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Normality is not a transitive relation

A subgroup X of a (finite) group G is subnormal in G
if there is a finite chain of subgroups

X = X0 E X1 E . . . E Xn = G

connecting X to G.
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“Subnormal subgroups are the bare bones or skeleton of
a group, providing the framework for all other struc-
tures”

Philip Hall
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Helmut Wielandt (1939)

Eine Verallgemeinerung der invarianten Untergruppen
Math. Z. 45 (1939), no. 1, 209–244.
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Join Theorem

The subgroup generated by two subnormal sub-
groups of a finite group is itself subnormal.
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Helmut Wielandt (1939)

Eine Verallgemeinerung der invarianten Untergruppen
Math. Z. 45 (1939), no. 1, 209–244.

Join Theorem

The subgroup generated by two subnormal sub-
groups of a finite group is itself subnormal.

Hans Zassenahus (1958)

There exists a group having two subnormal sub-
groups whose join is not subnormal.
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Let G be a group and let X 6 G.

• X is ascendant if there is an ascending series
of subgroups

X = X0 E X1 E . . . Xα E Xα+1 E . . . Xλ = G

• X is descendant if there is a descending series
of subgroups

X = Xλ . . . E Xα+1 E Xα . . . E X1 E X0 = G

• X is serial if there is a chain of subgroups
between X and G such that if H and K are
consecutive subgroups, then H E K.
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Let G be a group. A subgroup X of G is said to be
serial in G if there is a set{

(Λσ,Vσ) : σ ∈ Σ
}

of subgroups of G such that
(i) Σ is a totally ordered indexing set;

(ii) H 6 Vσ E Λσ, ∀σ ∈ Σ;
(iii) Λσ 6 Vτ if σ < τ;
(iv) G \H =

⋃
σ∈Σ

(
Λσ \ Vσ

)
.

A subgroup X is ascendant (resp. descendant) if
it is serial and Σ is well-ordered (resp. inversely
well-ordered).
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Every subgroup of a locally nilpotent group is serial.
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• John Wilson proved that the converse does not
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Every subgroup of a locally nilpotent group is serial.
• John Wilson proved that the converse does not

hold.

Every subgroup of a hypercentral group is ascendant.
• Heineken & Mohamed proved that the converse

does not hold.

Every finite or nilpotent subgroup of a hypocentral
group is descendant.

• In particular, every cyclic subgroup of a hypocen-
tral group is descendant.

• Note that every free group is hypocentral.
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A join of serial subgroups in a locally finite group is serial.
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Hartley (1972)

A join of serial subgroups in a locally finite group is serial.

• although the join of two serial subgroups can fail
to be serial.
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Hartley (1972)

A join of serial subgroups in a locally finite group is serial.

• although the join of two serial subgroups can fail
to be serial.

Hickin & Phillips (1973)

A join of arbitrarily many subnormal subgroups is
serial.
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Free groups are linear.
• Let F be the free group of countable rank.
↓ There is N / F such that F/N is isomorphic to

the Zassenhaus group
↓ Let H/N and K/N be subnormal subgroups

of F/Nwhose join is not subnormal
� ThenH and K are subnormal subgroups of F

whose join is not subnormal
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• Let E be a finitely generated subgroup of G
↓ If N is normal in E and has finite index in E,
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Let G be a linear group all of whose subgroups are
descendant. Then G is nilpotent.
• G is hypercentral
↓ There is a positive integer k such that
G/Zk(G) is periodic
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LetG be a linear group all of whose finitely generated
subgroups are serial. Then G is hypercentral.

Let G be a linear group all of whose subgroups are
descendant. Then G is nilpotent.
• G is hypercentral
↓ There is a positive integer k such that
G/Zk(G) is periodic
↓ A periodic linear group whose cyclic subgroups

are descendant must be nilpotent
� Thus, G/Zk(G) is nilpotent and so G is

nilpotent.
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Let G be a periodic linear group and X 6 G
X descendant =⇒ X subnormal
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Let G be a periodic linear group and X 6 G
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Let G be a periodic linear group and X 6 G
X serial =⇒ X ascendant
• We can bound the ascendancy length in

terms of the degree of G as a linear group
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Let G be a periodic linear group and X 6 G
X descendant =⇒ X subnormal

Let G be a periodic linear group and X 6 G
X serial =⇒ X ascendant
• We can bound the ascendancy length in

terms of the degree of G as a linear group
• Proof splits in several cases and is accom-

plished in a series of lemmas such as: If N is
unipotent and normal, thenX is subnormal inXN
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Let G be a periodic linear group of degree 2
over a field of characteristic 2. Then every se-
rial subgroup is subnormal of defect at most
2 +

[
log2

(
θ(2)

)]
+
[

log2

(
µ(2)

)]
.
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Let G be a periodic linear group of degree 2
over a field of characteristic 2. Then every se-
rial subgroup is subnormal of defect at most
2 +

[
log2

(
θ(2)

)]
+
[

log2

(
µ(2)

)]
.

• If either the characteristic or the degree are
> 2, then this is not true.

W
hataboutperiodic

linear
groups?



Let G be a periodic linear group. Then the join
of arbitrarily many ascendant subgroups of G is
ascendant.
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Let G be a periodic linear group. Then the join
of arbitrarily many ascendant subgroups of G is
ascendant.

Let G be a periodic linear group. Then the join
of arbitrarily many subnormal subgroups of G is
subnormal.

Let G be a soluble-by-periodic linear group.
Then the join of finitely many subnormal sub-
groups of G is subnormal.
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A subgroupX of a groupG is f-subnormal if there
is a finite chain of subgroups

X = X0 6 X1 6 . . . 6 Xn = G

such that Xi E Xi+1 or |Xi+1 : Xi| < ∞ for every
0 6 i < n.
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A subgroupX of a groupG is f-subnormal if there
is a finite chain of subgroups

X = X0 6 X1 6 . . . 6 Xn = G

such that Xi E Xi+1 or |Xi+1 : Xi| < ∞ for every
0 6 i < n.

Let G be a group and let X be a subgroup of G.
Then X is subnormal if and only if it is ascendant
and f-subnormal.

The join of two f-subnormal subgroups may fail
to be f-subnormal even in periodic linear groups.
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Let σ be a partition of P. A subgroup X of a
group G is σ-subnormal if there is a finite chain
of subgroups

X = X0 6 X1 6 . . . 6 Xn = G

such that Xi+1/
(
Xi
)
Xi+1

is a σi-group for some
σi ∈ σ and for every 0 6 i < n.
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is a σi-group for some
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The join of arbitrarily many σ-subnormal sub-
groups is σ-subnormal in periodic linear groups.
• σ-subnormality coincides with σ-seriality in

periodic linear groups.

M. Ferrara •M.T.

σ-Subnormality in locally finite groups
J. Algebra 614 (2023), 867–897.
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Every permutable subgroup of a group is ascen-
dant.

Let G be a periodic linear group. Then every
permutable subgroup of G is subnormal
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Every permutable subgroup of a group is ascen-
dant.

Let G be a soluble-by-periodic linear group over
the field F. If either char(F) , 0 oru(G) = {1}, then
every permutable subgroup of G is subnormal
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