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The setting

I F2 be the field with two elements,

I V = Fn
2 be the vector space of dimension n over F2,

I T+ < SymV be the group of translations of (V ,+).
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Bi-braces

There is a one-to-one correspondence between

conjugacy classes under GL(V ) of elementary abelian regular subgroups
of AGL(V ) which are normalised by T+

isomorphism classes of commutative radical algebras (V ,+, ·) with
V 3 = 0

isomorphism classes of commutative F2-braces (V ,+, �) such that
(V , �,+) is an F2-brace, that we call a binary bi-braces

[CDVS06, Chi19, Car20]
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The socle

Recalling u · v = u + v + u � v :

I Soc(V ) = {u 2 V | 8 v 2 V u + v = u � v},

I Ann(V ) = {u 2 V | 8 v 2 V u · v = 0}.

It is known that dimSoc(V ) > 1 as F2-vector space [CDVS06]. Clearly
bi-braces with socles of distinct dimension are not isomorphic.
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Another representation

Assume that d = dimSoc(V ) and m = n � d .

We show that there exist

I a suitable subset ⇤(m, 2d) of m ⇥m alternating matrices over F2d ,

I an equivalence relation ⇠ over ⇤(m, 2d)

such that

⇠ equivalence classes are in one-to-one correspondence with
isomorphism classes of binary bi-braces

[CFG23]
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A ‘canonical’ socle

Let (V ,+, �) be a binary bi-brace with d = dimSoc(V ). Then

I (V , �) is an F2-vector space;

I B = {b1, . . . , bn} is a basis of (V ,+) if and only if B is a basis of
(V , �).

Let {e1, . . . , en} be the canonical basis of (V ,+) and from now on let us
assume that Soc(V ) = hem+1, . . . , eni.
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Introducing a brace-related alternating matrix

Since u · v = 0 for each v 2 Soc(V ), under the assumption

V · V  Soc(V ) = hem+1, . . . , eni

a binary bi-brace is determined by the values, for 1  i < j  m, of

ei · ej = (0, . . . , 0| {z }
m zero’s

,⇥i,j)

where ⇥i,j 2 Fd
2 .

We call defining matrix of (V ,+, �) the m ⇥m matrix defined by

⇥ =
⇥
⇥i,j

⇤
.
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Representing vectors

Let a be a primitive element of F2d . Then {1, a, . . . , ad�1} is the canonical
basis of (F2d ,+) as a vector space over F2. By the following isomorphism
of vector spaces

' : Fd
2 �! F2d , ek 7�! ak�1 (1  k  d)

we can think to the defining matrix as

⇥ =
⇥
⇥i,j'

⇤
2 F2d

m⇥m.
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Brace from the defining matrix

A matrix ⇥ 2 F2d
m⇥m defines a binary bi-brace if and only if:

[CCS21]

(1) ⇥ is alternating, i.e., symmetric and zero-diagonal,

(2) for every u1, . . . , um 2 F2

u1⇥1 + · · ·+ um⇥m = 0 =) ui = 0 8 1  i  m.

We denote the set of m ⇥m alternating matrices satisfying (2) by

⇤(m, 2d).
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An equivalence relation on ⇤

Theorem (C.F.G.)

Let (V ,+, �), (V ,+, �̂) be two binary bi-braces with defining matrices
⇥, b⇥ 2 ⇤(m, 2d). They are isomorphic if and only if there exist
A 2 GL(m, 2), D 2 GL(d , 2) such that

A
⇥
⇥i,j'

⇤
AT =

h
b⇥i,jD'

i
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In particular, M 2 Aut(V ,+, �) if and only if M =


A B
0 D

�
where

A 2 GL(m, 2), D 2 GL(d , 2), B 2 Fm⇥d
2

and

A
⇥
⇥i,j'

⇤
AT =

⇥
⇥i,jD'

⇤
.
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An example

⇥ =

2

664

0 0 0 1
0 0 a 0
0 a 0 0
1 0 0 0

3

775 ⇠ b⇥ =

2

664

0 0 1 + a 0
0 0 0 1

1 + a 0 0 0
0 1 0 0

3

775

A =

2

664

1 0 0 1
0 1 0 0
0 0 0 1
0 0 1 0

3

775 , D =


0 1
1 1

�

⇥b⇥i,jD'
⇤
=

"
0 0 (1,1)D' 0
0 0 0 (1,0)D'

(1,1)D' 0 0 0
0 (1,0)D' 0 0

#
=

2

64

0 0 1 0
0 0 0 a
1 0 0 0
0 a 0 0

3

75 = A⇥AT .
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When condition (2) looks better

A cryptographically relevant case occurs when the subspace

V 2 = V · V = h u · v : u, v 2 V i+ ✓ Soc(V )

is uni-dimensional,

i.e., there exists a vector b 2 V such that

V · V = {0, b} ' F2.

In particular for each 1  i < j  m

(0, . . . , 0,⇥i,j) 2 {0, b}

and so the defining matrix ⇥ is an invertible alternating matrix over F2.
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Uni-dimensional V 2

I (V ,+, ·) such that V · V = hbi with defining matrix ⇥

I (V ,+,b· ) such that V b·V = hbbi with defining matrix b⇥

A
⇥
⇥i,j'

⇤
AT =

h
b⇥i,jD'

i
()

8
<

:

A⇥AT = b⇥

b = bbD
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Uni-dimensional V 2

It is well known that alternating matrices of the same rank are congruent,
i.e. ⇥ = Ab⇥AT for some A 2 GL(m, 2). For this reason:

Theorem (C.F.G.)

There is a unique isomorphism class of n-dimensional binary bi-braces
with d-dimensional socle and uni-dimensional V 2
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m = 2 is easily classified

Notice that when socle co-dimension is m = 2, then V 2 = {0, e1 · e2}, i.e.
dimV 2 = 1.

So there exists a unique isomorphism class of binary bi-braces with socle
co-dimension m = 2.
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m = 3 is still easy

Theorem (C.F.G.)

Let (V ,+, �), (V ,+, �̂) be two binary bi-braces, both with socle
co-dimension m = 3. Then they are isomorphic if and only if

dimV · V = dimV ·̂V

In particular there are two isomorphism classes of binary bi-braces with
socle co-dimension m = 3 and socle dimension d � 3. The representative
matrices are

2

4
0 1 a
1 0 a2

a a2 0

3

5 ,

2

4
0 1 a
1 0 0
a 0 0

3

5 .

For d = 2 and m = 3 the isomorphism class is unique because dimV 2 = 2.
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Troubles start with m = 4

The previous result is not true for m > 4. Indeed the representative
matrices for the isomorphism classes when d = 2 and m = 4 are:

dimV 2 = 1

2

664

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

3

775 ,

dimV 2 = 2

2

664

0 0 1 0
0 0 0 a
1 0 0 0
0 a 0 0

3

775 ,

2

664

0 0 1 a
0 0 0 1
1 0 0 0
a 1 0 0

3

775 ,

2

664

0 0 1 a
0 0 1 + a 1
1 1 + a 0 0
a 1 0 0

3

775 .
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Classification results up(-ish) to n = 8

n m d # classes # operations �
* 2 > 1 1
* 3 > 3 2

5 3 2 1 42
5 4 1 1 28

6 4 2 4 3360

7 4 3 9 254968
7 5 2 2 937440
7 6 1 1 13888

8 4 4 13 16716840

8 5 3
8 6 2
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¿Questions?
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