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Initial settings

An automorphism α of a finite group G is said to be coprime if

(|G|, |α|) = 1.

Denote by

CG(α) the fixed-point subgroup {x ∈ G; xα = x};
IG(α) the set of all commutators g−1gα, where g ∈ G;

[G,α] the subgroup generated by IG(α).

Then G = [G,α]CG(α) and |IG(α)| = [G : CG(α)].

Vague duality between CG(α) and IG(α): since |G| = |CG(α)||IG(α)|, if
one of CG(α), IG(α) is large then the other is small.

If N is any α-invariant normal subgroup of G we have:

(i) CG/N (α) = CG(α)N/N , and IG/N (α) = {gN | g ∈ IG(α)};
(ii) If N = CN (α), then [G,α] centralizes N .
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Influence of CG(α) on G

Theorem (Thompson, 1959)

If α has prime order and CG(α) = 1, then G is nilpotent.

This was generalized in several directions.

Theorem (Khukhro, 1990)

If G admits an automorphism α of prime order p with CG(α) of order m,
then G has a nilpotent subgroup of (m, p)-bounded index and p-bounded
class.

Theorem (Khukhro, 2008)

If G admits a coprime automorphism α of prime order p with CG(α) of
rank r, then G has characteristic subgroups R ≤ N such that N/R is
nilpotent of p-bounded class, while R and G/N have (p, r)-bounded ranks.

The rank of a finite group G is the least number r such that each
subgroup of G can be generated by at most r elements.
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Dual problem with IG(α)

Also properties of IG(α) may strongly impact the structure of G.

If |IG(α)| ≤ m, then the order of [G,α] is m-bounded.

Since |IG(α)| ≤ m, the index of the centralizer [G : CG(α)] ≤ m.
We can choose a normal subgroup N ≤ CG(α) such that [G : N ] ≤ m!
Note that [G,α] commutes with N and so [[G,α] : Z([G,α])] ≤ m!.
The Schur theorem yields that |[G,α]′| is m-bounded.
We can pass to G/[G,α]′ and assume that [G,α] is abelian.
Then [G,α] = IG(α) and so |[G,α]| ≤ m.
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A rank condition on the set IG(α)

The usual concept of rank does not apply to IG(α).

We consider the condition that each subgroup of G generated by a subset
of IG(α) can be generated by at most r elements.

Theorem 1

Let G be a finite group admitting a coprime automorphism α of order e
and suppose that any subgroup generated by a subset of IG(α) can be
generated by r elements. Then [G,α] has (e, r)-bounded rank.

The proof is rather technical and proceeds in several steps:

the result for nilpotent groups: reduction to p-groups, powerful
p-groups;
for soluble groups: one key step is to show that there exists an
(e, r)-bounded number f such that the fth term of the derived series
of [G,α] is nilpotent (Zassenhaus’ theorem on the derived length of
any soluble subgroup of GLn(k) and Hartley-Isaacs result on
representation theory).Then the Fitting height h([G,α]) is
(e, r)-bounded and [G,α] is generated by (e, r)-boundedly many
elements from IG(α);
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the general case: after a long reduction it is sufficient to prove the
result in the case where G is soluble-by-semisimple-by-soluble. It
depends on CFSG, on facts about conjugacy classes and characters of
PGL2(q) and also on the following result (of independent interest)

Theorem 2

Let G be a finite group admitting a coprime automorphism α such that
g−1gα has odd order for every g ∈ G. Then [G,α] ≤ O(G).

Here O(G) stands for the maximal normal subgroup of odd order of G.
The assumption that α is coprime in Theorem 2 is really necessary.
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Some conditions on solubility for [G,α]

It is well known that if any pair of elements of a finite group generates a
soluble subgroup, then the whole group is soluble (Thompson, 1968).

Theorem 3

Let G be a finite group admitting a coprime automorphism α. If any pair
of elements from IG(α) generates a soluble subgroup, then [G,α] is
soluble.
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More on solubility criteria

Later we got more interested on criteria for solubility and nilpotency of
[G,α].

For technical reasons we look at a different set of elements

Let JG(α) denote the set of all commutators [x, α], where x belongs to an
α-invariant Sylow subgroup of G.

JG(α) ⊂ IG(α), and

the elements of JG(α) have prime power order;

JG(α) is a generating set for [G,α]; this follows from

Theorem

Let G be a finite group admitting a coprime group of automorphisms A.
Then [G,A] is generated by all nilpotent subgrs. T such that T = [T,A].

If N is any α-invariant normal subgroup of G, we have
JG/N (α) = {gN | g ∈ JG(α)}.
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JG/N (α) = {gN | g ∈ JG(α)}.



More on solubility criteria

It turns out that properties of G are pretty much determined by those of
subgroups generated by elements of coprime orders from JG(α).

We extend Theorem 3 as follows

Theorem 4

Let G be a finite group admitting a coprime automorphism α. Then [G,α]
is soluble if and only if any subgroup generated by a pair of elements of
coprime orders from JG(α) is soluble.

Observation: If 〈β〉 is any nontrivial subgroup of 〈α〉, then the collection
of β-invariant Sylow subgroups could be larger than the collection of
α-invariant Sylow subgroups of G.
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More on solubility criteria

To overcome this issue we will work in the following setting:

Let G be a finite group admitting a coprime group of automorphisms A,
let α ∈ A and let JG,A(α) denote the set of all commutators [x, α], for x
in an A-invariant Sylow subgroup of G.

and we establish the following stronger result

Theorem 5

Let G be a finite group admitting a coprime group of automorphisms A
and let α ∈ A. Then [G,α] is soluble if and only if any subgroup
generated by a pair of elements of coprime orders from JG,A(α) is soluble.

Remark: The result in the above theorem fails without the coprimeness
assumption. For instance, take α a transposition in G = Sn, for n ≥ 5.
Then any pair of elements from IG(α) generates a soluble subgroup, while
[G,α] is insoluble.
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Insight of the proof Thm 5

Our goal: to show that there are A-invariant subgroups P and Q of
coprime prime power orders such that [x, α] and [y, α] generate an
insoluble subgroup for some x ∈ P and y ∈ Q.

Suppose the this is false and let G = [G,A] be a counterexample of
minimal order. So, any subgroup generated by a pair of elements of
coprime order from JG,A(α) is soluble but [G,α] is insoluble.

If G contains a non-trivial characteristic soluble subgroup M , then by
minimality the result holds for A acting on G/M and [G,A]M/M is
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Insight of the proof of Theorem 5

G = S1 × · · · × St, S = S1 and let A1 = NA(S). Observe that A1/CA(S)
is a coprime group of automorphisms of S.

If A1 = 1, then |A| = t and A acts on G by permuting the coordinates of
S1 × · · · × St
Theorem (Guralnick-Tiep, 2015)

Let G be a finite group. Then G is soluble if and only if x1x2x3 6= 1 for all
nontrivial pi-elements xi of G for distinct primes pi, i = 1, 2, 3

So there exist distinct primes p and q, a Sylow p-subgr. P1 and a Sylow
q-subgr. Q1 of S1, x1 ∈ P1 and y1 ∈ Q1 such that 〈x1, y1〉 is insoluble.

The direct product P of the distinct A-conjugates of P1 is an A-invariant
Sylow p-subgr. and
the direct product Q of the distinct A-conjugates of Q1, is an A-invariant
Sylow q-subgr. of G.
Note that [x1, α] ∈ [P, α] , [y1, α] ∈ [Q,α] and 〈[x1, α], [y1, α]〉 is
insoluble.
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Assume now that A1 = NA(S) 6= 1.

Then S = L(q) is a group of Lie type, say over the field of q = ps

elements and A1 induces a cyclic group of field automorphisms.

Also observe that

the centralizer CS(A1) = L(q0) is a group of the same Lie type defined
over the subfield of q0 = ps/e elements, if e is the order of A1.

After some work we are reduced to consider the cases:

S = PSL2(q) with q = ps for s odd and s ≥ 5 or

S = Sz(q) with q = 2s for odd s > 1.
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Primitive prime divisors

For q = ps, a power of a prime p and for any positive integer n, recall that
a prime r is said to be a primitive prime divisor of qn − 1 if r divides
qn − 1 and r does not divide qk − 1 for any positive integer k < n.

Primitive prime divisors of qn + 1 are defined in a similar way.

The following result is on the existence of primitive prime divisors.

Theorem (Zsigmondy, 1892)

Let a > b > 0, gcd(a, b) = 1 and n > 1 be positive integers. Then

(i) an − bn has a prime divisor that does not divide ak − bk for all
positive integers k < n, unless a = 2, b = 1 and n = 6; or a+ b is a
power of 2 and n = 2.

(ii) an + bn has a prime divisor that does not divide ak + bk for all
positive integers k < n, with exception 23 + 13.
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Let S = PSL2(q) with q = ps for s odd and s ≥ 5.
Recall that G = S1 × · · · × St, S = S1 and A1 = NA(S) 6= 1.

Take U to be an A1-invariant Sylow p-subgroup of S.

Let r be a primitive prime divisor of q + 1, i.e. r does not divide pi + 1 for
i < s (which exists by Zsigmondy’s Theorem). Let R be an A1-invariant
Sylow r-subgroup of S.

Both U and R are contained in A-invariant Sylow subgroups (take the
product of the distinct t conjugates under A).

Observe that:

any 1 6= x ∈ R and any 1 6= y ∈ U generate S (insoluble);

[U,α] and [R,α] are contained in JG,A(α).

If α ∈ A1, then α induces a non-trivial automorphisms on S and
[U,α] 6= 1. Since r does not divide the order of CS(α), we have
[R,α] = R. If 1 6= x ∈ [U,α] and 1 6= y ∈ [R,α], then x, y are as required.

If α /∈ A1, then α conjugates S to some other component Si, and so the
pair [x, α] and [y, α] generate an insoluble subgr.
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If S = Sz(q), where q = 2s for odd s > 1. |S| = q2(q − 1)(q2 + 1).

The maximal subgroups of S are (up to conjugacy) a Borel subgroup of
order q2(q − 1), a dihedral subgroup of order 2(q − 1), subfield subgroups,
and two subgroups of the form T.4, where T is cyclic of order q ± l + 1
with l2 = 2q, i.e. of order 2s ± 2(s+1)/2 + 1. Note that
(q + l + 1)(q − l + 1) = q2 + 1.

Let r be a primitive prime divisor of q2 + 1 = 22s + 1. Let R be an
A1-invariant Sylow r-subgroup. Let u be a primitive prime divisor of
q − 1 = 2s − 1. Then u does not divide the order of any subfield subgroup
and so also u does not divide q2 + 1. Let U be an A1-invariant Sylow
u-subgroup of S.

Observe that:

There is no proper subgroup of S whose order is divisible by ru;
Neither of R and U intersects CS(α), so [R,α] = R and [U,α] = U .
Any element in R or U is a commutator with α.

As before, if α ∈ A1, then 1 6= x ∈ [U,α] and 1 6= y ∈ [R,α] generate S.

If α /∈ A1, then take x ∈ R, y ∈ U and the pair [x, α] and [y, α] generate
an insoluble group.
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(q + l + 1)(q − l + 1) = q2 + 1.

Let r be a primitive prime divisor of q2 + 1 = 22s + 1. Let R be an
A1-invariant Sylow r-subgroup.

Let u be a primitive prime divisor of
q − 1 = 2s − 1. Then u does not divide the order of any subfield subgroup
and so also u does not divide q2 + 1. Let U be an A1-invariant Sylow
u-subgroup of S.

Observe that:

There is no proper subgroup of S whose order is divisible by ru;
Neither of R and U intersects CS(α), so [R,α] = R and [U,α] = U .
Any element in R or U is a commutator with α.

As before, if α ∈ A1, then 1 6= x ∈ [U,α] and 1 6= y ∈ [R,α] generate S.

If α /∈ A1, then take x ∈ R, y ∈ U and the pair [x, α] and [y, α] generate
an insoluble group.
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Criteria for nilpotency of [G,α]

As a consequence of the previous result we get necessary and sufficient
conditions for the nilpotency of [G,α].

Theorem 6

Let G be a finite group admitting a coprime group of automorphisms A,
and let α ∈ A. Then the following statements are equivalent.

(i) The subgroup [G,α] is nilpotent;

(ii) Any subgroup generated by a pair of elements of coprime orders from
JG,A(α) is nilpotent;

(iii) Any subgroup generated by a pair of elements of coprime orders from
JG,A(α) is abelian;

(iv) If x and y are elements of coprime orders from JG,A(α), then
|xy| = |x||y|;

(v) If x and y are elements of coprime orders from JG,A(α), then
π(xy) = π(x) ∪ π(y).

where π(x) denotes the set of prime divisors of the order |x| of x in G.
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A consequence that was a motivation

Theorem (Baumslag- Wiegold, 2014)

Let G be a finite group. Then G is nilpotent if and only if |xy| = |x||y|,
whenever the elements x and y have coprime orders.

Form Theorem 6 we can deduce the following variation of the
Baumslag-Wiegold result.

Theorem 7

Let G be a finite group admitting a coprime automorphism α. Then [G,α]
is nilpotent if, and only if, |xy| = |x||y| whenever x and y are elements of
coprime prime power orders from IG(α).

Recall that IG(α) is the set of all commutators g−1gα, where g ∈ G.

Remark: at the beginning it was unclear whether the hypothesis on the
orders of elements in Theorem 7 is inherited by quotient groups. To
overcome this issue we started working with elements of coprime orders
from JG(α) and JG,A(α).
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More details can be found in

C.Acciarri,R.M.Guralnick,and P.Shumyatsky,Coprime automorphisms
of finite groups, Trans. Amer. Math. Soc. (2022). 375:7, 4549–4565.
https://doi.org/10.1090/tran/8553

C.Acciarri,R.M.Guralnick,and P.Shumyatsky, Criteria for solubility and
nilpotency of finite groups with automorphisms, Bull. London Math.
Soc. 2023; 55:3, 1340–1346. https://doi.org/10.1112/blms.12794

https://doi.org/10.1090/tran/8553
https://doi.org/10.1112/blms.12794
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