Bi-braces and connections to private-key cryptography

Roberto Civino University of L'Aquila

joint work with V. Fedele & N. Gavioli

Advances in Group Theory and Applications 2023 - Lecce

5th June 2023

The setting

- \blacktriangleright \mathbb{F}_2 be the field with two elements,
- ► $V = \mathbb{F}_2^n$ be the vector space of dimension *n* over \mathbb{F}_2 ,
- ► T_+ < Sym V be the group of translations of (V, +).

Bi-braces

There is a one-to-one correspondence between

conjugacy classes under GL(V) of elementary abelian regular subgroups of AGL(V) which are normalised by T_+

isomorphism classes of commutative radical algebras $(V, +, \cdot)$ with $V^3 = 0$

isomorphism classes of commutative \mathbb{F}_2 -braces $(V, +, \circ)$ such that $(V, \circ, +)$ is an \mathbb{F}_2 -brace, that we call a **binary bi-braces**

[CDVS06, Chi19, Car20]

The socle

Recalling $u \cdot v = u + v + u \circ v$:

It is known that dim Soc(V) ≥ 1 as \mathbb{F}_2 -vector space [CDVS06]. Clearly bi-braces with socles of distinct dimension are not isomorphic.

Another representation

Assume that $d = \dim \text{Soc}(V)$ and m = n - d.

Another representation

Assume that $d = \dim \text{Soc}(V)$ and m = n - d.

We show that there exist

► a suitable subset $\Lambda(m, 2^d)$ of $m \times m$ alternating matrices over \mathbb{F}_{2^d} ,

► an equivalence relation \sim over $\Lambda(m, 2^d)$

such that

 \sim equivalence classes are in one-to-one correspondence with isomorphism classes of binary bi-braces

A 'canonical' socle

Let $(V, +, \circ)$ be a binary bi-brace with $d = \dim Soc(V)$. Then

▶
$$(V, \circ)$$
 is an \mathbb{F}_2 -vector space;

▶ B = {b₁,..., b_n} is a basis of (V, +) if and only if B is a basis of (V, ∘).

Let $\{e_1, \ldots, e_n\}$ be the canonical basis of (V, +) and from now on let us assume that $Soc(V) = \langle e_{m+1}, \ldots, e_n \rangle$.

Introducing a brace-related alternating matrix

Since $u \cdot v = 0$ for each $v \in Soc(V)$, under the assumption

$$V \cdot V \leq Soc(V) = \langle e_{m+1}, \ldots, e_n \rangle$$

Introducing a brace-related alternating matrix

Since $u \cdot v = 0$ for each $v \in Soc(V)$, under the assumption

$$V \cdot V \leq Soc(V) = \langle e_{m+1}, \ldots, e_n \rangle$$

a binary bi-brace is determined by the values, for $1 \le i < j \le m$, of

$$e_i \cdot e_j = (\underbrace{0, \ldots, 0}_{m \text{ zero's}}, \Theta_{i,j})$$

where $\Theta_{i,j} \in \mathbb{F}_2^d$.

Introducing a brace-related alternating matrix

Since $u \cdot v = 0$ for each $v \in Soc(V)$, under the assumption

$$V \cdot V \leq Soc(V) = \langle e_{m+1}, \ldots, e_n \rangle$$

a binary bi-brace is determined by the values, for $1 \le i < j \le m$, of

$$e_i \cdot e_j = (\underbrace{0, \ldots, 0}_{m \text{ zero's}}, \Theta_{i,j})$$

where $\Theta_{i,j} \in \mathbb{F}_2^d$.

We call **defining matrix** of $(V, +, \circ)$ the $m \times m$ matrix defined by

$$\Theta = \left[\Theta_{i,j}
ight].$$

Representing vectors

Let *a* be a primitive element of \mathbb{F}_{2^d} . Then $\{1, a, \ldots, a^{d-1}\}$ is the canonical basis of $(\mathbb{F}_{2^d}, +)$ as a vector space over \mathbb{F}_2 . By the following isomorphism of vector spaces

$$arphi: \mathbb{F}_2^d \longrightarrow \mathbb{F}_{2^d}, \quad e_k \longmapsto a^{k-1} \quad (1 \le k \le d)$$

we can think to the defining matrix as

$$\Theta = \left[\Theta_{i,j}\varphi\right] \in \mathbb{F}_{2^d}^{m \times m}$$

Brace from the defining matrix

A matrix $\Theta \in \mathbb{F}_{2^d}^{m \times m}$ defines a binary bi-brace if and only if:

[CCS21]

(1) Θ is alternating, i.e., symmetric and zero-diagonal,

Brace from the defining matrix

A matrix $\Theta \in \mathbb{F}_{2^d}^{m \times m}$ defines a binary bi-brace if and only if:

(1) Θ is alternating, i.e., symmetric and zero-diagonal,
(2) for every u₁,..., u_m ∈ F₂

$$u_1\Theta_1+\cdots+u_m\Theta_m=0 \implies u_i=0 \quad \forall 1\leq i\leq m.$$

Brace from the defining matrix

A matrix $\Theta \in \mathbb{F}_{2^d}^{m \times m}$ defines a binary bi-brace if and only if:

[CCS21]

Θ is alternating, i.e., symmetric and zero-diagonal,
 for every u₁,..., u_m ∈ F₂

$$u_1\Theta_1+\cdots+u_m\Theta_m=0 \implies u_i=0 \quad \forall 1\leq i\leq m.$$

We denote the set of $m \times m$ alternating matrices satisfying (2) by

 $\Lambda(m, 2^d).$

An equivalence relation on Λ

Theorem (C.F.G.)

Let $(V, +, \circ)$, $(V, +, \circ)$ be two binary bi-braces with defining matrices $\Theta, \ \widehat{\Theta} \in \Lambda(m, 2^d)$. They are isomorphic if and only if there exist $A \in GL(m, 2)$, $D \in GL(d, 2)$ such that

$$A\left[\Theta_{i,j}\varphi\right]A^{T} = \left[\widehat{\Theta}_{i,j}D\varphi\right]$$

An equivalence relation on Λ

Theorem (C.F.G.)

Let $(V, +, \circ)$, $(V, +, \circ)$ be two binary bi-braces with defining matrices $\Theta, \ \widehat{\Theta} \in \Lambda(m, 2^d)$. They are isomorphic if and only if there exist $A \in GL(m, 2)$, $D \in GL(d, 2)$ such that

$$A\left[\Theta_{i,j}\right]A^{T} = \left[\widehat{\Theta}_{i,j}D\right]$$

An equivalence relation on Λ

Theorem (C.F.G.)

Let $(V, +, \circ)$, $(V, +, \circ)$ be two binary bi-braces with defining matrices $\Theta, \ \widehat{\Theta} \in \Lambda(m, 2^d)$. They are isomorphic if and only if there exist $A \in GL(m, 2)$, $D \in GL(d, 2)$ such that

$$A\left[\Theta_{i,j}\varphi\right]A^{\mathsf{T}} = \left[\widehat{\Theta}_{i,j}D\varphi\right]$$

In particular, $M \in Aut(V, +, \circ)$ if and only if $M = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$ where $A \in GL(m, 2), \ D \in GL(d, 2), \ B \in \mathbb{F}_2^{m \times d}$

and

$$A\left[\Theta_{i,j}\varphi\right]A^{T}=\left[\Theta_{i,j}D\varphi\right].$$

An example

$$\Theta = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & a & 0 \\ 0 & a & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \sim \widehat{\Theta} = \begin{bmatrix} 0 & 0 & 1+a & 0 \\ 0 & 0 & 0 & 1 \\ 1+a & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

 $(1,0) \equiv 1$ $(0,1) \equiv a$

An example

$$(1, \circ) \equiv 1$$

$$(0, 1) \equiv \mathbf{a}$$

$$\Theta = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & a & 0 \\ 0 & a & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \sim \widehat{\Theta} = \begin{bmatrix} 0 & 0 & 1 + a & 0 \\ 0 & 0 & 0 & 1 \\ 1 + a & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \widehat{\Theta}_{i,j} D\varphi \end{bmatrix} = \begin{bmatrix} 0 & 0 & (1,1)D\varphi & 0 \\ 0 & 0 & 0 & (1,0)D\varphi \\ (1,1)D\varphi & 0 & 0 & 0 \\ 0 & (1,0)D\varphi & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & a \\ 1 & 0 & 0 & 0 \\ 0 & a & 0 & 0 \end{bmatrix} = A\Theta A^{T}.$$

When condition (2) looks better

A cryptographically relevant case occurs when the subspace

$$V^2 = V \cdot V = \langle u \cdot v : u, v \in V \rangle_+ \subseteq \operatorname{Soc}(V)$$

is **uni-dimensional**,

$$X \circ Y = X + Y + X \cdot Y$$
$$\in V^{2}$$

When condition (2) looks better

A cryptographically relevant case occurs when the subspace

$$V^2 = V \cdot V = \langle u \cdot v : u, v \in V \rangle_+ \subseteq \operatorname{Soc}(V)$$

is **uni-dimensional**, i.e., there exists a vector $b \in V$ such that

$$V \cdot V = \{0, b\} \simeq \mathbb{F}_2.$$

When condition (2) looks better

A cryptographically relevant case occurs when the subspace

$$V^2 = V \cdot V = \langle u \cdot v : u, v \in V \rangle_+ \subseteq \operatorname{Soc}(V)$$

is **uni-dimensional**, i.e., there exists a vector $b \in V$ such that

$$V \cdot V = \{0, b\} \simeq \mathbb{F}_2.$$

In particular for each $1 \le i < j \le m$

$$(0,\ldots,0,\Theta_{i,j})\in\{0,b\}$$

and so the defining matrix Θ is an **invertible alternating matrix** over \mathbb{F}_2 .

Uni-dimensional V^2

• $(V, +, \cdot)$ such that $V \cdot V = \langle b \rangle$ with defining matrix Θ • $(V, +, \hat{\cdot})$ such that $V \hat{\cdot} V = \langle \hat{b} \rangle$ with defining matrix $\hat{\Theta}$

$$A\left[\Theta_{i,j}\varphi\right]A^{T} = \left[\widehat{\Theta}_{i,j}D\varphi\right] \quad \Longleftrightarrow \quad \begin{cases} A\Theta A^{T} = \widehat{\Theta} \\ \\ b = \widehat{b}D \end{cases}$$

It is well known that alternating matrices of the same rank are congruent, i.e. $\Theta = A \widehat{\Theta} A^T$ for some $A \in GL(m, 2)$. For this reason:

Theorem (C.F.G.)

There is a unique isomorphism class of n-dimensional binary bi-braces with d-dimensional socle and uni-dimensional V^2

Notice that when socle co-dimension is m = 2, then $V^2 = \{0, e_1 \cdot e_2\}$, i.e. dim $V^2 = 1$.

So there exists a unique isomorphism class of binary bi-braces with socle co-dimension m = 2.

m = 3 is still easy

Theorem (C.F.G.) Let $(V, +, \circ)$, $(V, +, \hat{\circ})$ be two binary bi-braces, both with socle co-dimension m = 3. Then they are isomorphic if and only if

 $\dim V \cdot V = \dim V \cdot V$

In particular there are two isomorphism classes of binary bi-braces with socle co-dimension m = 3 and socle dimension $d \ge 3$. The representative matrices are

$$\begin{bmatrix} 0 & 1 & a \\ 1 & 0 & a^2 \\ a & a^2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & a \\ 1 & 0 & 0 \\ a & 0 & 0 \end{bmatrix}$$

For d = 2 and m = 3 the isomorphism class is unique because dim $V^2 = 2$.

Troubles start with m = 4

The previous result is not true for $m \ge 4$. Indeed the representative matrices for the isomorphism classes when d = 2 and m = 4 are:

$$\dim V^{2} = 1 \quad \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$
$$\dim V^{2} = 2 \quad \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & a \\ 1 & 0 & 0 & 0 \\ 0 & a & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 1 & a \\ 0 & 0 & 1 + a & 1 \\ 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \end{bmatrix}$$

Classification results up(-ish) to n = 8

n	т	d	# classes	$\#$ operations \circ
*	2	≥1	1	
*	3	≥ 3	2	
5	3	2	1	42
5	4	1	1	28
6	4	2	4	3360
7	4	3	9	254968
7	5	2	2	937440
7	6	1	1	13888
8	4	4	13	16716840

Classification results up(-ish) to n = 8

n	т	d	# classes	$\#$ operations \circ
*	2	$\geqslant 1$	1	
*	3	≥ 3	2	
5	3	2	1	42
5	4	1	1	28
6	4	2	4	3360
7	4	3	9	254968
7	5	2	2	937440
7	6	1	1	13888
8	4	4	13	16716840
8	5	3		
8	6	2	(Como	Total and the second se

¿Questions?

Bibliography

A. Caranti.

Bi-skew braces and regular subgroups of the holomorph. *Journal of Algebra*, 562:647–665, 2020.

M. Calderini, R. Civino, and M. Sala.

On properties of translation groups in the affine general linear group with applications to cryptography.

J. Algebra, 569:658–680, 2021.

A. Caranti, F. Dalla Volta, and M. Sala. Abelian regular subgroups of the affine group and radical rings. *Publ. Math. Debrecen*, 69(3):297–308, 2006.

R. Civino, V. Fedele, and N. Gavioli. Classification of binary bi-braces. Work in progress, 2023.

L. N Childs.

Bi-skew braces and Hopf Galois structures. *New York J. Math*, 25:574–588, 2019.