ANNIHILATOR NILPOTENCY OF SKEW BRACES WITH APPLICATIONS TO TORSION AND GENERATING SETS OF SKEW BRACES

(JOINT W. ERIC JESPERS, LEANDRO VENDRAMIN)

Arne Van Antwerpen

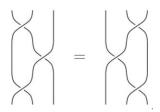
THE YANG-BAXTER EQUATION: A PICTURE

Definition

A set-theoretic solution to the Yang-Baxter equation is a tuple (X, r), where X is a set and $r: X \times X \longrightarrow X \times X$ a function such that (on X^3)

$$(r \times id_X)(id_X \times r)(r \times id_X) = (id_X \times r)(r \times id_X)(id_X \times r).$$

For further reference, denote $r(x, y) = (\lambda_x(y), \rho_y(x))$.



DEFINITIONS AND EXAMPLES

Definition

A set-theoretic solution (X, r) is called

- left (resp. right) non-degenerate, if λ_x (resp. ρ_v) is bijective,
- non-degenerate, if it is both left and right non-degenerate,
- ▶ involutive, if $r^2 = id_{X \times X}$,

Examples

- ► Twist solution: r(x, y) = (y, x),
- Lyubashenko, where $f, g: X \to X$ are maps with fg = gf: r(x,y) = (f(y),g(x)).

THE STRUCTURE MONOID AND GROUP

Definition

Let (X, r) be a set-theoretic solution of the Yang-Baxter equation. Then the group

$$G(X,r) = \langle x \in X \mid xy = \lambda_X(y)\rho_Y(x) \rangle$$
,

is called the structure group of (X, r).

WHAT ARE SKEW LEFT BRACES

Definition (Rump, CJO, GV)

Two groups (A, +) and (A, \circ) form a skew left brace $(A, +, \circ)$, if for any $a, b, c \in A$, it holds that

$$a\circ (b+c)=(a\circ b)-a+(a\circ c),$$

where -a denotes the inverse of a in (A, +). Moreover, if (A, +) is abelian, then $(A, +, \circ)$ is a left brace

EXAMPLES OF SKEW BRACES

Example

- 1. Every group (G, +) has the skew left brace structure (G, +, +), these are *trivial skew left braces*.
- 2. The dihedral group $D_{2n} = \langle a, b \mid a^n = b^2 = 1, bab = a^{-1} \rangle$ has a left brace structure, where $a^i b^j + a^k b^l = a^{i+k+jl} b^{j+l}$ with $j, l \in \{0, 1\}$.
- 3. Radical rings.

CREATING SOLUTIONS ON SKEW BRACES (1)

Definition (Rump, CJO, GV)

Let (B,+) and (B,\circ) be groups on the same set B such that for any $a,b,c\in B$ it holds that

$$a\circ (b+c)=(a\circ b)-a+(a\circ c).$$

Then $(B,+,\circ)$ is called a skew (left) brace If (B,+) is abelian, one says that $(B,+,\circ)$ is a left brace.

CREATING SOLUTIONS ON SKEW BRACES (1)

Definition (Rump, CJO, GV)

Let (B,+) and (B,\circ) be groups on the same set B such that for any $a,b,c\in B$ it holds that

$$a\circ (b+c)=(a\circ b)-a+(a\circ c).$$

Then $(B, +, \circ)$ is called a skew (left) brace If (B, +) is abelian, one says that $(B, +, \circ)$ is a left brace.

Denote for $a,b\in B$, the map $\lambda_a(b)=-a+a\circ b$. Then, $\lambda:(B,\circ)\longrightarrow \operatorname{Aut}(B,+):a\mapsto \lambda_a$ is a well-defined group morphism.

CREATING SOLUTIONS ON SKEW BRACES (2)

Theorem

Let $(B,+,\circ)$ be a skew left brace. Denote for any $a,b\in B$, the map $r_B(a,b)=(\lambda_a(b),\overline{(\overline{a}+b)}\circ b)$. Then (B,r_B) is a bijective non-degenerate solution. Moreover, if (B,+) is abelian, then (B,r_B) is involutive.

Remark

Let (X,r) be a bijective non-degenerate set-theoretic solution. Then, G(X,r) is a skew left brace and carries an associated solution as a skew brace.

THE *-OPERATION IN SKEW LEFT BRACES

Definition

Let $(A, +, \circ)$ be a skew left brace. For any $a, b \in A$, denote

$$a*b = -a + a \circ b - b = \lambda_a(b) - b.$$

Denote X * Y for the additive subgroup generated by x * y, where $x \in X, y \in Y$ and $X, Y \subseteq A$.

Example

- 1. For (G, +, +), one sees that a * b = 0. Actually a characterization.
- 2. For $(D_{2n}, +, \cdot)$ one can see that $(a^i b^j) * (a^k b^l) \in \langle a \rangle$.

SOLUTIONS LIKE LYUBASHENKO'S

Definition (Retraction)

Let (X,r) be a finite bijective non-degenerate set-theoretic solution. Define the relation $x \sim y$ on X, when $\lambda_x = \lambda_y$ and $\rho_X = \rho_y$. Then, there exists a natural set-theoretic solution on X/\sim called the retraction Ret(X,r).

SOLUTIONS LIKE LYUBASHENKO'S

Definition (Retraction)

Let (X,r) be a finite bijective non-degenerate set-theoretic solution. Define the relation $x \sim y$ on X, when $\lambda_x = \lambda_y$ and $\rho_X = \rho_y$. Then, there exists a natural set-theoretic solution on X/\sim called the retraction Ret(X,r).

Denote for $n \ge 2$, $\operatorname{Ret}^n(X,r) = \operatorname{Ret}\left(\operatorname{Ret}^{n-1}(X,r)\right)$. If there exists a positive integer n such that $|\operatorname{Ret}^n(X,r)| = 1$, then (X,r) is called a multipermutation solution

WHY ARE MULTIPERMUTATION SOLUTIONS INTERESTING

Theorem (CJOBVAGI)

Let (X,r) be a finite involutive non-degenerate set-theoretic solution. The following statements are equivalent,

- \blacktriangleright the solution (X,r) is a multipermutation solution,
- the group G(X,r) is left orderable,
- \blacktriangleright the group G(X,r) is diffuse,
- ▶ the group G(X,r) is poly- \mathbb{Z} .

Breaks down for non-involutive solutions, as G(X, r) has torsion in that case!

ALL MULTIPERMUTATION SOLUTIONS

Proposition

Let (X,r) be a multipermutation solution, then the skew brace G(X,r) is of nilpotent type.

So we focus attention on so-called skew braces $(B, +, \circ)$ of **nilpotent type**, i.e. (B, +) is a nilpotent group.

NON-ASSOCIATIVE, SO SIDES MATTER

Left Nilpotent

- $ightharpoonup B^{n+1} = B * B^n$ left ideals
- $|B^k| = 1$, then left nilpotent
- Nilpotent type: (B, ∘) nilpotent
- ► Example: (C_{2^n}, D_{2^n})

Right nilpotent

- $ightharpoonup B^{(n+1)} = B^{(n)} * B ideals$
- $|B^{(k)}| = 1$, then right nilpotent
- Nilpotent type: (B, r_B) multipermutation
- ightharpoonup Example: (C_{2n}, D_{2n})

MEASURING MULTIPERMUTATION

Definition

A skew brace $(B, +, \circ)$ is said to be multipermutation, if (B, r_B) is multipermutation.

Equivalently:

- B is right nilpotent of nilpotent type,
- ▶ The chain $Soc^n(B)$ ends in B.

Here, $Soc^{n+1}(B)$ is the pullback in B of $Soc(B/Soc^n(B))$ with

$$Soc(A) = \ker \lambda \cap Z(B, +).$$

CENTRAL NILPOTENCY

Definition

Let *B* be a skew brace. Denote $Ann(B) = Soc(B) \cap Z(B, \circ)$. Equivalently,

$$\textit{Ann}(\textit{B}) = \left\{ x \in \textit{Z}(\textit{B}, +) \mid \lambda_{\textit{x}} = \mathsf{id}_{\textit{B}}, \lambda_{\textit{y}}(\textit{x}) = \textit{x} \text{ for all } \textit{y} \in \textit{B} \right\}.$$

Definition

Let B be a skew brace. One says that B is centrally nilpotent, if the chain $Ann^n(B)$ ends in B, where $Ann^{k+1}(B)$ is pullback of $Ann(B/Ann^k(B))$.

DESCENDING SERIES

We have an ascending ideal series, what about descending?

$$\Gamma_{n+1}(B,I) = \langle B * \Gamma_n(B,I), \Gamma_n(B,I) * B, [\Gamma_n(B,I), B]_+ \rangle$$

is an ideal in *B*, if *I* is an ideal.

Proposition (Bonatto, Jedlicka)

Let B be a skew brace. Then, B is centrally nilpotent, if for some positive integer n we have $\Gamma_n(B,B)=1$.

STRONGLY NILPOTENT

$$B^{[n]} = \left\langle B^{[i]} * B^{[n-i]} \mid 1 \le i \le n \right\rangle.$$

Proposition (Smoktunowicz)

Let B be a skew brace. Then, B is strongly nilpotent if and only if B is left and right nilpotent and (B, \circ) is nilpotent.

What if we account for additive commutator?

$$\Gamma_{[n]}(B) = \left\langle \Gamma_{[i]}(B) * \Gamma_{[n-i]}(B), \left[\Gamma_{[i]}(B), \Gamma_{[n-i]}(B) \right]_{+} \right\rangle$$

Proposition (Jespers, AVA, Vendramin)

Let B be a skew brace of nilpotent type. If B is centrally nilpotent, then B is strongly centrally nilpotent. Moreover, B is strongly nilpotent.

NILPOTENCY CLASS

Both the chains $\Gamma_n(B)$ and $\Gamma_{[n]}(B)$ allow to define a notion of nilpotency class of B.

Problem

- Can we relate the above nilpotency classes?
- Are there bounds using the additive/multiplicative nilpotency class?

FINITELY GENERATED

Proposition (Jespers, AVA, Vendramin)

Let B be a centrally nilpotent skew brace with ACC on sub skew braces. TFAE

- B is finitely generated as a brace,
- ightharpoonup (B, +) is finitely generated as a group,
- ▶ (B, \circ) is finitely generated as a group.

Vice versa, every finitely generated Centrally nilpotent skew brace has ACC on sub skew braces.

TORSION

What is torsion in a skew brace?

Proposition (Jespers, AVA, Vendramin)

Let B be a centrally nilpotent skew brace. Then $T_+(B) = T_\circ(B)$, which is an ideal of B. Finite, if B is finitely generated.

Proposition (Jespers, AVA, Vendramin)

Let B be a centrally nilpotent skew brace. If $T_+(B) = 0$. Then, $a^n = b^n$ or na = nb implies a = b.

REFERENCES

- E. Jespers, A. Van Antwerpen, L. Vendramin, Nilpotency of skew braces and multipermutation solutions of the Yang-Baxter equation, Comm. Cont. Math., to appear.
- 2. F. Cedó, A. Smoktunowicz, L. Vendramin, *Skew left braces of nilpotent type*, Proc.Lond.Math.Soc. 118(6), 2019.
- A. Smoktunowicz, On Engel groups, nilpotent groups, rings, braces and the Yang-Baxter equation, Trans.Amer.Math.Soc.
- 4. M. Bonatto, P. Jedlička, *Central nilpotency of skew braces*, J. Alg. Appl.