Generation of the second maximal subgroups of the symmetric groups

Patricia Medina Capilla

University of Warwick
June 8, 2023

Introduction

Theorem (Aschbacher, Gurlanick, Miller, Steinberg)
Let T be a finite, simple group. Then

$$
d(T) \leq 2
$$

Introduction

Theorem (Aschbacher, Gurlanick, Miller, Steinberg)
Let T be a finite, simple group. Then

$$
d(T) \leq 2
$$

We can now proceed by investigating
(1) how strongly the finite simple groups are 2-generated,

Introduction

Theorem (Aschbacher, Gurlanick, Miller, Steinberg)
Let T be a finite, simple group. Then

$$
d(T) \leq 2
$$

We can now proceed by investigating
(1) how strongly the finite simple groups are 2-generated,
(2) the generation of related groups.

Introduction

Theorem (Aschbacher, Gurlanick, Miller, Steinberg)
Let T be a finite, simple group. Then

$$
d(T) \leq 2
$$

We can now proceed by investigating
(1) how strongly the finite simple groups are 2-generated,
(2) the generation of related groups.

Theorem (Dalla Volta, Lucchini, 1994)
If R is an almost simple group, then

$$
d(R) \leq 3
$$

Introduction

Theorem (Burness, Liebeck, Shalev, 2013)
If R is an almost simple group, and $M<_{\max } R$ then

$$
d(M) \leq 6
$$

Introduction

Theorem (Burness, Liebeck, Shalev, 2013)
If R is an almost simple group, and $M<_{\max } R$ then

$$
d(M) \leq 6 .
$$

Theorem (Lucchini, Marion, Tracey, 2019)
If R is an almost simple group, and $M<_{\max } R$ then

$$
d(M) \leq 5,
$$

which is sharp.

Second maximal subgroups

Let R be an almost simple group, and $M<_{\max } R$.

Second maximal subgroups

Let R be an almost simple group, and $M<_{\max } R$. Let $K<_{\max } M$.

Second maximal subgroups

Let R be an almost simple group, and $M<_{\max } R$. Let $K<_{\max } M$.
Suppose

$$
2^{r}-1
$$

is a Mersenne prime.

Second maximal subgroups

Let R be an almost simple group, and $M<_{\max } R$. Let $K<_{\max } M$.
Suppose

$$
2^{r}-1
$$

is a Mersenne prime. Then there exists a second maximal subgroup K such that

$$
d(K) \geq r
$$

Second maximal subgroups

Let R be an almost simple group, and $M<_{\max } R$. Let $K<_{\max } M$.
Suppose

$$
2^{r}-1
$$

is a Mersenne prime. Then there exists a second maximal subgroup K such that

$$
d(K) \geq r
$$

All such K have

$$
\operatorname{soc}(R)=L_{2}(q),{ }^{2} B_{2}(q),{ }^{2} G_{2}(q)
$$

and M a Borel subgroup.

Second maximal subgroups

Theorem (Burness, Liebeck, Shalev, 2016)
Let $K<_{\text {max }} M<_{\text {max }} R$ where R is an almost simple group. Then either
(1) $\operatorname{soc}(R)=L_{2}(q),{ }^{2} B_{2}(q),{ }^{2} G_{2}(q)$, and M is a Borel subgroup, or

Second maximal subgroups

Theorem (Burness, Liebeck, Shalev, 2016)
Let $K<_{\text {max }} M<_{\text {max }} R$ where R is an almost simple group. Then either
(1) $\operatorname{soc}(R)=L_{2}(q),{ }^{2} B_{2}(q),{ }^{2} G_{2}(q)$, and M is a Borel subgroup, or
(2) $d(K) \leq 70$.

Methods

Ad hoc method

Lemma

Let G be a finite group, and $N \triangleleft G$, then

$$
d(G) \leq d(G / N)+d(N)
$$

Methods

Ad hoc method

Lemma

Let G be a finite group, and $N \triangleleft G$, then

$$
d(G) \leq d(G / N)+d(N)
$$

For example, by induction:

$$
d\left(A_{k}^{t}\right) \leq 2 t \quad \forall k \geq 5
$$

Methods

Crowns method

The crowns method requires a lot more information.

Methods

Crowns method

The crowns method requires a lot more information.
At the very least, it requires us to know the chief series of a group. This is sufficient to know that

$$
d\left(S_{k} \times S_{t}\right) \leq 2 \quad \forall k, t \geq 5
$$

Methods

Crowns method

The crowns method requires a lot more information.
At the very least, it requires us to know the chief series of a group. This is sufficient to know that

$$
d\left(S_{k} \times S_{t}\right) \leq 2 \quad \forall k, t \geq 5
$$

At worst, it requires us to know a lot about the factors in the chief series. This is needed in order to prove that

$$
d(\operatorname{Out}(T)) \leq 3
$$

for any simple group T.

Methods

Crowns method

The crowns method requires a lot more information.
At the very least, it requires us to know the chief series of a group. This is sufficient to know that

$$
d\left(S_{k} \times S_{t}\right) \leq 2 \quad \forall k, t \geq 5
$$

At worst, it requires us to know a lot about the factors in the chief series.
This is needed in order to prove that

$$
d(\operatorname{Out}(T)) \leq 3
$$

for any simple group T.
However, in return it provides much better bounds. For example:

$$
d\left(A_{k}^{t}\right) \leq\left\{\begin{array}{ll}
2 & \text { if } t \leq 17 \\
3 & \text { if } t \leq 1060 \\
\vdots &
\end{array} \quad \forall k \geq 5\right.
$$

Second maximal subgroups of S_{n}

Theorem (Burness, Liebeck, Shalev, 2016)
Let $K<_{\max } M<_{\max } R$ where R is an almost simple group. Then
(1) $\operatorname{soc}(R)=L_{2}(q),{ }^{2} B_{2}(q),{ }^{2} G_{2}(q)$, and M is a Borel subgroup, or
(2) $d(K) \leq 70$.

Second maximal subgroups of S_{n}

Theorem (Burness, Liebeck, Shalev, 2016)
Let $K<_{\max } M<_{\max } R$ where R is an almost simple group. Then
(1) $\operatorname{soc}(R)=L_{2}(q),{ }^{2} B_{2}(q),{ }^{2} G_{2}(q)$, and M is a Borel subgroup, or
(3) $d(K) \leq 70$.

Theorem (Burness, Liebeck, Shalev, 2016)
Let K be a second maximal subgroup of R, with R almost simple and $\operatorname{soc}(R)=A_{n}$. Then

$$
d(K) \leq 10 .
$$

Second maximal subgroups of S_{n}

For simplicity, let $R=S_{n}$.

Second maximal subgroups of S_{n}

For simplicity, let $R=S_{n}$.

Theorem (O'Nan-Scott)

The maximal subgroups of R fall into the following families:
(I) intransitive, $S_{k} \times S_{n-k}$,
(II) affine, $A G L_{d}(p)$,
(III) wreath product, S_{k} S_{t},
(IV) diagonal type, $T^{k} .\left(\operatorname{Out}(T) \times S_{k}\right)$,
(V) almost simple.

Classifying second maximal subgroups

Family (I): Intransitive

The maximal subgroups of $S_{k} \times S_{n-k}$ are

- $J \times S_{n-k}$ for $J<_{\max } S_{k}$,
- $S_{k} \times J$ for $J<_{\max } S_{n-k}$, or
- $\left(A_{k} \times A_{n-k}\right) \cdot 2$.

Classifying second maximal subgroups

Family (II): Affine

The maximal subgroups of $\mathrm{AGL}_{d}(p)=\mathbb{F}_{p}^{d} \rtimes \mathrm{GL}\left(\mathbb{F}_{p}^{d}\right)$ are

- $\mathbb{F}_{p}^{d} \rtimes J$ for $J<_{\text {max }} G L\left(\mathbb{F}_{p}^{d}\right)$, or
- Isomorphic to $\mathrm{GL}\left(\mathbb{F}_{p}^{d}\right)$.

Classifying second maximal subgroups

Family (III): Wreath product

The maximal subgroups of $S_{k} \imath S_{t}$ are

- $S_{k} \imath J$ for $J<_{\text {max }} S_{t}$
- J S_{t} for $J<_{\max } S_{k}, J \neq A_{k}$, or
- in one of three other families, all of which contain A_{k}^{t}.

Classifying second maximal subgroups

Family (IV): Diagonal type

The maximal subgroups of $T^{k} .\left(\operatorname{Out}(T) \times S_{k}\right)$ are

- $T^{k} . J$ for $J<_{\text {max }} \operatorname{Out}(T) \times S_{k}$, or
- $(J \cap T)^{k}$. $\left(\operatorname{Out}(T) \times S_{k}\right)$ for $J<_{\max } \operatorname{Aut}(T)$.

Classifying second maximal subgroups

Family (V): Almost simple

The maximal subgroups of the almost simple groups have been treated by Lucchini, Marion and Tracey, so

$$
d(K) \leq 5
$$

in this case.

Results

Theorem (M.C.)
Let K be a second maximal subgroup of S_{n} or A_{n}. Then

$$
d(K) \leq 8 .
$$

Results

Theorem (M.C.)
Let K be a second maximal subgroup of S_{n} or A_{n}. Then

$$
d(K) \leq 8 .
$$

Example

Let $T:=\operatorname{PSL}_{4}(9)$. Let $M:=T^{k} .\left(\operatorname{Out}(T) \times S_{k}\right)<_{\max } S_{n}$, with $k:=|T|$.

Results

Theorem (M.C.)
Let K be a second maximal subgroup of S_{n} or A_{n}. Then

$$
d(K) \leq 8 .
$$

Example

Let $T:=\operatorname{PSL}_{4}(9)$. Let $M:=T^{k} .\left(\operatorname{Out}(T) \times S_{k}\right)<_{\max } S_{n}$, with $k:=|T|$.
Let $J:=T^{2} .\left(\operatorname{Out}(T) \times S_{2}\right)<_{\text {max }} S_{k}$.

Results

Theorem (M.C.)
Let K be a second maximal subgroup of S_{n} or A_{n}. Then

$$
d(K) \leq 8 .
$$

Example

Let $T:=\operatorname{PSL}_{4}(9)$. Let $M:=T^{k} .\left(\operatorname{Out}(T) \times S_{k}\right)<_{\max } S_{n}$, with $k:=|T|$.
Let $J:=T^{2} .\left(\operatorname{Out}(T) \times S_{2}\right)<_{\max } S_{k}$. Hence,

$$
\operatorname{Out}(T) \times J<_{\max } \operatorname{Out}(T) \times S_{k} .
$$

Results

Theorem (M.C.)
Let K be a second maximal subgroup of S_{n} or A_{n}. Then

$$
d(K) \leq 8 .
$$

Example

Let $T:=\operatorname{PSL}_{4}(9)$. Let $M:=T^{k} .\left(\operatorname{Out}(T) \times S_{k}\right)<_{\max } S_{n}$, with $k:=|T|$.
Let $J:=T^{2} .\left(\operatorname{Out}(T) \times S_{2}\right)<_{\max } S_{k}$. Hence,

$$
\operatorname{Out}(T) \times J<_{\max } \operatorname{Out}(T) \times S_{k} .
$$

Then

$$
T^{k} \cdot(\operatorname{Out}(T) \times J)<_{\max } M<_{\max } S_{n},
$$

and

$$
d\left(T^{k} \cdot(\operatorname{Out}(T) \times J)\right)=7 .
$$

Results

In all but one of the groups classified previously, we can show

$$
d(K) \leq 7
$$

Results

In all but one of the groups classified previously, we can show

$$
d(K) \leq 7
$$

The only K which can have $d(K)=8$ is

$$
K:=(J \cap T)^{k} \cdot\left(\operatorname{Out}(T) \times S_{k}\right) \quad J<_{\max } \operatorname{Aut}(T)
$$

Results

In all but one of the groups classified previously, we can show

$$
d(K) \leq 7
$$

The only K which can have $d(K)=8$ is

$$
K:=(J \cap T)^{k} \cdot\left(\operatorname{Out}(T) \times S_{k}\right) \quad J<_{\max } \operatorname{Aut}(T)
$$

for T one of

$$
\operatorname{PSL}_{n}(q), P \Omega_{2 m}^{ \pm}(q), E_{6}(q)
$$

Thanks for listening!

