobson radical rings give set-theoretic solutions of the YBE.

Definition ([GV17])

A skew (left) brace is a triple $(A, +, \circ)$ such that

- 1. (A, +) is a group (called the *additive group*),
- 2. (A, \circ) is a group (called the *multiplicative group*),
- 3. $a \circ (b + c) = a \circ b a + a \circ c$ for all $a, b, c \in A$.

 $(A, +, \circ)$ is a two-sided skew brace if also for all $a, b, c \in A$:

$$(a+b)\circ c = a\circ c - c + b\circ c.$$

Two-sided braces

Bijective correspondence:

 $\begin{array}{ll} \{\text{two-sided braces}\} \longleftrightarrow \{\text{Jacobson radical rings}\}, \\ (A, +, \circ) & \mapsto & (A, +, *), \\ (R, +, \circ) & \leftarrow & (R, +, \cdot) \end{array}$

where

$$a * b = -a + a \circ b - b$$

for all $a, b \in A$ and

$$r \circ s = r + st + s$$

for all $r, s \in R$.

Examples

Example (Trivial skew brace)

Let (\mathbf{A}, \circ) be a group, then $(\mathbf{A}, \circ, \circ)$ is a two-sided skew brace.

Example (Almost trivial skew brace)

Let (\mathbf{A}, \circ) be a group, then $(\mathbf{A}, \circ_{\mathrm{op}}, \circ)$ is a two-sided skew brace. Here $\mathbf{a} \circ_{\mathrm{op}} \mathbf{b} = \mathbf{b} \circ \mathbf{a}$. Some ideals

Example

Let A^2 be the subgroup of (A, +) generated by

 $\{a*b\mid a,b\in A\},$

then A^2 is an ideal of A and A/A^2 is a trivial skew brace.

Example

Let A_{op}^2 be the subgroup of (A, +) generated by

 $\{a*_{\mathrm{op}}b\mid a,b\in A\},$

then A_{op}^2 is an ideal of A and A/A_{op}^2 is an almost trivial skew brace. Here $a *_{op} b = -b + a \circ b - a$.

Motivation

- Jacobson radical rings: well-studied
- Two-sided skew braces: only general results were obtained by Nasybullov [Nas19]

Question

How restrictive is the condition of two-sidedness for skew braces?

Two-sided skew braces

Let A be a two-sided skew brace. Then for all $a, b, c, d \in A$,

$$(a+b) \circ (c+d) = (a+b) \circ c - (a+b) + (a+b) \circ d$$
$$= a \circ c - c + b \circ c - b - a + a \circ d - d + b \circ d$$
$$= a \circ c + b *_{op} c + a * d + b \circ d$$

but also

$$(a+b) \circ (c+d) = a \circ (c+d) - (c+d) + b \circ (c+d)$$

= $a \circ c - a + a \circ d - d - c + b \circ c - b + b \circ d$
= $a \circ c + a * d + b *_{op} c + b \circ d$.

so $b *_{op} c + a * d = a * d + b *_{op} c$.

Two-sided skew braces

Proposition ([T22])

Let A be a two-sided skew brace, then A^2 centralizes A^2_{op} in (A, +).

Theorem ([T22])

Let A be a two-sided skew brace, then $(A^2 \cap A_{\rm op}^2, +)$ is abelian, so $A^2 \cap A_{\rm op}^2$ is a two-sided brace.

Natural question: what can we say about $A/(A^2 \cap A_{op}^2)$?

Weakly trivial skew braces

Definition

A skew brace A is called *weakly trivial* if $A^2 \cap A_{op}^2 = 0$.

Lemma

If A be a skew brace, then $A/(A^2 \cap A_{op}^2)$ is weakly trivial.

Characterizing weakly trivial skew braces

Proposition ([T22])

Let (G, \circ) , (H, \circ) be groups. There is a bijective correspondence between weakly trivial skew braces A such that $A/A^2 \cong (G, \circ, \circ)$ and $A/A^2_{op} \cong (H, \circ_{op}, \circ)$ and normal subgroups of $(G, \circ) \times (H, \circ)$ such that the projections onto a single component are surjective.

Using Goursat's lemma a complete characterization can be given.

Two-sided skew braces revisited

Recall:

- 1. If **A** is a two-sided skew brace, then $A^2 \cap A_{\mathrm{op}}^2$ is a two-sided brace.
- 2. If A be a skew brace, then $A/(A^2 \cap A_{op}^2)$ is weakly trivial.

Two-sided skew braces revisited

Recall:

- If A is a two-sided skew brace, then A² ∩ A²_{op} is a two-sided brace.
- 2. If A be a skew brace, then $A/(A^2 \cap A_{op}^2)$ is weakly trivial.

Theorem ([T22])

Every two-sided skew brace is an extensions of a weakly trivial skew brace by a two-sided brace.

$$0 \longrightarrow A^2 \cap A^2_{\mathrm{op}} \longrightarrow A \longrightarrow A/(A^2 \cap A^2_{\mathrm{op}}) \longrightarrow 0$$

Consequences: connections (A, +) and (A, \circ)

Theorem ([Nas19, T22])

Let A be a two-sided skew brace and (A, \circ) solvable of degree n, then (A, +) is solvable of degree at most n + 1.

Consequences: connections (A, +) and (A, \circ)

Theorem ([Nas19, T22])

Let A be a two-sided skew brace and (A, \circ) solvable of degree n, then (A, +) is solvable of degree at most n + 1.

For finite skew braces the implication

$$(A, \circ)$$
 nilpotent $\implies (A, +)$ solvable

holds, but

$$(A, \circ)$$
 solvable $\implies (A, +)$ solvable

does not hold!

Future research

Question

The correspondence between Jacobson radical rings and two-sided braces can be extended to a correspondence between construction subgroups of near-rings and skew braces. How can we recognize two-sided skew braces here?

Future research

Question

The correspondence between Jacobson radical rings and two-sided braces can be extended to a correspondence between construction subgroups of near-rings and skew braces. How can we recognize two-sided skew braces here?

It is in general not true that two-sided skew braces correspond to right-distributive near-rings.

L. Guarnieri and L. Vendramin. Skew braces and the Yang–Baxter equation. *Mathematics of Computation*, 86(307):2519–2534, 2017.

T. Nasybullov.

Connections between properties of the additive and the multiplicative groups of a two-sided skew brace. *Journal of Algebra*, 540(8):156–167, 2019.

W. Rump.

Braces, radical rings, and the quantum Yang–Baxter equation.

Journal of Algebra, 307(1):153–170, 1 2007.

On two-sided skew braces. arXiv preprint arXiv:2208.04772, 2022.