From simple and exceptional Lie algebras towards solvable and nilpotent ones

Cristina Draper Fontanals

Joint work with Juana Sánchez and Thomas Meyer
June 5-9, 2023, Lecce (Italy); Advances in Group Theory and Applications 2023

Lie Algebras (Setting)

Definition. A Lie algebra $(\mathfrak{g},[]$,$) over a field (today \mathbb{F}=\mathbb{R}, \mathbb{C})$ is an algebra satisfiying
\bigcirc Skewsymmetry: $[x, y]=-[y, x]$;
\bigcirc Jacobi identity: $[[x, y], z]+[[y, z], x]+[[z, x], y]=0$.
Definition. A Lie group G is a group and a differential manifold such that the product $(g, h) \mapsto g h$ and the inversion $g \mapsto g^{-1}$ are smooth maps.

Examples.

* In Geometry: If M is a diff. manifold, the algebra of vector fields $\mathfrak{X}(M)$
* In Analysis: stability group of a Pfaffian system, symmetries of solution spaces of PDEs...
* In Physics: used extensively in quantum mechanics and particle physics...

The founder of Lie group theory

Sophus Lie

Sophus Lie (1842-1899) discovered that continuous transformation groups (Lie groups) could be better understood by "linearizing" them, and studying the related generating vector fields. They are subject to a linearized version of the group law (commutator bracket) and have the structure of what is today called a Lie algebra.

Algebraic inspiration:

Each algebraic equation is related to a group (Galois group, which permutes the roots) in such a way that the equation can be solved by radicals when the group is solvable!

> Can we relate to any differential equation a differential Galois group such that both solvabilities are equivalent?

Evariste Galois
(1811-1832)

Main Correspondence Lie group - Lie algebra

Simply connected Lie groups \longleftrightarrow Lie algebras (over \mathbb{R})

$$
\begin{aligned}
& G \mapsto \\
& f: G \rightarrow H\left.\mapsto X \in \mathfrak{X}(G):\left(d L_{g}\right)_{h}\left(X_{h}\right)=X_{g h}\right\} \cong T_{e} G \\
&(d f)_{e}: T_{e} G \rightarrow T_{e} H
\end{aligned}
$$

Also subgroups \leftrightarrow subalgebras, normal subgroups \leftrightarrow ideals, etc
$\leftarrow:$ As $\mathfrak{g} \leq \operatorname{gl}(n, \mathbb{R})=\left(\operatorname{Mat}_{n \times n}(\mathbb{R}),[],\right), G={ }_{g r}<\exp (\mathfrak{g})$
\rightarrow : For $G \leq \operatorname{GL}(n, \mathbb{R}), \mathfrak{g}=\left\{X \in \operatorname{gl}(n, \mathbb{R}): e^{t X} \in G \forall t \in \mathbb{R}\right\}$
Simple examples:
\star Orthogonal group (preserving a metric)

$$
\rightsquigarrow \mathfrak{s o}(n, \mathbb{F})=\left\{A \in \operatorname{gl}(n, \mathbb{F}): A+A^{t}=0\right\}
$$

* Special linear group (preserving a volume form)

$$
\rightsquigarrow \mathfrak{s l}(n, \mathbb{F})=\{A \in \operatorname{gl}(n, \mathbb{F}): \operatorname{tr}(A)=0\}
$$

* Symplectic group (preserving a symplectic form)

$$
\rightsquigarrow \mathfrak{s p}(n, \mathbb{F})=\left\{A \in \operatorname{gl}(2 n, \mathbb{F}): A C+C A^{t}=0\right\}, C=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

Killing 1887: Classification of F-D.simple Lie \mathbb{C}-alg.

"The greatest mathematical paper of all time"
$\star \mathfrak{s o}(n, \mathbb{C}), \mathfrak{s l}(n, \mathbb{C}), \mathfrak{s p}(n, \mathbb{C})$

* A SURPRISE: of dimension 14 , called \mathfrak{g}_{2}
* Four additional exceptional examples: \mathfrak{f}_{4} (52), \mathfrak{e}_{6} (78), \mathfrak{e}_{7} (133), \mathfrak{e}_{8} (248).
A_{n}
$0 \cdots 0-0-0-0$
$B_{n} 0 \cdots 0-0=$
$C_{n} \bullet \cdots \bullet \bullet \bullet$
$D_{n} 000000000$
$G_{2} O$

E_{7}

Nilpotent Lie algebras

Definition. For \mathfrak{g} a Lie algebra, the derived series/lower central series are defined as

$$
\mathfrak{g}^{(n+1)}=\left[\mathfrak{g}^{(n)}, \mathfrak{g}^{(n)}\right], \quad \mathfrak{g}^{n+1}=\left[\mathfrak{g}, \mathfrak{g}^{n}\right]
$$

$\star \mathfrak{g}$ is solvable if $\mathfrak{g}^{(n)}=0$ for some n;
$\star \mathfrak{g}$ is nilpotent if $\mathfrak{g}^{n}=0$ for some n.
What's known:

- $\{$ Abelian $\} \subsetneq\{$ Nilpotent $\} \subsetneq\{$ Solvable $\}$
- Classification in low dimensions (nilpotents up to dimension 7?)
- Levi decomposition: \mathfrak{g} fin- $\operatorname{dim} \Rightarrow \mathfrak{g}=\operatorname{Rad}(\mathfrak{g}) \rtimes$ semisimple.

Our aim

To find new families of solvable/nilpotent Lie algebras by deforming the (simple) exceptional ones

Motivation from Physics

a CLASS OF OPERATOR ALGRBRAS WHCA ARE DETERMINED BI GROUPS
BYI. E. BEAKL

The present paper we dofine zund treat two dusd with

 on elenaentary partiole,

 Special and we give dis discrets and was of operatots wimerators with phaystritheoriea, the anaing case. Aithouk ivively, the ddeal probiens, are ise investypated the gene of linuting operatore exchasio nathenatical preson we have invenounded operators bounded ope and aiso certain nas. For tbis reasus, most of the umberaterf, and shown

 them, are foms. This ree rively womple, the diugonal foms. wint relatively

 A spate with an inverient, res with norn, wil
A spartion over the space of an
Segal, 1951:
Inonu and Wigner, 1953:
Galilei group limiting case of the relativistic mechanics group

Sequence of groups whose structure constants converge toward the structure constants of a non-isomorphic group

A world of concepts:

Continuous contractions // Degenerations // Graded contractions

Continuous contractions

Def. \mathbb{F} field, \mathcal{L} Lie \mathbb{F}-algebra.
If $U:(0,1] \rightarrow \mathrm{GL}(\mathcal{L}), \varepsilon \in(0,1] \mapsto U_{\varepsilon}$, we define

$$
[x, y]_{\varepsilon}=U_{\varepsilon}^{-1}\left(\left[U_{\varepsilon}(x), U_{\varepsilon}(y)\right]\right)
$$

Note $\mathcal{L}_{\varepsilon}:=\left(\mathcal{L},[,]_{\varepsilon}\right) \cong \mathcal{L}$.
Assume for any x, y there exists $\lim _{\varepsilon \rightarrow 0}[x, y]_{\varepsilon}\left(=:[x, y]_{0}\right)$

$$
\begin{aligned}
& \Rightarrow \mathcal{L}_{0}:=\left(\mathcal{L},[,]_{0}\right) \text { is a Lie algebra called } \\
& \text { one-parametric continuous contraction of } \mathcal{L} .
\end{aligned}
$$

Example

$$
\mathcal{L}=\mathfrak{s o}(3)=\left\langle e_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right), e_{2}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), e_{3}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right\rangle
$$

Take $U_{\varepsilon}: e_{1} \mapsto \varepsilon e_{1}, \quad e_{2} \mapsto \varepsilon e_{2}, \quad e_{3} \mapsto e_{3}$

$$
\left.\left.\begin{array}{l}
{\left[e_{1}, e_{2}\right]_{\varepsilon}=\varepsilon^{2} e_{3}} \\
{\left[e_{2}, e_{3}\right]_{\varepsilon}=e_{1}} \\
{\left[e_{3}, e_{1}\right]_{\varepsilon}=e_{2}}
\end{array}\right\} \Rightarrow \mathcal{L}_{\varepsilon} \cong \mathcal{L} \quad \text { but } \quad \begin{array}{l}
{\left[e_{1}, e_{2}\right]_{0}=0} \\
{\left[e_{2}, e_{3}\right]_{0}=e_{1}} \\
{\left[e_{3}, e_{1}\right]_{0}=e_{2}}
\end{array}\right\} \Rightarrow \mathcal{L}_{0} \text { solvable }
$$

Degenerations

\mathbb{F} arbitrary field, $V \mathbb{F}$-vector space of dimension n
Consider the variety of Lie algebras on V :
$\mathcal{L}_{n}(V)=\{\mu: V \times V \rightarrow V:(V, \mu)$ Lie algebra $\}$
$\equiv\left\{\mu \in V^{*} \otimes V^{*} \otimes V:(V, \mu)\right.$ Lie algebra $\}$ subvariety of $V^{*} \otimes V^{*} \otimes V$
$\equiv C_{n}(\mathbb{F})=\left\{\left(c_{i j}^{k}\right) \in \mathbb{F}^{n^{3}}: \begin{array}{l}0=c_{i j}^{k}+c_{j i}^{k} \\ 0=\sum_{r=1}^{n}\left(c_{i j}^{r} c_{k r}^{s}+c_{j k}^{r} c_{i r}^{s}+c_{k i}^{r} c_{j r}^{s}\right)\end{array}\right\}$
$\mathrm{GL}(V)$ acts on $\mathcal{L}_{n}(V): \quad g \cdot \mu(x, y):=g\left(\mu\left(g^{-1} x, g^{-1} y\right)\right)$ \rightsquigarrow orbit $O(\mu)=\{g \cdot \mu: g \in \operatorname{GL}(V)\}$

Def. $\mu, \lambda \in \mathcal{L}_{n}(V) . \mu$ degenerates to λ if $\lambda \in \overline{O(\mu)}$
(clausure in the Zariski topology)

- λ a degeneration of μ is trivial if $\mu \approx \lambda$
- μ is rigid if $O(\mu)$ is open in $\mathcal{L}_{n}(V)$

Gradings

For graded contractions we need a grading:
G abelian group, \mathcal{L} Lie algebra over \mathbb{F},
Def. $\Gamma: \mathcal{L}=\oplus_{g \in G} \mathcal{L}_{g}$ is a G-grading on \mathcal{L} if $\left[\mathcal{L}_{g}, \mathcal{L}_{h}\right] \subset \mathcal{L}_{g+h} \quad \forall g, h \in G$.
Example. On $\mathcal{L}=\mathfrak{s l}_{2}(\mathbb{F})$:

$$
\begin{aligned}
& G=\mathbb{Z}, \mathcal{L}_{0}=\langle\underbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}_{h}\rangle, \mathcal{L}_{1}=\langle\underbrace{\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)}_{e}\rangle, \mathcal{L}_{-1}=\langle\underbrace{\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right)}_{f}\rangle \\
& G=\mathbb{Z}_{2}^{2}, \mathcal{L}_{(\overline{1}, \overline{0})}=\left\langle\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right\rangle, \mathcal{L}_{(\overline{1}, \overline{1})}=\left\langle\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle, \mathcal{L}_{(\overline{0}, \overline{1})}=\left\langle\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle
\end{aligned}
$$

Graded contractions

G abelian group, $\Gamma: \mathcal{L}=\oplus_{g \in G} \mathcal{L}_{g}$ a Lie algebra over \mathbb{F}.
Def. A graded contraction of Γ is a map $\varepsilon: G \times G \rightarrow \mathbb{F}$
such that $\mathcal{L}^{\varepsilon}=\left(\mathcal{L},[,]^{\varepsilon}\right)$ is a Lie algebra,
where $[x, y]^{\varepsilon}:=\varepsilon(g, h)[x, y] \quad$ if $x \in \mathcal{L}_{g}, y \in \mathcal{L}_{h}, g, h \in G$,
Two opposite examples:

$$
\begin{aligned}
& \varepsilon(g, h)=1 \forall g, h \Rightarrow \mathcal{L}^{\varepsilon}=\mathcal{L} \\
& \varepsilon(g, h)=0 \forall g, h \Rightarrow \mathcal{L}^{\varepsilon} \text { abelian }
\end{aligned}
$$

Source for finding solvable and nilpotent Lie algebras

Example:

$\mathcal{L}=\mathfrak{s l}_{2}(\mathbb{R}) \neq \mathfrak{s o}(3)=\mathcal{M}$
but we can pass from \mathcal{L} to \mathcal{M} by a graded contraction:

$$
\begin{array}{rll}
\mathcal{L}^{\varepsilon} & \xrightarrow{\rightrightarrows} & \mathcal{M} \\
h & \mapsto & -e_{2} \\
e & \mapsto & e_{3} \\
f & \mapsto & e_{1}
\end{array}
$$

$$
\varepsilon: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}
$$

for

$$
\begin{aligned}
& \varepsilon(-1,1)=\varepsilon(1,-1)=1 \\
& \varepsilon(0, n)=\varepsilon(n, 0)=0
\end{aligned}
$$

Problem of Classification

Given $\Gamma: \mathcal{L}=\oplus_{g \in G} \mathcal{L}_{g}$ a G-grading,

how many different Lie algebras

can be obtained by a graded contraction?
Def. If $\varepsilon, \varepsilon^{\prime}$ are graded contractions of Γ, ε is equivalent to $\varepsilon^{\prime}\left(\varepsilon \sim \varepsilon^{\prime}\right)$ if $\exists \varphi: \mathcal{L}^{\varepsilon} \rightarrow \mathcal{L}^{\varepsilon^{\prime}}$ (graded) isomorphism of Lie algebras

General AIM: to classify \{graded contractions of Γ \}/~

Def. ε is equivalent by normalization to $\varepsilon^{\prime}\left(\varepsilon \sim_{n} \varepsilon^{\prime}\right)$ if $\exists \varphi: \mathcal{L}^{\varepsilon} \rightarrow \mathcal{L}^{\varepsilon^{\prime}}$ isomorphism of graded Lie algebras with $\left.\varphi\right|_{\mathcal{L}_{g}}=\alpha_{g}$ id

Remark: of course $\varepsilon \sim_{n} \varepsilon^{\prime} \Rightarrow \varepsilon \sim \varepsilon^{\prime}$, but \sim_{n}-examples are easy to obtain:

$$
\text { given } \varepsilon \text { and } \alpha: G \rightarrow \mathbb{F}^{\times} \Rightarrow\left\{\begin{array}{l}
\varepsilon^{\alpha}: G \times G \rightarrow \mathbb{F}, \\
\varepsilon^{\alpha}(g, h)=\varepsilon(g, h) \frac{\alpha(g) \alpha(h)}{\alpha(g+h)}
\end{array}\right\} \sim_{n} \varepsilon
$$

How a graded contraction is?

Given a map $\varepsilon: G \times G \rightarrow \mathbb{F}$, and $\Gamma: \mathcal{L}=\oplus_{g \in G} \mathcal{L}_{g}$ a G-grading on \mathcal{L},

Which condition has ε to satisfy to be a graded contraction?

Easy answer:

- $[,]_{\varepsilon}$ skew-symmetric $\Leftrightarrow(\varepsilon(g, h)-\varepsilon(h, g))[x, y]=0$
- [, $]_{\varepsilon}$ satisfies Jacobi identity $\Leftrightarrow \forall k, g, h \in G, x \in \mathcal{L}_{g}, y \in \mathcal{L}_{h}, z \in \mathcal{L}_{k}$,

$$
(\varepsilon(g, h, k)-\varepsilon(k, g, h))[x,[y, z]]+(\varepsilon(h, k, g)-\varepsilon(k, g, h))[y,[z, x]]=0
$$

$$
\text { where } \varepsilon(g, h, k):=\varepsilon(g, h+k) \varepsilon(h, k)
$$

Enough conditions: $\forall g, h, k \in G$,

$$
\begin{aligned}
& \star \varepsilon(g, h)=\varepsilon(h, g) \quad \text { not necessary! (in general) } \\
& \star \varepsilon(g, h, k)=\varepsilon(k, g, h) \quad
\end{aligned}
$$

\Rightarrow the study of the graded contractions depends strongly on Γ !

EARLIER WORKS on graded contractions

Some precedents in literature:

* de Montigny, Patera: J. Phys. A 1991: first work (\mathbb{Z}_{2}-gradings)
* Couture, Patera, Sharp, Winternitz: JMP 1991: $\mathfrak{s l}(3, \mathbb{C})$
* Hrivnák, Novotný, Patera, Tolar, LAA 2006: $\mathfrak{s l}(3, \mathbb{C}), \mathbb{Z}_{3}^{2}$-grad (Pauli)
* Hrivnák, Novotný, JMP 2013: $\mathfrak{s l}(3, \mathbb{C}), \mathbb{Z}_{2}^{3}$-grading (Gell-Mann)
* Weimar-Woods, Can. J. Math. 2006: general structure
* Escobar, Núñez, Pérez-Fernández, 2018: filiform Lie algebras

Our (first) aim:

The 14-dimensional exceptional Lie algebra \mathfrak{g}_{2} endowed with a grading in 2-dimensional pieces

What is $\mathfrak{g}_{2} ?$

Octonion Algebra

Cayley-Dickson doubling process: $\mathbb{F} \xrightarrow{\mathbb{Z}_{2}} \mathbb{F} \oplus \mathbb{F} \mathbf{i} \xrightarrow{\mathbb{Z}_{2}} \mathbb{H} \xrightarrow{\mathbb{Z}_{2}} \mathbb{O}$

$$
\begin{array}{ll}
\mathbb{O}=\mathbb{H} \oplus \mathbb{H} \mathbf{I} \text { is } \mathbb{Z}_{2}^{3} \text {-graded: } \\
\mathbb{O}_{(000)}=\mathbb{F} 1 & \mathbb{O}_{(001)}=\mathbb{F} \mathbf{I} \\
\mathbb{O}_{(100)}=\mathbb{F} \mathbf{i} & \mathbb{O}_{(101)}=\mathbb{F} \mathbf{i l} \\
\mathbb{O}_{(010)}=\mathbb{F} \mathbf{j} & \underbrace{\mathbb{O}_{(011)}=\mathbb{F} \mathbf{l}}_{\mathbb{H}} \\
\underbrace{}_{\mathbb{O}_{(110)}=\mathbb{F} \mathbf{k}} & \underbrace{\mathbb{O}_{(11)}=\mathbb{F} \mathbf{k} \mathbf{I}}_{(111)}
\end{array}
$$

$(\operatorname{Der}(\mathbb{O}),[]$,$) is a simple Lie algebra of dimension 14$ of type G_{2} !

\mathfrak{g}_{2} AND ITS \mathbb{Z}_{2}^{3}-GRADING

$$
\mathcal{L}=\operatorname{Der}(\mathbb{O})=\{d: \mathbb{O} \rightarrow \mathbb{O} \text { lin }: d(x y)=d(x) y+x d(y) \forall x, y \in \mathbb{O}\}
$$

is a simple Lie algebra of dimension 14 of type G_{2}
As \mathbb{O} is \mathbb{Z}_{2}^{3}-graded $\Rightarrow \Gamma_{g_{2}}: \mathcal{L}=\operatorname{Der}(\mathbb{O})=\oplus_{g \in \mathbb{Z}_{2}^{3}} \mathcal{L}_{g}$ is \mathbb{Z}_{2}^{3}-graded too:

$$
\mathcal{L}_{g}=\left\{d \in \operatorname{Der}(\mathbb{O}): d\left(\mathbb{O}_{h}\right) \subset \mathbb{O}_{g+h} \forall h \in \mathbb{Z}_{2}^{3}\right\}
$$

Main features of this grading

- Fine grading (it has no proper refinements)
- Non-toral grading (not compatible with any root decomposition)

How its homogeneous components are?

* $\mathcal{L}_{e}=0$,
$\star \operatorname{dim} \mathcal{L}_{g}=2$ for all $e \neq g \in \mathbb{Z}_{2}^{3}$: each \mathcal{L}_{g} is a Cartan subalgebra \Rightarrow Any homogeneous element is semisimple \rightsquigarrow This $\Gamma_{\mathfrak{g}_{2}}$ is the grading we are going to contract

Graded contractions of $\Gamma_{\mathfrak{g}_{2}}$

AIM: To classify graded contractions of $\Gamma_{\mathfrak{g}_{2}}$ up to \sim
As $\mathcal{L}_{e}=0 \Rightarrow\left[\mathcal{L}_{g}, \mathcal{L}_{g}\right]=\left[\mathcal{L}_{g}, \mathcal{L}_{e}\right]=\left[\mathcal{L}_{e}, \mathcal{L}_{g}\right]=0 \quad \forall g \in \mathbb{Z}_{2}^{3} \rightsquigarrow$
Def. $\varepsilon: G \times G \rightarrow \mathbb{F}$ is said admissible if $\varepsilon(g, g)=\varepsilon(g, e)=\varepsilon(e, g)=0$
Not every graded contraction is admissible but
Lemma. If $\varepsilon: G \times G \rightarrow \mathbb{F}$ is a graded contraction of $\Gamma_{\mathfrak{g}_{2}}$,
$\Rightarrow \exists \varepsilon^{\prime}$ admissible graded contraction of $\Gamma_{\mathfrak{g}_{2}}$ equivalent to ε.

More properties of $\Gamma_{g_{2}}$ relevant for our approach

(P1) $\left[\mathcal{L}_{g}, \mathcal{L}_{h}\right]=\mathcal{L}_{g+h}$ if $g, h, g+h \neq e$;
(P2) If $\langle g, h, k\rangle=\mathbb{Z}_{2}^{3} \Rightarrow \exists x \in \mathcal{L}_{g}, y \in \mathcal{L}_{h}, z \in \mathcal{L}_{k}$ such that $\{[x,[y, z]],[y,[z, x]]\}$ linearly independent set

Consequence: Fixed $\varepsilon: G \times G \rightarrow \mathbb{F}$ admissible map,

$$
\varepsilon \text { graded contraction } \Leftrightarrow\left\{\begin{array}{l}
\varepsilon(g, h)=\varepsilon(h, g) \\
\varepsilon(g, h, k)=\varepsilon(h, k, g) \text { if }\langle g, h, k\rangle=\mathbb{Z}_{2}^{3}
\end{array}\right.
$$

\rightsquigarrow We can forget of the grading $\Gamma_{\mathfrak{g}_{2}}$ and think only of the grading group \mathbb{Z}_{2}^{3}

Towards a combinatorial approach
 Cleaning a little bit

In admissible graded contractions of $\Gamma_{\mathfrak{g}_{2}}$ the only important thing is the image of a pair $\{g, h\}$ with $g \neq h \neq e$, so:

\star Forget octonions in Fano plane
\star Think only of the indices $I=\{1,2,3,4,5,6,7\}$
$\star i * j \in I$ is (partially) defined by $g_{i * j}=g_{i}+g_{j}$:

$$
\begin{array}{llll}
g_{0}=(\overline{0}, \overline{0}, \overline{0}) & g_{1}=(\overline{1}, \overline{0}, \overline{0}) & g_{2}=(\overline{0}, \overline{1}, \overline{0}) & g_{3}=(\overline{0}, \overline{0}, \overline{1}) \\
g_{4}=(\overline{1}, \overline{1}, \overline{1}) & g_{5}=(\overline{1}, \overline{1}, \overline{0}) & g_{6}=(\overline{1}, \overline{0}, \overline{1}) & g_{7}=(\overline{0}, \overline{1}, \overline{1})
\end{array}
$$

\star We call $\{i j k\}$ a generating triplet if $\left\langle g_{i}, g_{j}, g_{k}\right\rangle=\mathbb{Z}_{2}^{3}$

* $X=\{\{i, j\}: i \neq j, i, j \in I\} 21$ elements
$\left\{\begin{array}{l}\text { admissible graded } \\ \text { contractions of } \Gamma_{\mathfrak{g}_{2}}\end{array}\right\} \xrightarrow{1-1} \mathcal{A}=\left\{\eta: X \rightarrow \mathbb{F}: \begin{array}{l}\eta_{i j k}=\eta_{j k i} \\ \forall\{i j k\} \text { generating triplet }\end{array}\right\}$
$\varepsilon \quad \mapsto \quad \eta^{\varepsilon}: \begin{array}{cl}X & \rightarrow \mathbb{F} \\ \{i, j\} & \mapsto \\ \eta_{i j}^{\varepsilon}:=\varepsilon\left(g_{i}, g_{j}\right)\end{array}$
Notation: $\eta_{i j k}:=\eta_{i j * k} \eta_{j k}$

How to find elements in \mathcal{A} ?

Recall: $\mathcal{A}=\left\{\eta: X \rightarrow \mathbb{F}: \eta_{i j k}=\eta_{j k i} \forall\{i j k\}\right.$ generating triplet $\}$ Example of an element in \mathcal{A} :

$$
\begin{array}{rllllll}
\eta: X=12 & 13 & 14 & 15 & 16 & 17 \rightarrow \mathbb{F} \\
& 23 & 24 & 25 & 26 & 27 \\
& & 34 & 35 & 36 & 37 \\
& & & 45 & 46 & 47 \\
& & & & 56 & 57 \\
& & & & & 67 \\
& & & & & * \mapsto 1 \\
& & & & & * \mapsto 0
\end{array}
$$

What is what we need to find examples? $\sup (\eta):=\{t \in X: \eta(t) \neq 0\}$
If some $\eta_{i j k} \neq 0 \Longrightarrow \eta_{j k i} \neq 0$ and $\eta_{k i j} \neq 0$
Example: If

\rightsquigarrow the support is not arbitrary: it satisfies a kind of absorbing property

Nice sets

If $\{i, j, k\}$ is a generating triplet, take

$$
P_{i j k}:=\{\{i, j\},\{j, k\},\{k, i\},\{i, j * k\},\{j, k * i\},\{k, i * j\}\} \subset X .
$$

Def. $T \subset X$ is said a nice set if

$$
\text { whenever }\{j, k\},\{i, j * k\} \in T \text { then } P_{i j k} \subset T \text {. }
$$

Proposition

\star If $\eta \in \mathcal{A}$, the support of η is a nice set;

* For any nice set T, the map $\eta^{T} \in \mathcal{A}$ for η^{T}

$$
\left.\begin{array}{ccc}
X & \rightarrow & \mathbb{F} \\
t \in T & \mapsto & 1 \\
t \notin T & \mapsto & 0
\end{array}\right\}
$$

\rightsquigarrow next aim: to classify nice sets

Collineations

Given a grading Γ on a Lie algebra \mathcal{L} :
$\diamond \operatorname{Aut}(\Gamma)=\left\{f \in \operatorname{Aut}(\mathcal{L}): \forall g \in G\right.$ there is g^{\prime} with $\left.f\left(\mathcal{L}_{g}\right) \subseteq \mathcal{L}_{g^{\prime}}\right\}$.
$\diamond \operatorname{Stab}(\Gamma)=\left\{f \in \operatorname{Aut}(\mathcal{L}): f\left(\mathcal{L}_{g}\right) \subseteq \mathcal{L}_{g} \forall g \in \mathcal{L}\right\}$.
\diamond The Weyl group of Γ is the quotient group $\mathcal{W}(\Gamma)=\operatorname{Aut}(\Gamma) / \operatorname{Stab}(\Gamma)$.
It reduces the quadratic system of equations which gives the graded contractions
Our case. $\mathcal{W}\left(\Gamma_{\mathfrak{g}_{2}}\right) \cong \operatorname{Aut}\left(\mathbb{Z}_{2}^{3}\right)=\operatorname{Gl}\left(3, \mathbb{Z}_{2}\right) \cong \operatorname{Coll} I$:
Def. A bijection $\sigma: I \rightarrow I$ is said to be a collineation
if it applies lines to lines, i.e., $\sigma(i * j)=\sigma(i) * \sigma(j)$.

So we have an action $\operatorname{Coll} I \times \mathcal{A} \rightarrow \mathcal{A} \quad$ and $\sigma \cdot \eta \sim \eta$
$(\sigma, \eta) \mapsto \sigma \cdot \eta: X \rightarrow \mathbb{F}$
$\{i j\} \mapsto \eta_{\sigma(i) \sigma(j)}$

Main examples of nice sets

If L is a line,

$$
X_{L}=\{t \in X: t \subset L\}
$$

If i is an index,

$$
X_{(i)}=\{t \in X: i \in t\}
$$

$X^{(i)}=\{\{j k\} \in X: j * k=i\}$

Remaining nice sets

\emptyset, X and

$\star P_{i j k}=\{i j, j k, k i, i j * k, j k * i, k i * j\} \quad$ if $\{i j k\}$ generating triplet,

* $X \backslash X_{L c}$
$\star \quad T_{i j k}=P_{i j k} \cup P_{i j i * k} \cup P_{i k i * j} \cup P_{i i * j i * k}$

$$
=\{i j, j k, k i, i j * k, i i * j, i i * k, i i * j * k, i * j i * k, k i * j, j i * k\}
$$

Not more nice sets (up to collineations)
Proof: only combinatorial

One algebra for each support?? Until now:

Hence there are 24 nice sets up to collineation:

Cardinal	0	1	2	3	4	5	6	10	15	21	
How many	1	1	3	7	4	2	3	1	1	1	24

We have:
\star All the possible supports (up to collineations)
\star At least one Lie algebra for any nice set
\Rightarrow At least 22 not isomorphic algebras not simple and not abelian
Exactly one algebra for each support? Not necessarily
Example $T=\{\{1,2\},\{1,3\},\{1,5\},\{1,6\}\}$.

* Write $\eta=\left(\eta_{12}, \eta_{13}, \eta_{15}, \eta_{16}\right)\left(\right.$ recall $\eta_{i j}=0$ if $\left.\{i, j\} \notin T\right)$
* Any of them belongs to $\mathcal{A} \rightsquigarrow$ provides a graded contraction
\rightsquigarrow provides a related Lie algebra \mathcal{L}^{η}.
* For instance $\eta_{1}=(1,1,1,1), \eta_{2}=(2,1,1,1)$ and $\eta_{3}=(1,1,1,2)$:

$$
\mathcal{L}^{\eta_{1}} \cong \mathcal{L}^{\eta_{2}} \not \equiv \mathcal{L}^{\eta_{3}}
$$

Orbits up To normalization: COMPLEX CASE

(Normalization preserves supports, conversely?)
Example: $T=X_{L_{125}}=\{\{1,2\},\{1,5\},\{2,5\}\}$.

* Take $\eta: X \rightarrow \mathbb{C}$ with support T.
* Write $\eta=\left(\eta_{12}, \eta_{15}, \eta_{25}\right) \in\left(\mathbb{C}^{\times}\right)^{3} \quad\left(\right.$ recall $\eta_{i j}=0$ if $\left.\{i, j\} \notin T\right)$
\star Recall $\eta \sim_{n} \eta^{\prime} \Longleftrightarrow \exists \alpha: I \rightarrow \mathbb{C}^{\times}$such that $\frac{\eta_{i j}}{\eta_{i j}}=\frac{\alpha_{i} \alpha_{j}}{\alpha_{i * j}}$
\star Hence $\eta \sim_{n}(1,1,1) \Longleftrightarrow \exists \alpha: I \rightarrow \mathbb{C} \times$ such that $\left\{\begin{array}{l}\frac{\alpha_{1} \alpha_{2}}{\alpha_{5}}=\eta_{12} \\ \frac{\alpha_{1} \alpha_{2}}{\alpha_{2}}=\eta_{15} \\ \frac{\alpha_{2} \alpha_{5}}{\alpha_{1}}=\eta_{25}\end{array}\right.$
* This system has solution in \mathbb{C}; for instance $\alpha_{2}=\alpha_{3}=\alpha_{4}=\alpha_{7}=1$ and:

$$
\alpha_{1}=\sqrt{\eta_{12}} \sqrt{\eta_{15}}, \quad \alpha_{2}=\sqrt{\eta_{12}} \sqrt{\eta_{25}}, \quad \alpha_{5}=\sqrt{\eta_{15}} \sqrt{\eta_{25}}
$$

* Only one graded Lie algebra obtained here:

$$
\mathcal{L}^{\varepsilon}=\underbrace{\left(\mathcal{L}_{g_{1}} \oplus \mathcal{L}_{g_{2}} \oplus \mathcal{L}_{g_{5}}\right)}_{\substack{[\mathcal{L}, \mathcal{L}]^{\varepsilon} \cong 2 \mathfrak{s l}(2, \mathbb{C}) \\ \text { semisimple }}} \oplus \underbrace{\left(\mathcal{L}_{g_{2}} \oplus \mathcal{L}_{g_{4}} \oplus \mathcal{L}_{g_{6}} \oplus \mathcal{L}_{g_{7}}\right)}_{\underset{Z}{ }\left(\mathcal{L}^{\varepsilon}\right)=\operatorname{Rad}\left(\mathcal{L}^{\varepsilon}\right)}
$$

Results on orbits up to normalization

Order $\sup (\eta)=\left\{t_{1}, \ldots, t_{s}\right\}$ lexicographically.
Write η by $\left(\eta\left(t_{1}\right), \ldots, \eta\left(t_{s}\right)\right)$.

Theorem.

Let T be a nice set and $\eta \in \mathcal{A}$ such that $\sup (\eta)=T$.
a) If $T=\{\{1,2\},\{1,3\},\{1,5\},\{1,6\}\} \Rightarrow \eta \sim_{n}(1,1,1, \lambda)$, and

$$
(1,1,1, \lambda) \sim_{n}\left(1,1,1, \lambda^{\prime}\right) \Leftrightarrow \lambda=\lambda^{\prime}
$$

b) If $T=\{\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\}\} \Rightarrow \eta \sim_{n}(1, \lambda, 1,1, \lambda)$, and

$$
(1, \lambda, 1,1, \lambda) \sim_{n}\left(1, \lambda^{\prime}, 1,1, \lambda^{\prime}\right) \Leftrightarrow \lambda= \pm \lambda^{\prime}
$$

c) If $T=X_{(1)} \Rightarrow \eta \sim_{n}(1, \lambda, \mu, 1, \lambda, \mu)$, and

$$
(1, \lambda, \mu, 1, \lambda, \mu) \sim_{n}\left(1, \lambda^{\prime}, \mu^{\prime}, 1, \lambda^{\prime}, \mu^{\prime}\right) \Leftrightarrow \lambda= \pm \lambda^{\prime}, \mu= \pm \mu^{\prime}
$$

d) Otherwise, $\eta \sim_{n}(1, \ldots, 1)$.

Hence, we have 21 graded Lie algebras of dimension 14 obtained by contracting the \mathbb{Z}_{2}^{3}-grading on \mathfrak{g}_{2}, jointly with 3 families depending or one or two parameters... Could be these Lie algebras isomorphic? Could...

EQUIVALENCE CLASSES A posteriori, they are not isomorphic

Theorem Not more!

That is, $\eta \sim \eta^{\prime} \Leftrightarrow \eta \sim_{n} \eta^{\prime}$
So, we have really obtained the classification of the graded contractions of $\Gamma_{\mathfrak{g}_{2}}$ (no precedents in this part)

Main tool of the proof: Some specific facts on $\Gamma_{\mathfrak{g}_{2}}$: for each line

\rightsquigarrow a graded isomorphism perhaps is not a scalar α_{i} id in \mathcal{L}_{i}, but can be treated as an endomorphism of a 2-dimensional vector space with properties

Properties of the obtained Lie algebras

21 isolated and 3 infinite families, all of dimension 14

- One is abelian;
- 13 Nilpotent (not abelian): one with nilindex 3 and the remaining ones with nilindex 2;
- " 7 "Solvable (not nilpotent):
- A one-parametric family (of continuum graded Lie algebras) 2-step solvable, $\operatorname{dim} \mathfrak{z}\left(\mathcal{L}_{\varepsilon}\right)=4, \operatorname{dim}\left[\mathcal{L}_{\varepsilon}, \mathcal{L}_{\varepsilon}\right]=8$,
- A one-parametric family of 2 -step solvable Lie algebras, $\operatorname{dim} \mathfrak{z}\left(\mathcal{L}_{\varepsilon}\right)=2, \operatorname{dim}\left[\mathcal{L}_{\varepsilon}, \mathcal{L}_{\varepsilon}\right]=10$,
- A two-parametric family of 2-step solvable Lie algebras, $\operatorname{dim} \mathfrak{z}\left(\mathcal{L}_{\varepsilon}\right)=0, \operatorname{dim}\left[\mathcal{L}_{\varepsilon}, \mathcal{L}_{\varepsilon}\right]=12$,
- two with solvability index 3 ,
- two more with solvability index 2 ;
- One is sum of a semisimple Lie algebra with a 8 -dim center;
- One is not reductive (without center);
- One is simple.

Other "exceptional" Lie algebras

\mathbb{Z}_{2}^{3}-graded Lie algebras related to Octonions - First part

$$
\left.\begin{array}{rl}
\mathcal{L} & =\mathfrak{g}_{2}=\mathfrak{d e r}(\mathbb{O}) \\
\cap & =\mathfrak{b}_{3}=\mathfrak{d e r}(\mathbb{O}) \oplus \operatorname{ad}\left(\mathbb{O}_{0}\right) \\
\mathcal{M} & \\
\mathcal{N} & =\mathfrak{d}_{4}=\mathfrak{d e r}(\mathbb{O}) \oplus L_{\mathbb{O}_{0}} \oplus R_{\mathbb{O}_{0}}
\end{array}\right\}
$$

$$
\begin{aligned}
\mathbb{O} & \rightarrow \mathbb{O} \\
L_{x}(y) & =x y \\
R_{x}(y) & =y x \\
\mathrm{ad}_{x}=L_{x} & -R_{x}
\end{aligned}
$$

\mathbb{Z}_{2}^{3}-grading on $\mathbb{O} \Rightarrow \mathbb{Z}_{2}^{3}$-grading on \mathcal{L}, \mathcal{M} and \mathcal{N}. And $\forall g \neq e$:

$$
\begin{array}{l|l|l}
\mathcal{L}_{e}=0 & \mathcal{M}_{e}=0 & \mathcal{N}_{e}=0 \\
\operatorname{dim} \mathcal{L}_{g}=2 & \operatorname{dim} \mathcal{M}_{g}=3 & \operatorname{dim} \mathcal{N}_{g}=4
\end{array}
$$

All of them $\mathrm{P} 1+\mathrm{P} 2 \Rightarrow$ Nice sets $=$ supports of the graded contractions of $\Gamma_{\mathfrak{b}_{3}}$ and $\Gamma_{\mathfrak{D}_{4}}$
$\Longrightarrow \quad 21$ isolated cases +3 families of Lie algebras of dimension 21 and 21 isolated cases +3 families of Lie algebras of dimension 28 !

Properties of the obtained algebras Case D_{4}

21 isolated and 3 infinite families

All have dimension 28:

- One is abelian;
- 13 Nilpotent (not abelian): one with nilindex 3 and the remaining ones with nilindex 2;
- " 7 "Solvable (not nilpotent):
- A one-parametric family (of continuum graded Lie algebras) 2-step solvable, $\operatorname{dim} \mathfrak{z}\left(\mathcal{L}_{\varepsilon}\right)=8, \operatorname{dim}\left[\mathcal{L}_{\varepsilon}, \mathcal{L}_{\varepsilon}\right]=16$,
- A one-parametric family of 2 -step solvable Lie algebras, $\operatorname{dim} \mathfrak{z}\left(\mathcal{L}_{\varepsilon}\right)=4, \operatorname{dim}\left[\mathcal{L}_{\varepsilon}, \mathcal{L}_{\varepsilon}\right]=20$,
- A two-parametric family of 2-step solvable Lie algebras, $\operatorname{dim} \mathfrak{z}\left(\mathcal{L}_{\varepsilon}\right)=0, \operatorname{dim}\left[\mathcal{L}_{\varepsilon}, \mathcal{L}_{\varepsilon}\right]=24$,
- two with solvability index 3 ,
- two more with solvability index 2 ;
- One is sum of a semisimple Lie algebra and a center of dimension 16
- One is not reductive (without center);
- One is simple.

The big exceptional Lie algebras

\mathbb{Z}_{2}^{3}-graded Lie algebras related to Octonions - Second part

Tits unified construction (1966)

$$
\mathcal{L}=\mathfrak{d e r}(\mathbb{O}) \quad \oplus \quad \mathbb{O}_{0} \otimes \mathcal{J}_{0} \quad \oplus \quad \operatorname{der}(\mathcal{J})
$$

$$
\left.\begin{array}{lllr}
\mathcal{J}=\mathbb{R} & \rightsquigarrow & \mathcal{L}=\mathfrak{g}_{2} \\
\mathcal{J}=\mathcal{H}_{3}(\mathbb{R}) & \rightsquigarrow & \mathcal{L}=\mathfrak{f}_{4} \\
\mathcal{J}=\mathcal{H}_{3}(\mathbb{C}) & \rightsquigarrow & \mathcal{L}=\mathfrak{e}_{6} \\
\mathcal{J}=\mathcal{H}_{3}(\mathbb{H}) & \rightsquigarrow & \mathcal{L}=\mathfrak{e}_{7} \\
\mathcal{J}=\mathcal{H}_{3}(\mathbb{O}) & \rightsquigarrow & \mathcal{L}=\mathfrak{e}_{8}
\end{array}\right\} \quad \begin{aligned}
& 14 \\
& \mathbb{Z}_{2}^{3} \text {-gradings } \\
& \text { directly induced from } \mathbb{O} \\
& \text { in all the cases }
\end{aligned}
$$

- $\mathcal{L}_{e}=0$? NO
- $\operatorname{dim} \mathcal{L}_{g}$ independent of $g(\neq e)$? YES
- Nice set are the supports again? NO

But generalized nice sets yes!!
This is another story....

Final conclusions

Some of the achievements of this work have been:

* To avoid computer
* We have increased the dimension
* We have been able to continue the classification after normalization process
\star We have applied our results to a nice family of (considerably big) Lie algebras

And the work in progress in this moment is:
\star To classify generalized nice sets

* To board the real case

Thank you for your attention!

