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Lie algebras (Setting)

Definition. A Lie algebra (g, [ , ]) over a field (today F = R,C) is an
algebra satisfiying

♥ Skewsymmetry: [x , y ] = −[y , x ];

♥ Jacobi identity: [[x , y ], z ] + [[y , z ], x ] + [[z , x ], y ] = 0.

Definition. A Lie group G is a group and a differential manifold such that
the product (g , h) 7→ gh and the inversion g 7→ g−1 are smooth maps.

Examples.

? In Geometry: If M is a diff. manifold, the algebra of vector fields
X(M)

? In Analysis: stability group of a Pfaffian system, symmetries of
solution spaces of PDEs...

? In Physics: used extensively in quantum mechanics and particle
physics...
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The founder of Lie group theory

Sophus Lie

Sophus Lie (1842-1899) discovered that
continuous transformation groups (Lie groups)
could be better understood by “linearizing”them,
and studying the related generating vector fields.
They are subject to a linearized version of the
group law (commutator bracket) and have the
structure of what is today called a Lie algebra.

Algebraic inspiration:
Each algebraic equation is related to a group
(Galois group, which permutes the roots) in such
a way that the equation can be solved by radicals
when the group is solvable!

Can we relate to any differential equation a
differential Galois group

such that both solvabilities are equivalent?

Evariste Galois

(1811-1832)
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Main Correspondence Lie group - Lie algebra

Simply connected Lie groups ←→ Lie algebras (over R)

G 7→ {X ∈ X(G ) : (dLg )h(Xh) = Xgh} ∼= TeG

f : G → H 7→ (df )e : TeG → TeH

Also subgroups ↔ subalgebras, normal subgroups ↔ ideals, etc

←: As g ≤ gl(n,R) = (Matn×n(R), [ , ]), G =gr< exp(g) >
→: For G ≤ GL(n,R), g = {X ∈ gl(n,R) : etX ∈ G ∀t ∈ R}

Simple examples:

? Orthogonal group (preserving a metric)

 so(n,F) = {A ∈ gl(n,F) : A + At = 0}

? Special linear group (preserving a volume form)

 sl(n,F) = {A ∈ gl(n,F) : tr(A) = 0}

? Symplectic group (preserving a symplectic form)

 sp(n,F) = {A ∈ gl(2n,F) : AC + CAt = 0}, C =
(

o In
−In 0

)
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Killing 1887: Classification of f-d.simple Lie C-alg.

Wilhelm Killing

“The greatest mathematical paper of all time”

? so(n,C), sl(n,C), sp(n,C)

? A SURPRISE: of dimension 14, called g2

? Four additional exceptional examples:

f4 (52), e6 (78), e7 (133), e8 (248).

An

Bn

Cn

Dn

G2

F4

E6

E7

E8
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Nilpotent Lie algebras
Definition. For g a Lie algebra, the derived series/lower central series are
defined as

g(n+1) = [g(n), g(n)], gn+1 = [g, gn].

? g is solvable if g(n) = 0 for some n;

? g is nilpotent if gn = 0 for some n.

What’s known:

• {Abelian} ( {Nilpotent} ( {Solvable}

• Classification in low dimensions (nilpotents up to dimension 7?)

• Levi decomposition: g fin-dim ⇒ g = Rad(g)o semisimple.

Our aim

To find new families of solvable/nilpotent Lie algebras
by deforming the (simple) exceptional ones
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Motivation from Physics

Inonu and Wigner, 1953:
Galilei group limiting case of the
relativistic mechanics group

Segal, 1951:
Sequence of groups whose structure
constants converge toward the structure
constants of a non-isomorphic group

A world of concepts:

Continuous contractions // Degenerations // Graded contractions
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Continuous contractions
Def. F field, L Lie F-algebra.
If U : (0, 1]→ GL(L), ε ∈ (0, 1] 7→ Uε, we define

[x , y ]ε = U−1
ε ([Uε(x),Uε(y)]).

Note Lε := (L, [ , ]ε) ∼= L.
Assume for any x , y there exists limε→0[x , y ]ε(=: [x , y ]0)

⇒ L0 := (L, [ , ]0) is a Lie algebra called
one-parametric continuous contraction of L.

Example

L = so(3) = 〈e1 =

(
0 0 0
0 0 1
0 −1 0

)
, e2 =

(
0 0 −1
0 0 0
1 0 0

)
, e3 =

(
0 1 0
−1 0 0
0 0 0

)
〉

Take Uε : e1 7→ εe1, e2 7→ εe2, e3 7→ e3

[e1, e2]ε = ε2e3

[e2, e3]ε = e1

[e3, e1]ε = e2

⇒ Lε ∼= L but
[e1, e2]0 = 0
[e2, e3]0 = e1

[e3, e1]0 = e2

⇒ L0 solvable
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Degenerations
F arbitrary field, V F-vector space of dimension n

Consider the variety of Lie algebras on V :

Ln(V ) = {µ : V × V → V : (V , µ) Lie algebra}
≡ {µ ∈ V ∗ ⊗ V ∗ ⊗ V : (V , µ) Lie algebra} subvariety of V ∗ ⊗ V ∗ ⊗ V

≡ Cn(F) =

{
(ckij ) ∈ Fn3

:
0 = ckij + ckji
0 =

∑n
r=1(c rijc

s
kr + c rjkc

s
ir + c rkic

s
jr )

}

GL(V ) acts on Ln(V ): g · µ(x , y) := g(µ(g−1x , g−1y))

 orbit O(µ) = {g · µ : g ∈ GL(V )}

Def. µ, λ ∈ Ln(V ). µ degenerates to λ if λ ∈ O(µ)
(clausure in the Zariski topology)

• λ a degeneration of µ is trivial if µ ≈ λ

• µ is rigid if O(µ) is open in Ln(V )
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Gradings
For graded contractions we need a grading:

G abelian group, L Lie algebra over F,

Def. Γ : L = ⊕g∈GLg is a G -grading on L if [Lg ,Lh] ⊂ Lg+h ∀g , h ∈ G .

Example. On L = sl2(F):�
�

�
�

G = Z, L0 = 〈
(

1 0
0 −1

)
︸ ︷︷ ︸

h

〉, L1 = 〈
(

0 1
0 0

)
︸ ︷︷ ︸

e

〉, L−1 = 〈
(

0 0
−1 0

)
︸ ︷︷ ︸

f

〉

�
�

�

G = Z2

2, L(1̄,0̄) = 〈
(

1 0
0 −1

)
〉, L(1̄,1̄) = 〈

(
0 1
1 0

)
〉, L(0̄,1̄) = 〈

(
0 1
−1 0

)
〉
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Graded contractions
G abelian group, Γ : L = ⊕g∈GLg a Lie algebra over F.

Def. A graded contraction of Γ is a map ε : G × G → F
such that Lε = (L, [ , ]ε) is a Lie algebra,

where [x , y ]ε := ε(g , h)[x , y ] if x ∈ Lg , y ∈ Lh, g , h ∈ G ,

Two opposite examples:

ε(g , h) = 1 ∀g , h⇒ Lε = L
ε(g , h) = 0 ∀g , h⇒ Lε abelian

→ Source for finding
solvable and nilpotent Lie algebras

Example:
L = sl2(R) 6∼= so(3) =M

but we can pass from L to M by a graded contraction:

Lε
∼=−→ M

h 7→ −e2

e 7→ e3

f 7→ e1

for
ε : Z× Z→ R
ε(−1, 1) = ε(1,−1) = 1
ε(0, n) = ε(n, 0) = 0
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Problem of classification

Given Γ : L = ⊕g∈GLg a G -grading,

how many different Lie algebras
can be obtained by a graded contraction?

Def. If ε, ε′ are graded contractions of Γ, ε is equivalent to ε′ (ε ∼ ε′) if
∃ϕ : Lε → Lε′ (graded) isomorphism of Lie algebras

General AIM: to classify {graded contractions of Γ}/∼

Def. ε is equivalent by normalization to ε′ (ε ∼n ε
′) if

∃ϕ : Lε → Lε′ isomorphism of graded Lie algebras with ϕ|Lg = αg id

Remark: of course ε ∼n ε
′ ⇒ ε ∼ ε′, but ∼n-examples are easy to obtain:

given ε and α : G → F× ⇒

{
εα : G × G → F,
εα(g , h) = ε(g , h)α(g)α(h)

α(g+h)

}
∼n ε
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How a graded contraction is?
Given a map ε : G × G → F, and Γ : L = ⊕g∈GLg a G -grading on L,

Which condition has ε to satisfy to be a graded contraction?

Easy answer:

I [ , ]ε skew-symmetric ⇔ (ε(g , h)− ε(h, g))[x , y ] = 0

I [ , ]ε satisfies Jacobi identity ⇔ ∀k, g , h ∈ G , x ∈ Lg , y ∈ Lh, z ∈ Lk ,

(ε(g , h, k)− ε(k , g , h))[x , [y , z ]]+(ε(h, k , g)− ε(k , g , h))[y , [z , x ]] = 0

where ε(g , h, k):= ε(g , h + k)ε(h, k)

Enough conditions: ∀g , h, k ∈ G ,

? ε(g , h) = ε(h, g)

? ε(g , h, k) = ε(k, g , h)

not necessary! (in general)

⇒ the study of the graded contractions depends strongly on Γ!
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Earlier works on graded contractions

Some precedents in literature:

∗ de Montigny, Patera: J. Phys. A 1991: first work (Z2-gradings)

∗ Couture, Patera, Sharp, Winternitz: JMP 1991: sl(3,C)

∗ Hrivnák, Novotný, Patera, Tolar, LAA 2006: sl(3,C), Z2
3-grad (Pauli)

∗ Hrivnák, Novotný, JMP 2013: sl(3,C), Z3
2-grading (Gell-Mann)

∗ Weimar-Woods, Can. J. Math. 2006: general structure

∗ Escobar, Núñez, Pérez-Fernández, 2018: filiform Lie algebras

Our (first) aim:

The 14-dimensional exceptional Lie algebra g2

endowed with a grading in 2-dimensional pieces

WITHOUT COMPUTER!
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What is g2?

G2



Octonion algebra

Cayley-Dickson doubling process: F Z2−→ F⊕ Fi Z2−→ H Z2−→ O

i

-il

k

-klj

-jl

l

O = H⊕Hl is Z3
2-graded:

O(000) = F1 O(001) = Fl
O(100) = Fi O(101) = Fil
O(010) = Fj O(011) = Fjl
O(110) = Fk︸ ︷︷ ︸

H

O(111) = Fkl︸ ︷︷ ︸
Hl

(Der(O), [ , ]) is a simple Lie algebra of dimension 14 of type G2!

14 / 31



g2 and its Z3
2-grading

L = Der(O) = {d : O→ O lin : d(xy) = d(x)y + xd(y) ∀x , y ∈ O}
is a simple Lie algebra of dimension 14 of type G2

As O is Z3
2-graded ⇒ Γg2 : L = Der(O) = ⊕g∈Z3

2
Lg is Z3

2-graded too:

Lg = {d ∈ Der(O) : d(Oh) ⊂ Og+h ∀h ∈ Z3
2}

Main features of this grading

• Fine grading (it has no proper refinements)

• Non-toral grading (not compatible with any root decomposition)

How its homogeneous components are?

? Le = 0,

? dimLg = 2 for all e 6= g ∈ Z3
2: each Lg is a Cartan subalgebra

⇒ Any homogeneous element is semisimple

 This Γg2 is the grading we are going to contract
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Graded contractions of Γg2

AIM: To classify graded contractions of Γg2 up to ∼

As Le = 0⇒ [Lg ,Lg ] = [Lg ,Le ] = [Le ,Lg ] = 0 ∀g ∈ Z3
2  

Def. ε : G × G → F is said admissible if ε(g , g) = ε(g , e) = ε(e, g) = 0

Not every graded contraction is admissible but

Lemma. If ε : G × G → F is a graded contraction of Γg2 ,

⇒ ∃ ε′ admissible graded contraction of Γg2 equivalent to ε.

More properties of Γg2 relevant for our approach

(P1) [Lg ,Lh] = Lg+h if g , h, g + h 6= e;

(P2) If 〈g , h, k〉 = Z3
2 ⇒ ∃x ∈ Lg , y ∈ Lh, z ∈ Lk such that

{[x , [y , z ]], [y , [z , x ]]} linearly independent set

Consequence: Fixed ε : G × G → F admissible map,

ε graded contraction ⇔
{
ε(g , h) = ε(h, g)
ε(g , h, k) = ε(h, k , g) if 〈g , h, k〉 = Z3

2

 We can forget of the grading Γg2 and think only of the grading group Z3
2
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Towards a combinatorial approach
Cleaning a little bit

In admissible graded contractions of Γg2 the only important thing is the image of a
pair {g , h} with g 6= h 6= e, so:

2

7

4

56

1

3

? Forget octonions in Fano plane

? Think only of the indices I = {1, 2, 3, 4, 5, 6, 7}
? i ∗ j ∈ I is (partially) defined by gi∗j = gi + gj :

g0 = (0̄, 0̄, 0̄) g1 = (1̄, 0̄, 0̄) g2 = (0̄, 1̄, 0̄) g3 = (0̄, 0̄, 1̄)
g4 = (1̄, 1̄, 1̄) g5 = (1̄, 1̄, 0̄) g6 = (1̄, 0̄, 1̄) g7 = (0̄, 1̄, 1̄)

? We call {ijk} a generating triplet if 〈gi , gj , gk 〉 = Z3
2

? X = {{i , j} : i 6= j , i , j ∈ I} 21 elements{
admissible graded
contractions of Γg2

}
1−1−−→A =

{
η : X → F :

ηijk = ηjki
∀{ijk} generating triplet

}
ε 7→ ηε : X → F

{i , j} 7→ ηεij := ε(gi , gj)�� ��Notation: ηijk := ηi j∗kηjk
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How to find elements in A?
Recall: A = {η : X → F : ηijk = ηjki ∀{ijk} generating triplet}
Example of an element in A:

η : X = 12 13 14 15 16 17→ F
23 24 25 26 27

34 35 36 37
45 46 47

56 57
67
∗ 7→ 1
∗ 7→ 0

What is what we need to find examples? sup(η) := {t ∈ X : η(t) 6= 0}

If some ηijk 6= 0 =⇒ ηjki 6= 0 and ηkij 6= 0

Example: If η234︸︷︷︸
η2 3∗4η34

6= 0

︸ ︷︷ ︸
34,25∈ sup(η)

=⇒ η342︸︷︷︸
η3 4∗2η42

6= 0

︸ ︷︷ ︸
36,42∈ sup(η)

and η423︸︷︷︸
η4 2∗3η23

6= 0

︸ ︷︷ ︸
47,23∈ sup(η)

:

2

7

4

56

1

3

 the support is not arbitrary: it satisfies a kind of absorbing property
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Nice sets
If {i , j , k} is a generating triplet, take

Pijk :=
{
{i , j}, {j , k}, {k , i}, {i , j ∗ k}, {j , k ∗ i}, {k , i ∗ j}

}
⊂ X .

Def. T ⊂ X is said a nice set if

whenever {j , k}, {i , j ∗ k} ∈ T then Pijk ⊂ T .

Proposition

? If η ∈ A, the support of η is a nice set;

? For any nice set T , the map ηT ∈ A for ηT : X → F
t ∈ T 7→ 1
t /∈ T 7→ 0


 next aim: to classify nice sets
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Collineations

Given a grading Γ on a Lie algebra L:

� Aut(Γ) = {f ∈ Aut(L) : ∀g ∈ G there is g ′ with f (Lg ) ⊆ Lg ′}.

� Stab(Γ) = {f ∈ Aut(L) : f (Lg ) ⊆ Lg ∀ g ∈ L}.

� The Weyl group of Γ is the quotient group W(Γ) = Aut(Γ)/Stab(Γ).

It reduces the quadratic system of equations which gives the graded contractions

Our case. W(Γg2 ) ∼= Aut(Z3
2) = Gl(3,Z2) ∼= Coll I :

Def. A bijection σ : I → I is said to be a collineation
if it applies lines to lines, i.e., σ(i ∗ j) = σ(i) ∗ σ(j).

2

7

4

56

1

3

→ Example: σ =

(
1 2 3 4 5 6 7
5 6 3 2 7 4 1

)
fixes the set of 7 lines

{(125), (567), (741), (136), (642), (273), (345)}

So we have an action and σ · η ∼ ηColl I ×A → A
(σ, η) 7→ σ · η : X → F

{ij} 7→ ησ(i)σ(j)
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Main examples of nice sets
If L is a line,

XL = {t ∈ X : t ⊂ L}

XL246 = {24, 46, 62}

If i is an index,
X(i) = {t ∈ X : i ∈ t}

X (3) = {31, 32, 34, 35, 36, 37}

XLc = {t ∈ X : t ⊂ Lc}

XLC
246

=

{
31, 35, 37
15, 57, 71

}
X (i) = {{jk} ∈ X : j ∗ k = i}

X (1) = {25, 36, 47}

All their subsets are nice sets too 21 / 31



Remaining nice sets

∅, X and

? Pijk = {ij , jk, ki , i j ∗ k , j k ∗ i , k i ∗ j} if {ijk} generating triplet,

? X \ XLc

? Tijk = Pijk ∪ Pij i∗k ∪ Pik i∗j ∪ Pi i∗j i∗k

= {ij , jk, ki , i j ∗ k , i i ∗ j , i i ∗ k , i i ∗ j ∗ k , i ∗ j i ∗ k, k i ∗ j , j i ∗ k}

X − XLC
246 T234

P234

Not more nice sets (up to collineations)
Proof: only combinatorial
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One algebra for each support?? Until now:
Hence there are 24 nice sets up to collineation:

Cardinal 0 1 2 3 4 5 6 10 15 21

How many 1 1 3 7 4 2 3 1 1 1 24

We have:

? All the possible supports (up to collineations)

? At least one Lie algebra for any nice set

⇒ At least 22 not isomorphic algebras not simple and not abelian

Exactly one algebra for each support? Not necessarily

Example T = {{1, 2}, {1, 3}, {1, 5}, {1, 6}}.
? Write η = (η12, η13, η15, η16) (recall ηij = 0 if {i , j} /∈ T )

? Any of them belongs to A provides a graded contraction

 provides a related Lie algebra Lη.

? For instance η1 = (1, 1, 1, 1), η2 = (2, 1, 1, 1) and η3 = (1, 1, 1, 2):

Lη1 ∼= Lη2 6∼= Lη3
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Orbits up to normalization: complex case
(Normalization preserves supports, conversely?)

Example: T = XL125 = {{1, 2}, {1, 5}, {2, 5}}.
? Take η : X → C with support T .

? Write η = (η12, η15, η25) ∈ (C×)3 (recall ηij = 0 if {i , j} /∈ T )

? Recall η ∼n η
′ ⇐⇒ ∃α : I → C× such that

ηij
η′ij

=
αiαj

αi∗j

? Hence η ∼n (1, 1, 1) ⇐⇒ ∃α : I → C× such that


α1α2

α5
= η12

α1α5

α2
= η15

α2α5

α1
= η25

? This system has solution in C; for instance α2 = α3 = α4 = α7 = 1 and:

α1 =
√
η12
√
η15, α2 =

√
η12
√
η25, α5 =

√
η15
√
η25

? Only one graded Lie algebra obtained here:

Lε = (Lg1 ⊕ Lg2 ⊕ Lg5 )︸ ︷︷ ︸
[L,L]ε ∼= 2sl(2,C)

semisimple

⊕ (Lg2 ⊕ Lg4 ⊕ Lg6 ⊕ Lg7 )︸ ︷︷ ︸
Z (Lε) = Rad(Lε)

centre
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Results on orbits up to normalization

Order sup(η) = {t1, . . . , ts} lexicographically.

Write η by (η(t1), . . . , η(ts)).

Theorem.
Let T be a nice set and η ∈ A such that sup(η) = T .

a) If T = {{1, 2}, {1, 3}, {1, 5}, {1, 6}}⇒ η ∼n (1, 1, 1, λ), and

(1, 1, 1, λ) ∼n (1, 1, 1, λ′)⇔ λ = λ′.

b) If T = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}}⇒ η ∼n (1, λ, 1, 1, λ), and

(1, λ, 1, 1, λ) ∼n (1, λ′, 1, 1, λ′)⇔ λ = ±λ′.

c) If T = X(1)⇒ η ∼n (1, λ, µ, 1, λ, µ), and

(1, λ, µ, 1, λ, µ) ∼n (1, λ′, µ′, 1, λ′, µ′)⇔ λ = ±λ′, µ = ±µ′.

d) Otherwise, η ∼n (1, . . . , 1).

Hence, we have 21 graded Lie algebras of dimension 14 obtained by
contracting the Z3

2-grading on g2, jointly with 3 families depending or one
or two parameters... Could be these Lie algebras isomorphic? Could...
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Equivalence classes A posteriori, they are not isomorphic

Theorem Not more!
That is, η ∼ η′ ⇔ η ∼n η

′

So, we have really obtained the classification of the graded contractions of Γg2

(no precedents in this part)

Main tool of the proof: Some specific facts on Γg2 : for each line

Li ⊕ Lj ⊕ Li∗j = two copies of so(3,C) = 〈e1, e2, e3〉
e1 e2 e3

e′1 e′2 e′3

 a graded isomorphism perhaps is not a scalar αi id in Li ,
but can be treated as an endomorphism of

a 2-dimensional vector space with properties
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Properties of the obtained Lie algebras
21 isolated and 3 infinite families , all of dimension 14

L
es

s
a

b
el

ia
n

M
or

e
a

b
el

ia
n

←−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−

• One is abelian;

• 13 Nilpotent (not abelian): one with nilindex 3 and the
remaining ones with nilindex 2;

• “ 7 ”Solvable (not nilpotent):

• A one-parametric family (of continuum graded Lie
algebras) 2-step solvable, dim z(Lε) = 4, dim[Lε,Lε] = 8,

• A one-parametric family of 2-step solvable Lie algebras,
dim z(Lε) = 2, dim[Lε,Lε] = 10,

• A two-parametric family of 2-step solvable Lie algebras,
dim z(Lε) = 0, dim[Lε,Lε] = 12,

• two with solvability index 3,
• two more with solvability index 2;

• One is sum of a semisimple Lie algebra with a 8-dim center;

• One is not reductive (without center);

• One is simple.
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Other “exceptional” Lie algebras
Z3

2-graded Lie algebras related to Octonions - First part

L = g2 = der(O)
∩
M = b3 = der(O) ⊕ ad(O0)
∩
N = d4 = der(O) ⊕ LO0 ⊕ RO0


O→ O

Lx(y) = xy
Rx(y) = yx

adx = Lx − Rx

Z3
2-grading on O⇒ Z3

2-grading on L, M and N . And ∀g 6= e:

Le = 0 Me = 0 Ne = 0
dimLg = 2 dimMg = 3 dimNg = 4

All of them P1+P2 ⇒ Nice sets = supports of the graded contractions of Γb3
and Γd4

=⇒ 21 isolated cases + 3 families of Lie algebras of dimension 21
and 21 isolated cases + 3 families of Lie algebras of dimension 28!
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Properties of the obtained algebras Case D4

21 isolated and 3 infinite families
All have dimension 28:

• One is abelian;

• 13 Nilpotent (not abelian): one with nilindex 3 and the remaining
ones with nilindex 2;

• “ 7 ”Solvable (not nilpotent):

• A one-parametric family (of continuum graded Lie algebras)
2-step solvable, dim z(Lε) = 8, dim[Lε,Lε] = 16,

• A one-parametric family of 2-step solvable Lie algebras,
dim z(Lε) = 4, dim[Lε,Lε] = 20,

• A two-parametric family of 2-step solvable Lie algebras,
dim z(Lε) = 0, dim[Lε,Lε] = 24,

• two with solvability index 3,
• two more with solvability index 2;

• One is sum of a semisimple Lie algebra and a center of dimension 16

• One is not reductive (without center);

• One is simple.
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The big exceptional Lie algebras
Z3

2-graded Lie algebras related to Octonions - Second part

Tits unified construction (1966)�� ��L = der(O) ⊕ O0 ⊗ J0 ⊕ der(J )

J = R  L = g2

J = H3(R)  L = f4
J = H3(C)  L = e6

J = H3(H)  L = e7

J = H3(O)  L = e8


Z3

2-gradings
directly induced from O
in all the cases

14
52
78

133
248

• Le = 0? NO

• dimLg independent of g(6= e)? YES

• Nice set are the supports again? NO

But generalized nice sets yes!!

This is another story....
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Final conclusions

Some of the achievements of this work have been:

? To avoid computer

? We have increased the dimension

? We have been able to continue the classification after
normalization process

? We have applied our results to a nice family of (considerably
big) Lie algebras

And the work in progress in this moment is:

? To classify generalized nice sets

? To board the real case
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Thank you for your attention!


