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Plan for the talk

1. Counting subgroups in a finite group: where do we start?

2. Why do we care about counting subgroups in a finite group?

3. A conjecture of Pyber on counting subgroups of finite
symmetric groups (+ recent progress).

4. Consequences of subgroup enumeration for “random
subgroups” of finite groups.
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Section 1. Counting subgroups in a finite group: where do
we start?

Notation: For a finite group G , and a group theoretic property P,
write

SubP(G ) := {H : H a P-subgroup of G} ; and

Sub(G ) := {H : H a subgroup of G}.

Example

|Sub(S3)| = 6 while |Subcyclic(S3)| = 5.
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More examples, and a question
Sticking with the theme of symmetric groups

Example

|Sub(S3)| = 6

|Sub(S4)| = 30

|Sub(S5)| = 156

...

|Sub(S18)| = 7598016157515302757 (Holt, 2010).

In this talk, we’re not going to interested in specific values of
|Sub(G )|. We are going to be mainly interested in the following:

Question

Let (Gi )i∈N be a sequence of finite groups Gi . What can we say
(asymptotically) about the functions |Sub(Gi )| and SubP(Gi ) as
i →∞?
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Specific sequences of finite groups
Arguably, the easiest natural infinite sequence of finite groups to
deal with is the elementary abelian p-groups, for a fixed prime p.
So let us compute |Sub(Fm

p )|.

|Subd−dimensional(Fm
p )| =

(pm − 1)(pm − p) . . . (pm − pd−1)

(pd − 1)(pd − p) . . . (pd − pd−1)

∼ O(pd(m−d)).

The function pd(m−d) is maximised at d = m/2. One then easily
gets

pm
2/4 ≤ |Sub(Fm

p )| ≤ cpm
2/4

for some absolute constant c .

Although this computation is very straightforward, it is very useful
for coming up with lower bounds on |Sub(G )| in more interesting
classes of finite groups..
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Example

Fix an even integer n. Then Sn has a subgroup

H := 〈(1, 2), (3, 4), . . . , (n − 1, n)〉 ∼= Fn/2
2 .

Thus, the above tell us that

|Sub(Sn)| ≥ |Sub(H)| ≥ 2n
2/16.

Example

Fix a prime p, and an even integer n. Then GLn(Fp) has a
subgroup

H :=

{[
In/2 A
0n/2 In/2

]
: A ∈ Mn/2(Fp)

}
∼= Fn2/4

p .

Thus, we have

|Sub(GLn(Fp))| ≥ |Sub(H)| ≥ pn
4/64.
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Upper bounds

These lower bounds will come in handy later on..

What about general techniques for finding upper bounds on
|Sub(G )|?

Note first that in general, for a normal subgroup N of G , there is
not an upper bound on |Sub(G )| in terms of |Sub(N)| and
|Sub(G/N)|. (One can already see this from elementary abelian
groups of order p2.) This makes reductions difficult..

We do remark however, that if G = N o H, then we have

|Sub(G )| =
∑

N0≤N,H0≤NH(N0)
|Der(H0,N0)|

where Der(H0,N0) is the set of derivations from H0 to N0).
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Upper bounds (continued)

A surprisingly effective upper bound is a simple one: Suppose that
every subgroup of G can be generated by d elements. Then

|Sub(G )| ≤ |G |d .

More generally, if every P-subgroup of G can be generated by dP
elements. Then

|SubP(G )| ≤ |G |dP .

Indeed, we have seen that if G = Fm
p , for p prime, then

|Sub(G )| ∼ pm
2/4.

If we just noted that every subgroup of G can be generated by m
elements, then we’d get the upper bound |Sub(G )| ≤ pm

2
.
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Section 2: Motivation and history

Why do we care about subgroup enumeration?

Reason 1: Numerous motivations from other areas of mathematics.
For example:

I Galois theory: If E/F is a finite Galois extension, then

#Intermediate fields E/K = |Sub(Gal(E/F ))|.

I Topology: If X is a path connected, locally path connected,
and semi-locally simply connected topological space, then

#Isomorphism classes of = #Conjugacy classes of

covers of X subgroups of π1(X )
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Reason 2: Graph enumeration problems. For example, suppose
that we want to count the number of vertex-transitive graphs on n
vertices.

For such a graph Γ, if we know the neighbours of the first vertex;
and we know Aut(Γ), then we know every edge, since Γ is
vertex-transitive.

There are 2n−1 possibilities for the neighbours of the first vertex.

There are |Subtransitive(Sn)| possibilities for Aut(Γ).

Thus, there are at most 2n−1|Subtransitive(Sn)| vertex-transitive
graphs on n vertices.
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Reason 2: Graph enumeration problems. For example, suppose
that we want to count the number of vertex-transitive graphs on n
vertices.

For such a graph Γ, if we know the neighbours of the first vertex;
and we know a transitive subgroup of Aut(Γ), then we know every
edge, since Γ is vertex-transitive.

There are 2n−1 possibilities for the neighbours of the first vertex.

There are at most |Subminimal transitive(Sn)| possibilities for a
minimal transitive subgroup of Aut(Γ).

Thus, there are at most 2n−1|Subminimal transitive(Sn)|
vertex-transitive graphs on n vertices.



Reason 3: Group enumeration. For a positive integer n, let

Iso(n) := # Isomorphism classes of groups of order n.

For example, Iso(6) = 2 and Iso(8) = 5.

What happens to Iso(n) as n→∞?

Let’s start with the case where n is a prime power..

Theorem (Higman & Sims, 1965)

Let p be prime. Then

Iso(pk) = p2k
3/27+o(k3).

Following Higman and Sims’ results, the big question became:
What happens for general n?
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Group enumeration continued
We will write the prime factorisation of a positive integer n as
n =

∏
p prime p

n(p).

Then define

µ(n) := max{n(p) : p prime}

to be the largest exponent of a prime power divisor of n. Thus, for
p an odd prime, µ(2pk) = k , for example.

The Higman–Sims result, in this language, states:

Theorem (Higman & Sims, 1965)

Let p be prime, n := pk . Then

Iso(n) = n2µ(n)
2/27+o(µ(n)2) as µ(n)→∞.

Theorem (Pyber, 1993)

Let n be a positive integer. Then

Iso(n) = n2µ(n)
2/27+o(µ(n)2) as µ(n)→∞.
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Theorem (Higman & Sims, 1965)

Let p be prime, n := pk . Then

Iso(n) = n2µ(n)
2/27+o(µ(n)2) as µ(n)→∞.

Theorem (Pyber, 1993)

Let n be a positive integer. Then

Iso(n) = n2µ(n)
2/27+o(µ(n)2) as µ(n)→∞.



Group enumeration continued

But.. what has all of this got to with subgroup enumeration?!

The answer lies in a key step from Pyber’s proof..

Key step from Pyber’s proof: Let G be a finite group of order n,
and let N be a “nice” self-centralising normal subgroup of G . Then

G/Z (N) ↪→ Aut(N) ↪→ S|N|−1.

Thus, if we can count the number of possibilities for N, then we
can determine the number of possibilities for G/Z (N) by counting
the subgroups of S|N|−1.

Finally, to count the number of possibilities for G given G/Z (N),
one needs a relatively straightforward calculation with the second
cohomology group of G acting on Z (N).
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Group enumeration continued: What is “nice”?

By “nice” here, we mean that the possibilities for N should be easy
to count.

Pyber takes N to be the generalised Fitting subgroup F ∗(G ) of G .

The group F ∗(G ) is a central product of nilpotent and quasisimple
groups, so one can count the possibilities for F ∗(G ) by using the
Higman-Sims result, together with the classification of finite simple
groups.

So from
G/Z (N) ↪→ Aut(N) ↪→ S|N|−1,

we are now (leaving a lot of details, and another important step
out..) reduced to counting the number of subgroups of a finite
symmetric group!
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This led Pyber to a theorem, and a conjecture.

Theorem (Pyber, 1990)

Let n be a positive integer. Then

|Sub(Sn)| ≤ 2cn
2+o(n2)

where c := (log2 24)/6 = 0.7641...

Conjecture (Pyber, 1990)

Let n be a positive integer. Then

|Sub(Sn)| ≤ 2n
2/16+o(n2).

Note that 1/16 = 0.0625. Also, recall from earlier in the talk that

|Sub(Sn)| ≥ | Sub(〈(1, 2), (3, 4), . . .〉)| ≥ 2(n−1)
2/16.

So in a certain sense, Pyber’s conjecture states that the subgroups
of Sn are “dominated” by elementary abelian 2-groups.
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Section 3. Pyber’s conjecture

So how can we tackle Pyber’s conjecture?

Let’s first look at
Pyber’s proof of the 2cn

2+o(n2) bound..

Theorem (Pyber, 1990)

Let n be a positive integer. Then

|Sub(Sn)| ≤ 2cn
2+o(n2)

where c := (log2 24)/6 = 0.7641...

Sketch proof: The proof uses the following highly ubiquitous result
of Aschbacher and Guralnick:

Theorem (Aschbacher & Guralnick, 1982)

Every finite group can be generated by a soluble subgroup together
with one other element.

The proof then has four ingredients:
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The proof then has four ingredients:

I |Sub(G )| ≤ |Subsoluble(G )||G | (Aschbacher & Guralnick).

I The number of maximal soluble subgroups of Sn is bounded
above by 217n+n log n = 2o(n

2) (Pyber, 1990).

I A soluble subgroup of Sn has order at most 24(n−1)/3 (Dixon,
1967).

I For n > 3, every subgroup of Sn can be generated by n/2
elements (McIver & Neumann, 1987).

It follows that

|Sub(Sn)| ≤ n!|Subsoluble(Sn)| ≤ n!
∑

M< max solSn

|Sub(M)|

≤ n!
∑

M< max solSn

|M|n/2

≤ n!
∑

M< max solSn

24n
2/6

≤ n!217n+n log n24n
2/6 = 2cn

2+o(n2)
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In considering Pyber’s conjecture, a natural first step is to look at
Pyber’s proof, and see if there are any “gains” to be made from
any of the steps..

So let’s look at the steps again:

Step 1: Every finite group can be generated by a soluble
subgroup + one other element (Aschbacher &
Guralnick, 1982).

Step 2: The number of maximal soluble subgroups of Sn is
bounded above by 217n+n log n = 2o(n

2) (Pyber, 1990).

Step 3: A soluble subgroup of Sn has order at most 24(n−1)/3

(Dixon, 1967).

Step 4: For n > 3, every subgroup of Sn can be generated by
n/2 elements (McIver & Neumann, 1987).
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n/2 elements (McIver & Neumann, 1987).

Best
possible: For n even,
H := 〈(1, 2), . . . , (n − 1, n)〉 ≤ Sn needs exactly n/2
generators.
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The Aschbacher–Guralnick theorem

Theorem (Aschbacher & Guralnick, 1982)

Every finite group can be generated by a soluble subgroup together
with one other element.

Can we replace “soluble” by “nilpotent”? NO!

Example (Aschbacher, 1991)

Let H be any non-nilpotent group, and let p be a prime with
p - |H|.

Let F be a finite field of characteristic p, and let V be a non-cyclic
F[H]-module with CV (h) = 0 for all 1 6= h ∈ H.

Let G = V o H. Then G cannot be generated by two nilpotent
subgroups.

E.g. The group H := SL2(3) < SL2(5) acts regularly on the
non-zero elements of W := F2

5. Take V := W ⊕W ⊕W , with H
acting diagonally.
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So in general, a finite group cannot be generated by a nilpotent
subgroup + one other element..

However, let’s think back to how the Aschbacher-Guralnick
theorem was used in Pyber’s proof. We had

|Sub(Sn)| ≤ |Subsoluble(Sn)||Sn|.

The point was that |Sn| = n! ≤ 2n log n = 2o(n
2).

So in fact, for Pyber’s proof, it would have sufficed to have a result
that said that every finite group G can be generated by a soluble
subgroup, + f (G ) other elements, where f (G )n log n = o(n2) for
all G ≤ Sn.

With this in mind.. Can we prove that every finite group can be
generated by a nilpotent subgroup, together with some “small”
bunch of other elements?
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An alternative for nilpotent subgroups

The socle length of a finite group G is defined to be the minimal r
such that socr (G ) = G , where soc0(G ) := 1, and
soci (G )/ soci−1(G ) := soc(G/ soci−1(G )) for i ≥ 1.

Theorem (Roney-Dougal & T., 2022)

For a finite group G, let A(G ) be the order of the largest abelian
section of G, and let sl(G ) be the socle length of G. Every finite
group G can be generated by a nilpotent subgroup, together with
4sl(G )

√
logA(G ) + 1 other elements.

The proof first reduces to the case where Φ(G ) = 1, and then uses
the theory of crowns in finite groups.

But how does this help us with Pyber’s conjecture?

Recall that we need |Sn|4sl(G)
√

logA(G)+1 to be 2o(n
2)..
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For a positive integer m, let Sub(m)(Sn) be the set of subgroups of
Sn which have all of their orbits of length at most m.

Proposition

There exists an absolute constant c such that if
|Sub(c)(Sn)| ≤ 2n

2/16+o(n2), then |Sub(Sn)| ≤ 2n
2/16+o(n2).

Point of this proposition: If G ∈ Sub(m)(Sn), then sl(G ) is
bounded above by a function of m.

Our previous result states that every finite group G can be
generated by a nilpotent subgroup + 4sl(G )

√
A(G ) + 1 other

elements.

Since A(G ) ≤ (log 3/3)n for all G ≤ Sn (Kovács & Praeger, 1989),
the groups G we need to count have the property that
4sl(G )

√
A(G ) + 1 ≤ O(

√
n).

And... |Sn|O(
√
n) = 2o(n

2).
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Thus, we have reduced Pyber’s conjecture to proving that

|Subnilpotent,(c)(Sn)| ≤ 2n
2/16+o(n2).

This in fact quickly reduces to proving that

|Sub2-group,(c)(Sn)| ≤ 2n
2/16+o(n2).

Theorem (Roney-Dougal & T., 2023)

Pyber’s conjecture holds. In fact,

|Sub(Sn)| ≤ 2n
2/16+O(n3/2).
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Some remarks on the proof

Of course, the main step is getting down to the problem of showing

|Sub2-group,(c)(Sn)| ≤ 2n
2/16+o(n2).

Now, if G ∈ Sub2-group,(c)(Sn), then G is Sn-conjugate to a
subgroup of

G1 × . . .× Gt

where Gi is a transitive permutation 2-group of degree at most c .

So we “just” have to count subgroups of a direct product of
2-groups of bounded size.

Our first attempt: This is surely doable if c is small?! For example,
if c = 2, then we are just counting subgroups of a finite vector
space over F2, and as we saw earlier in the talk, this is easy.
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So we looked back at our proof of

Proposition

There exists an absolute constant c such that if
|Sub(c)(Sn)| ≤ 2n

2/16+o(n2), then |Sub(Sn)| ≤ 2n
2/16+o(n2).

to see if we could get a reasonable estimate for c ..

.. The best we could do with c = 216
2
.

Our next attempt: The important idea for progress came from the
following: If we want to count subgroups of a direct product
G1 × G2 of permutation groups G1 ≤ Sn1 , G2 ≤ Sn2 with
n1 + n2 = n, then Goursat’s lemma tells us that |Sub(G1 × G2)| is
at most

|Sub(G1)||Sub(G2)|max{|Hom(Y ,X )| : Y ≤ G2, X a section of G1}.

Induction gives |Sub(Gi )| ≤ 2n
2
i /16+O(n

3/2
i ), so if

|Hom(Y ,X )| ≤ 2n1n2/8, for X a 2-section of Sn1 , Y a 2-subgroup
of Sn2 , then we’d be done.
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i ), so if

|Hom(Y ,X )| ≤ 2n1n2/8, for X a 2-section of Sn1 , Y a 2-subgroup
of Sn2 , then we’d be done.

With careful reordering of the groups in our large direct product,
and various small improvements on current results on generator
numbers in permutation groups, we managed to get what we need.
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Section 4. Applications to random subgroups, and random
finite groups

Now that we have an approach to enumerating subgroups of finite
groups, a natural next question is:

Question

What does a random subgroup of a given finite group G look like?

We also have:

Question

What does a random finite group look like?

Definition

Let P be a group theoretic property.

1. Let (Gi )i∈N be a sequence of finite groups. We say that a
random subgroup of the (Gi ) has property P if

|SubP(Gi )|
|Sub(Gi )|

→ 1 as i →∞.
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2. Let Iso∗(n) [respectively Iso∗P(n)] be the number of
isomorphism classes of finite groups [resp. finite P-groups] of
order at most n. We say that a random finite group has
property P if

Iso∗P(Gi )

Iso∗(Gi )
→ 1 as i →∞.

For example, classical conjectures of Erdős and Pyber state:

Conjecture (Erdős, 1968)

Let n, x be positive integers with n ≤ 2x . Then

Iso(n) ≤ Iso(2x).

Conjecture (Pyber, 1990)

A random finite group is nilpotent.
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Sticking to our theme of symmetric groups, we have the following
conjecture of Kantor:

Conjecture (Kantor, 1993)

A random subgroup of the symmetric groups (Sn)n is nilpotent.

Theorem (T., 2023)

There exists absolute constants C and C0 such that a random
subgroup G of the symmetric groups (Sn)n has the property that
at most C0

√
n points from {1, . . . , n} lie in a G-orbit of size

greater than C.

Corollary

A random subgroup of the symmetric groups (Sn)n has at least
O(n) orbits.

Theorem (Lucchini, 1998)

A random subgroup of the symmetric groups (Sn)n is intransitive.
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