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John von Neumann, 1903–1957

Introduced rings of operators (now
known as von Neumann algebras)
in the 1930-1940s.

Motivated by applications to
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infinite groups

dynamical systems

mathematical foundations of
quantum mechanics



∗-algebras

Recall that a ∗-algebra (over C) is a unital associative algebra over C endowed
with a unary operation ∗ such that

1∗ = 1, (x∗)∗ = x , (x + y)∗ = x∗+ y∗, (λx)∗ = λx∗, (xy)∗ = y∗x∗.

Examples.

1 C is a ∗-algebra with respect to complex conjugation.

2 Mn(C) is a ∗-algebra, where ∗ means conjugate transpose.

3 More generally, suppose that H is a Hilbert space. Then

B(H) = {bounded linear operators on H}

is a ∗-algebra, where, for every A ∈ B(H), A∗ is the adjoint operator of A.

4 For every group G , the group ring CG is a ∗-algebra:∑
g∈G

cgg

∗ =
∑
g∈G

cgg
−1.
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Von Neumann algebras

Definition

A von Neumann algebra on a Hilbert space H is a unital ∗-subalgebra of B(H)
closed in the topology of pointwise convergence.

Examples:

1 B(H) for every Hilbert space H. In particular, Mn(C).

2 L∞(R) (acting on H = L2(R) by pointwise multiplication).

For S ⊆ B(H), the commutant of S is

S ′ = {b ∈ B(H) | bs = sb ∀ s ∈ S}.

Theorem (von Neumann’s double commutant theorem)

A unital ∗-subalgebra A of B(H) is a von Neumann algebra iff A′′ = A.
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Factors

The center of a von Neumann algebra M is defined by

Z(M) = {z ∈ M | zx = xz ∀ x ∈ M}.

Definition

A von Neumann algebra M is a factor if its center is trivial, i.e., Z(M) = C1M .

Example:

B(H) is a factor.

A commutative von Neumann algebra M is a factor iff M ∼= C. In
paticular, L∞(R) is not a factor.

Informally, factors are building blocks of von Neumann algebras.

Theorem (von Neumann, 1949)

Every von Neumann algebra on a separable Hilbert space is a direct integral of
factors.
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Group von Neumann algebras

Let G be a countable group.

`2(G) =

f : G → C

∣∣∣∣∣∣
∑
g∈G

|f (g)|2 <∞

 .

The action of G on `2(G) defined by

(g .f )(x) = f (g−1x) ∀ g , x ∈ G ∀f ∈ `2(G)

induces the left regular representation G → U(`2(G)), which extends to a map
λ : CG → B(`2(G)) by linearity.

Definition (Murray–von Neumann, 1943)

The von Neumann algebra of G , denoted by L(G), is the closure of the image
λ(CG) in B(`2(G)) in the topology of pointwise convergence. Equivalently, we
can define L(G) = λ(CG)′′.

If |G | <∞, then L(G) = CG .

If G is infinite, L(G) is difficult to understand. E.g., it is not known
whether L(Fm) ∼= L(Fn) for m 6= n.
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ICC groups

A group G is said to have infinite conjugacy classes (abbreviated ICC) if the
conjugacy class of every non-trivial element of G is infinite.

Examples.

1 The trivial group.

2 Non-cyclic free groups.

3 Non-abelian free solvable groups, ZwrZ.

Non-examples.

1 Non-trivial finite groups.

2 Groups with non-trivial center.

Theorem (Murray–von Neumann)

The von-Neumann algebra of a countable group G is a factor iff G is ICC.
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Automorphisms of ∗-algebras

An automorphism α of a ∗-algebra M is an automorphism of the underlying
algebra such that

α(x∗) = α(x)∗.

Automorphisms of the form x 7→ uxu−1, where u is a unit, are called inner and

Out(M) = Aut(M)/Inn(M).

Examples (Automorphisms of group rings).

1 Every automorphism of G extends to an automorphism of CG by linearity.

2 Let
S1 = {z ∈ C | |z | = 1}, Char(G) = Hom(G , S1).

For every ρ ∈ Char(G), the map g 7→ ρ(g)g (∀ g ∈ G) extends to a
∗-preserving automorphism of CG .

This yields an embedding

Char(G) o Aut(G) ↪→ Aut(CG)

and a homomorphism

Char(G) o Out(G)→ Out(CG).
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Outer automorphisms of group algebras

Conjecture (Kaplansky unit conjecture over C)

If G is torsion-free, all units of CG are of the form cg, where c ∈ C, g ∈ G.

Disproved for fields of characteristic p > 0 by Gordam and Murray (2021).

Theorem (Folklore)

Suppose that G is a torsion-free group satisfying the Kaplansky unit
conjecture. Then Out(CG) ∼= Char(G) o Out(G).

Proof. Let α ∈ Aut(CG). For any g ∈ G , α(g) is a unit. Hence,

α(g) = ρ(g)γ(g), where ρ(g) ∈ C, γ(g) ∈ G .

Obviously, γ ∈ Aut(G) and ρ ∈ Hom(G ,C×). Since α preserves ∗, we have

1 = α(g · g∗) = α(g) · α(g)∗ = (ρ(g)g) · (ρ(g)g−1) = ρ(g)ρ(g).

Therefore, ρ ∈ Char(G). Thus, the homomorphism

Char(G) o Out(G)→ Out(CG)

is surjective. Injectivity follows from the Kaplansky unit conjecture.
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Amenable vs Kazhdan groups

Definition (von Neumann, 1929)

A group G is amenable if there exists µ : 2G → [0, 1] such that µ(G) = 1,
µ(A t B) = µ(A) + µ(B), and µ(gA) = µ(A) for all A,B ⊆ G and all g ∈ G .

Examples: finite and solvable groups, groups of subexponential growth; closed
under subgroups, quotients, extensions, and directed unions.

Definition (Kazhdan, 1967)

A group G has property (T) if every affine isometric action of G on a real
Hilbert space has a fixed point.

Examples: finite groups, lattices in simple Lie groups of R-rank at least 2 (e.g.,
SL(n,Z) for n ≥ 3); closed under quotients and extensions.
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Automorphisms of group von Neumann algebras

Alain Connes

Fields Medal (1982) for work on
operator algebras

Affiliated with Vanderbilt University
in 2005-2014

Theorem (Connes, 1980s)

(a) Suppose that G is a non-trivial, ICC, amenable group (e.g., G = ZwrZ).
Then Out(L(G)) has cardinality 2ℵ0 and contains all countable groups as
subgroups.

(b) If G is an ICC group with property (T), then Out(L(G)) is countable.



Jones’ conjecture

Vaughan Jones

Fields Medal (1990) for work on
von Neumann algebras

Worked at Vanderbilt University in
2011-2020

Conjecture (Jones Millennium Problem, 2000)

If G is ICC and has property (T), then Out(L(G)) ∼= Char(G) n Out(G).

Since 2000, neither a counterexample nor a single non-trivial example has been
found and the following problem received considerable attention in recent years.

Problem

Find a non-trivial, ICC group with property (T) satisfying the Jones conjecture.
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Wreath-like products of groups

Definition

A group W is a wreath-like product of groups A and B corresponding to an
action B y I on an set I if W is an extension of the form

1 −→
⊕
i∈I

Ai −→W
ε−→ B −→ 1,

where Ai
∼= A and

wAiw
−1 = Aε(w)i

for all i ∈ I and all w ∈W .

If I = B and the action B y I is by (left)
multiplication, we say that W is a regular wreath-like product of A and B.

WR(A,B y I ) = {wreath− like products of groups A and B y I}

WR(A,B) = {regular wreath− like products of groups A and B}

Examples:

1 A× B ∈ WR(A,B y {1}).

2 AwrB ∈ WR(A,B).

3 The free metabelian group of rank 2 belongs to WR(Z,Z2).
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Hyperbolic spaces

Definition (Gromov)

A geodesic metric space is hyperbolic if ∃ δ ≥ 0 such that for any triangle with
geodesic sides p, q, r and any x ∈ p, we have d(x, q ∪ r) ≤ δ.

p q

r

x

≤ δ

Examples.

1 Any bounded space S is hyperbolic with δ = diam(S).

2 Any tree is hyperbolic with δ = 0.

3 Hn is hyperbolic.

4 Rn is not hyperbolic for n ≥ 2.
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Hyperbolic groups

Definition (Gromov, 1980s)

A finitely generated group G is hyperbolic if Cay(G ,X ) is hyperbolic for some
finite generating set X of G .

Examples.

1 Finite groups.

2 Free groups of finite rank.

3 π1(M) for any closed hyperbolic manifold M.

4 Zn is not hyperbolic for n ≥ 2.

Theorem (Chifan–Ioana–Osin–Sun, 2021)

Let G ∈ WR(A,B y I ), where A is non-trivial abelian, B is hyperbolic, and
the action B y I has infinite orbits. If G has property (T), then

Out(L(G)) ∼= Char(G) o Out(G).

Note: If A 6= 1 and AwrB has property (T), then |B| <∞.
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Concrete examples of groups satisfying Jones’ conjecture

For S ⊆ G , let 〈〈S〉〉 denote the normal closure of S in G .

Wreath-like products as quotients:

1 If A is abelian, then A ∗ B/[〈〈A〉〉, 〈〈A〉〉] ∼= AwrB.

2 (Cohen–Lyndon, 1963) Let G be a free group, 〈g〉 a maximal cyclic
subgroup of G . For every n ∈ N, we have

G/[〈〈gn〉〉, 〈〈gn〉〉] ∈ WR(Z,G/〈〈gn〉〉y I ),

where |I | =∞ whenever G is non-cyclic.

3 (Chifan–Ioana–Osin–Sun, 2021) If G is a torsion-free hyperbolic group, the
same result holds for all sufficiently large n.

Corollary (Chifan–Ioana–Osin–Sun, 2021)

Let G be a torsion-free hyperbolic group with property (T). For any
g ∈ G \ {1} and any sufficiently large n ∈ N, the group

G/[〈〈gn〉〉, 〈〈gn〉〉]

is non-trivial, ICC, has property (T), and satisfies the Jones conjecture.
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Realization problem for outer automorphisms

Recall the following.

Theorem (Connes, 1980)

For any ICC group G with property (T), Out(L(G)) is countable.

It is natural to ask the following.

Problem

Which countable groups can be realized as Out(L(G)) for an ICC group G with
property (T)?

No results since 1980: not a single example was known of a countable group
that realizes as Out(L(G)) for a non-trivial, ICC group G with property (T).

Theorem (Chifan–Ioana–Osin–Sun, 2023)

For any countable group Q, there exists a non-trivial, ICC group G with
property (T) such that Out(L(G)) ∼= Q.
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