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Introduction

Computational group theory splits into two not completely disjoint parts:

computing in finite and infinite groups.

In both cases, research is divided into

• theoretical: proving decidability and complexity results;

• practical: implementing algorithms efficiently.

For computation in finite groups these two approaches are generally
compatible and mutually complementary; i.e. in general, algorithms with
good complexity have implementations that run faster, at least in large
examples.

This is less true for computation in infinite groups, where a
polynomial-time algorithm might involve constants that are too large for
practical purposes.
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Computing in finite groups

For algorithmic purposes, finite groups are most conveniently represented
as

1 permutation groups (subgroups of Sym(n) for some n);

2 matrix groups over finite fields (subgroups of GL(d , q) for some
d > 0 and prime power q); or

3 solvable groups defined by power-conjugate presentations.

For permutation and matrix groups, BSGS (base and strong generating
set) based methods, introduced originally by Charles Sims are used
extensively.

These methods are less suitable for large finite matrix groups without
subgroups of reasonably small index, and methods involving computing a
Composition Tree for the group, due to Leedham-Green, O’Brien and
many others, have now been effectively implemented.
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Computing in infinite groups

There are two main strands here:

computing in finitely presented groups and in matrix groups.

Exact computation in infinite groups of matrices (over Z, Q, number
fields, function fields, for example) is a relatively new field of research, in
which significant advances (both theoretical and practical) have been
made recently by Flannery, Detinko, O’Brien, Hulpke, et al.

The input is a finite set of matrices that generate a group G .

Finiteness of G can be decided quickly, as can nilpotency.

The Tits alternative can be decided for G .

But it is unknown whether it is possible to decide whether G is free, even
on the given generators.
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Computing in finitely presented groups: coset enumeration

Suppose now that the group G is defined by a presentation G = 〈X | R〉
with X and R finite. We let Σ := X ∪ X−1. So elements of G are
represented by words w ∈ Σ∗.

The coset enumeration procedure was formulated by Todd and Coxeter
in the 1930s and implemented first in 1953.

The input is X , R, and a finite set Y ⊂ Σ∗ generating a subgroup
H = 〈Y 〉 of G .

If |G : H| is finite, then it, together with the associated action of G on the
cosets of H is computed. A presentation of H can also be computed.

So we are effectively computing a finite quotient of G , namely the image
of this action.

Related applications include finding all subgroups of G up to a specified
index, so we can systematically enumerate finite quotients of G .
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Other quotient algorithms

Other quotient algorithms include algorithms to compute:

• the largest abelian quotient (Smith Normal Form);

• finite p-quotients for a specified prime p;

• nilpotent quotients;

• polycyclic quotients;

• (solvable quotients).

But, unless the group is virtually polycyclic, none of the above techniques
enables computations with G itself rather than in a proper quotient of G .

Unfortunately the most natural problems involving G itself, including the
Dehn Problems, have all been proved to be theoretically unsolvable.
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The Dehn Problems

These are decision problems that were formulated by Dehn in 1911. They
are basically theoretical questions, but Dehn described implementable
algorithms for their solution in some cases.

• The Word Problem WP(G ): given w ∈ Σ∗, is w =G 1?

• The Conjugacy Problem: given v ,w ∈ Σ∗, does there exists c ∈ Σ∗

with w =G c−1vc?

• The Isomorphism problem: given another finitely presented group
G ′ = 〈X ′ | R ′〉, is G ∼= G ′?
(This is the most difficult, both theoretically and practically.)

To this, we can add

• The Generalized Word Problem GWP(G ,H): given finite Y ⊂ Σ∗

generating H = 〈Y 〉 and w ∈ Σ∗, is w ∈ H?
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The word problem

Although they are undecidable in general, they are solvable in certain
classes of groups.

Effective implementations of word problem solutions include:

• collection in polycyclic groups;

• putting words into normal form using finite state automata (fsa) in
automatic groups

The class of automatic groups includes: free groups, hyperbolic groups,
Coxeter groups, braid groups, mapping class groups, many types of Artin
groups, and virtually abelian groups, but not other polycyclic groups.

The normal forms most frequently used for automatic groups are shortlex:
order Σ and then, for v ,w ∈ Σ∗, defined v < w if either `(v) < `(w); or
`(v) = `(w) and v <lex w .
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Straight line programs

A straight line program (SLP) is a method of representing certain words
over an alphabet Σ in a compressed form. This is achieved by extending
the alphabet by introducing new ‘letters’ w1,w2,w3, . . ., where each wk is
defined as a word over the alphabet Σ ∪ {w1,w2, . . . ,wk−1}.

Example

Let Σ = {a, b} and define

w1 := b, w2 := a, wi := wi−1wi−2 for i ≥ 2.

So, if we rewrite wi for i > 2 as words over Σ, we get

w3 = ab,w4 = aba,w5 = aba2b,w6 = aba2(ba)2,w7 = aba2ba(ba2)2b,

and the length of wn grows exponentially with n.

Derek Holt (University of Warwick) June, 2023 10 / 22



Straight line programs

A straight line program (SLP) is a method of representing certain words
over an alphabet Σ in a compressed form. This is achieved by extending
the alphabet by introducing new ‘letters’ w1,w2,w3, . . ., where each wk is
defined as a word over the alphabet Σ ∪ {w1,w2, . . . ,wk−1}.

Example

Let Σ = {a, b} and define

w1 := b, w2 := a, wi := wi−1wi−2 for i ≥ 2.

So, if we rewrite wi for i > 2 as words over Σ, we get

w3 = ab,w4 = aba,w5 = aba2b,w6 = aba2(ba)2,w7 = aba2ba(ba2)2b,

and the length of wn grows exponentially with n.

Derek Holt (University of Warwick) June, 2023 10 / 22



Formally, an SLP can be defined to be a context-free grammar
G = (V ,S ,P) over an alphabet Σ that generates a unique word ρ(G).

It has a set V of variables (the symbols wi in the notation above)
including a start variable S , and a set P of productions, which specify
definitions of the wi .

For each variable A ∈ V , there is a single production of the form
A→ (Σ ∪ V )∗. The requirement that G generates a unique word implies
that we can order the variables in V such that S is the largest in the
ordering, and any variables occurring in the right hand side of the
production A→ (Σ ∪ V )∗ must be less than A.

For the example above, a grammar G over Σ = {a, b} with ρ(G) = w6

could be defined by V = {w1,w2,w3,w4,w5,S}, and

P = {S → w5w4,w5 → w4w3,w4 → w3w2,w3 → w2w1,w2 → a,w1 → b}
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Straight line programs in finite group computations

The Schreier-Sims algorithm for computing a BSGS of a finite
permutation or matrix group G makes use of SLPs.

The group G is generally defined by a generating set X and, with
Σ := X ∪ X−1 as before, the algorithm extends X to a strong generating
set (if necessary) by introducing new strong generators w1,w2, . . . ,wk ,
where each wi is defined as a word over Σ ∪ {w±11 , . . . ,w±1k−1}.

It is a very difficult problem in large groups (such as the Rubik Cube
group) to write an arbitrary element of G a word over Σ, but easy to write
it as a word over the strong generators and their inverses. This is
particularly useful when defining images of elements g ∈ G under
homomorphisms.
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The more recent Composition Tree algorithm for large matrix groups
works in the same way, but with the additional feature that “nice”
generating sets for the finite simple groups, such as transvections for the
classical groups, have been chosen in advance, and the program attempts
to find these nice generators of the given group, and to define them as
SLPs in its original generators.

The program starts by identifying the isomorphism classes of the
composition factors of the input group G as abstract simple groups S .
Then, for each nonabelian composition factor, it looks for elements that
correspond to these nice generators of S , and uses them to set up an
effective isomorphism between that factor and a standard copy of S .

For example, the standard copy of An is Alt(n) in its natural
representation, and the standard copy of PSL(d , q) is the group SL(d , q)
modulo its scalar subgroup.

Derek Holt (University of Warwick) June, 2023 13 / 22



The more recent Composition Tree algorithm for large matrix groups
works in the same way, but with the additional feature that “nice”
generating sets for the finite simple groups, such as transvections for the
classical groups, have been chosen in advance, and the program attempts
to find these nice generators of the given group, and to define them as
SLPs in its original generators.

The program starts by identifying the isomorphism classes of the
composition factors of the input group G as abstract simple groups S .
Then, for each nonabelian composition factor, it looks for elements that
correspond to these nice generators of S , and uses them to set up an
effective isomorphism between that factor and a standard copy of S .

For example, the standard copy of An is Alt(n) in its natural
representation, and the standard copy of PSL(d , q) is the group SL(d , q)
modulo its scalar subgroup.

Derek Holt (University of Warwick) June, 2023 13 / 22



Polynomial-time computation with SLPs

Let G = (V , S ,P) be an SLP over Σ, and let w = ρ(G) be the word in Σ∗

defined by G.

It is not difficult to show that the length |w | of w , which may be
exponentially larger than the size of G can be computed in polynomial-time
as a binary or decimal number, by using the fact that, for each production
A→ α1α2 · · ·αk , with αi ∈ V ∪ {Σ} we have |ρ(A)| =

∑k
i=1 |ρ(αi )|.

We can also compute in polynomial time the i-th letter in w for any i with
1 ≤ i ≤ |w | and we can define SLPs that define Gij with ρ(Gij) equal to
the subword w [i : j ] of w between its i-th and j-th letters.

A more difficult result due to Plandowski, which is essential for the
applications to the compressed word problem, is that, given two SLPs G1
and G2 over the same alphabet Σ, we can decide in polynomial time
whether ρ(G1) = ρ(G2). (More generally, we can find their longest
common prefix.)
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The compressed word and conjugacy problems

In the compressed word problem CWP(G ) for a group G , the input
word w is given in compressed form as an SLP.

Of course CWP(G ) is solvable if and only if WP(G ) is solvable, because
compressed words can be expanded to normal words.

But the expanded word can be exponentially longer than the input
compressed word, so we might expect CWP(G ) to be more difficult than
WP(G ) in terms of complexity.

Indeed, there are groups, such as the Grigorchuk group and certain wreath
products H o Z, in which the space complexity of CWP(G ) is provably
larger than that of WP(G ) (PSPACE-complete and LOGSPACE, respectively),
and the time complexity is also conjectured to be higher.
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On the other hand, it has been proved by Marcus Lohrey and others that
CWP(G ) is solvable in polynomial time in the following classes of finitely
generated groups:

1 free groups;

2 nilpotent groups;

3 right-angled Artin groups;

4 Coxeter groups.

More recently, Lohrey, Schleimer and Holt have shown that the
compressed word and conjugacy problems are solvable in polynomial-time
in hyperbolic groups.

This result has been extended by Holt and Rees to groups that are
hyperbolic relative to a collection of free abelian subgroups.

The results proving the solvability of CWP(G ) in polynomial time are theoretical

and, except possibly for the case of free groups, not suitable for effective

implementation, because the constants involved are too large. The algorithms

typically involve testing all words up to some bounded but moderately large

length.
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Solving the word problem in automorphism groups

If Aut(G ) is finitely generated by a set Φ, then we can use the compressed
word problem in G to solve the word problem in Aut(G )

Suppose that α = ϕ1ϕ2 · · ·ϕn with each ϕi ∈ Φ, and we wish to decide
whether α = 1Aut(G).

To do this, for each x ∈ Σ, we define an SLP Gx over Σ with variables
Aa,k for each a ∈ Σ and 0 ≤ k ≤ n and start variable Ax ,n.

For each a ∈ Σ and k with 0 ≤ k ≤ n, we define φk(Aa,k−1) to be the
word in the variables {Ay ,k−1 : y ∈ Σ} that corresponds to φk(a).

So, for example, if φk(a) = abba then

φk(Aa,k−1) = Aa,k−1Ab,k−1Ab,k−1Aa,k−1.
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The productions of each Gx are, for each a ∈ A,

Aa,0 → a;

Aa,k → φk(Aa,k−1) for 1 ≤ k < n;

Aa,n → a−1φn(Aa,n−1).

Then α = 1Aut(G) if and only if α(x) = x for all x ∈ X , which is the case if
and only ρ(Gx) =G 1 for all x ∈ X .

If the compressed word problem in G is solvable in polynomial-time, and
Aut(G ) is finitely generated, then the ordinary word problem WP(Aut(G ))
is solvable in polynomial-time.

In particular, if G is a hyperbolic group, then WP(Aut(G )) is solvable in
polynomial time.
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The compressed word problem in hyperbolic groups

Let G = 〈Σ〉 be hyperbolic, and let G be an SLP defining a compressed
word in Σ∗.

The basic idea is to compute an SLP defining the shortlex normal form
nf(ρ(A)) for each variable A of G, finishing with nf(ρ(G)), which is empty
if and only if ρ(G) =G 1.

The principal step is to compute an SLP for nf(ρ(A)) from SLP s defining
nf(ρ(B)) and nf(ρ(C )), for each production A→ BC .

This can be done using the geometry of the hyperbolic triangle with sides
labelled by nf(ρ(A)), nf(ρ(B)), and nf(ρ(C )): the meeting points of the
triangle can be located using standard SLP operations.

But it turned out to be frustratingly difficult to do this while keeping the
size of the SLP to define nf(ρ(G)) polynomially bounded.

Technical solutions were eventually found independently by Schleimer and
Lohrey.
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The compressed word problem in relatively hyperbolic
groups

The Holt/Rees generalization to groups hyperbolic relative to free abelian
subgroups makes heavy use of a significant paper of Yago Antolin and
Laura Ciobanu on the geometry of relatively hyperbolic groups.

They proved in particular that these groups are shortlex automatic, when
the parabolic subgroups are virtually abelian, so we initially hoped for a
moderately straightforward generalization.

But there were serious problems with the geometric arguments, and in the
end we have to use a different “automatic structure” using a normal in
which normal form words are geodesic in the extended Cayley graph, which
is a hyperbolic graph in which all elements of the parabolic subgroups are
included as generators, and so they label edges of length one.

This new structure is only asynchronously automatic, but fortunately
that turned out not to be serious obstacle.
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The generalized word problem

Let H = 〈Y 〉 ≤ G with Y ≤ Σ∗ and Y finite. Recall that the generalized
word problem GWP(G ,H) is the problem of deciding whether a given
w ∈ Σ∗ lies in H.

The Stallings Folding method is a linear-time algorithm for solving this
problem when G is (virtually) free. A fsa is constructed that accepts a
reduced word in w ∈ Σ∗ if and only if w ∈ H.
In fact Stallings Folding is essentially the same as coset enumeration.

In the fully compressed generalized word problem the generators Y of
H and the input word w are all given as SLPs.

A challenging open problem is whether this problem is solvable in
polynomial time for free groups G .

It has been proved recently by Marco Linton that it is solvable in
polynomial time under the assumption |Y | ≤ k for some fixed constant k .
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The End
Thank you for listening!
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